JPS60261949A - Air-fuel ratio controller for internal-combustion engine - Google Patents

Air-fuel ratio controller for internal-combustion engine

Info

Publication number
JPS60261949A
JPS60261949A JP11788384A JP11788384A JPS60261949A JP S60261949 A JPS60261949 A JP S60261949A JP 11788384 A JP11788384 A JP 11788384A JP 11788384 A JP11788384 A JP 11788384A JP S60261949 A JPS60261949 A JP S60261949A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust
combustion
secondary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11788384A
Other languages
Japanese (ja)
Inventor
Yoshiharu Tamura
田村 喜春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11788384A priority Critical patent/JPS60261949A/en
Publication of JPS60261949A publication Critical patent/JPS60261949A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the combustion stability and the exhaust purification effect of engine by making the combustion mixture gas thicker than the theoretical air- fuel ratio while feedback controlling the exhaust gas flowed to three element catalyst correctly to the theoretical air-fuel ratio. CONSTITUTION:When secondary air control means 6b is at the temperature lower than setting level, the block valve 13 of secondary air path 11 is opened by means of the output from a sensor 15 for detecting the engine temperature to lead secondary air into the exhaust gas. When feeding secondary air into the exhaust gas during or immediately after warming of engine, it is decided from the output of an exhaust sensor 5 that the mixture gas in the intake path 2 will be thinner in appearance than the theoretical air-fuel ratio to increment the fuel through air-fuel ratio control means 6a thus to make thick the combustion mixture gas. Since combustion gas composed of secondary air and thick mixture gas wil flow to the three element catalyst 4, similar effect with reaction of combustion exhaust having approximately theoretical air-fuel ratio is achieved. Consequently, combustion under said operating region is stabilized while the exhaust purification effect is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は排気系に三元触媒を備えた内燃機関の空燃比制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air-fuel ratio control device for an internal combustion engine equipped with a three-way catalyst in an exhaust system.

(従来技術) 内燃機関から排出されるNOxやHC,Coを減少させ
るために、排気通路に三元触媒を設け、NOXの還元と
同時にHC,GOの酸化を行なうようにした排気浄化シ
ステムが広く採用されている。
(Prior art) In order to reduce NOx, HC, and Co emitted from internal combustion engines, exhaust purification systems that install a three-way catalyst in the exhaust passage and simultaneously reduce NOx and oxidize HC and GO are widely used. It has been adopted.

ところで、三元触媒は理論空燃比の混合気を燃焼させた
排気に対してのみ、NOxの換言とHC。
By the way, the three-way catalyst only converts NOx and HC to the exhaust gas that burns the mixture at the stoichiometric air-fuel ratio.

COの酸化を共に効率よく行なうことができ、それ以外
の空燃比については、濃側、薄側のいずれに偏っても還
元効率または酸化効率が低下するため、燃焼α合気の空
燃比と密接な相関関係をもつ排気中の酸素濃度を酸素セ
ンサにより検出し、理論空燃比に正確に一致するように
燃料供給量をフィードバック制御している。
The oxidation of CO can be carried out efficiently, and for other air-fuel ratios, the reduction efficiency or oxidation efficiency will decrease if the ratio is biased towards the rich side or lean side, so it is necessary to oxidize the air-fuel ratio closely with the air-fuel ratio of combustion An oxygen sensor detects the oxygen concentration in the exhaust gas, which has a positive correlation, and feedback controls the fuel supply amount to accurately match the stoichiometric air-fuel ratio.

機関の通常運転時には理論空燃比の混合気により、安定
した燃焼が得られ、かつ燃費も良好となのであるが、冷
間始動直後の暖機運転中は燃料の霧化も悪く、燃焼が不
安定となりやすいため、混合気を一時的に濃くして暖機
を促進させている。
During normal operation of the engine, the air-fuel mixture at the stoichiometric air-fuel ratio provides stable combustion and good fuel efficiency, but during warm-up immediately after a cold start, fuel atomization is poor and combustion is unstable. Because this is likely to happen, the mixture is temporarily enriched to promote warming up.

したがってこの間は空燃比のフィードバック制御を中止
して、理論空燃比よりも濃い混合気による運転を行なっ
ているのであるが、このため燃焼は安定しても排気浄化
効率が低下する傾向があつlこ 。
Therefore, during this period, feedback control of the air-fuel ratio is discontinued and operation is performed with a mixture richer than the stoichiometric air-fuel ratio, but even if combustion is stabilized, the exhaust purification efficiency tends to decrease. .

そこで、得開昭58−119950号公報にもあるよう
に、機関に1混合気を供給している1機運転中は、三元
触媒の上流側のUt気気中二次空気を導入し、排気中に
適度な酸素を含ませることにより、三元触媒における、
とくに酸化効率の低下を防ぐようにすることが考えられ
た。
Therefore, as stated in Tokukai No. 58-119950, when one engine is in operation with one mixture being supplied to the engine, secondary air in the Ut air on the upstream side of the three-way catalyst is introduced. By including an appropriate amount of oxygen in the exhaust gas, the three-way catalyst
In particular, it was considered to prevent a decrease in oxidation efficiency.

この場合、機関冷却水温度が上背して、例えば50℃を
越えると、二次空気の供給を遮断し、同時に混合気が理
論空燃比となるよ)にフィードバック制御を開始し、通
常の制御に復帰させている。
In this case, if the engine cooling water temperature rises and exceeds, for example, 50°C, the supply of secondary air is cut off, and at the same time feedback control is started so that the air-fuel mixture reaches the stoichiometric air-fuel ratio. is being reinstated.

(発明が解決しようと覆る問題点) −しかしながら、このような従来装置では、[11機時
に排気中に供給される二次空気の流量を制御するのが難
しいため、三元触媒に流入する排気空燃比が、正しく理
論空燃比にならず、三元触媒での排気浄化効率は必ずし
も充分とは言えない。
(Problem that the invention attempts to solve) The air-fuel ratio does not reach the stoichiometric air-fuel ratio correctly, and the exhaust purification efficiency of the three-way catalyst cannot necessarily be said to be sufficient.

また、Ia関冷却水温が例えば50℃を越えると、即座
に混合気が理論空燃比となるようにフィードバック制御
を開始するため、この制御の切替え直後に空燃比に段差
ができ、この場合、運転条件によっては機関の燃焼が安
定しないこともあることから、発進時のいわゆる息付き
現象やひどいときにはエンジンストールに陥ることがあ
った。
In addition, when the Ia cooling water temperature exceeds, for example, 50°C, feedback control is immediately started so that the mixture reaches the stoichiometric air-fuel ratio, so a step occurs in the air-fuel ratio immediately after this control is switched, and in this case, the operation Depending on the conditions, engine combustion may not be stable, which can lead to so-called "breathing" phenomenon when starting, or in severe cases, engine stalling.

本発明は暖機中あるいは暖機直後に生じる。このような
問題を解決することを目的とする。
The present invention occurs during or immediately after warm-up. The purpose is to solve such problems.

(問題点を解決するための手段) 本発明では、第1図に示すように、排気通路3に、二元
触媒4とその上流に排気センサ5が設置される。
(Means for Solving the Problems) In the present invention, as shown in FIG. 1, an exhaust passage 3 is provided with a two-way catalyst 4 and an exhaust sensor 5 upstream thereof.

空燃比制御手段6aは、排気センサ5の出力にもとづい
て燃料供給量@7の、吸気通路2に対する燃料供給量を
、ぼぼ理論空燃比となるように7<−1’/、7,11
□6゜ 、1 排気センサ5の上流の排気中に二次空気通路11を接続
し、機関温度を検出するセンサ15からの出力により、
二次空気制御手段6bが設定温度以下のときに二次空気
通路11の遮断弁13を開き、排気中に二次空気を導入
するように構成する。
Based on the output of the exhaust sensor 5, the air-fuel ratio control means 6a adjusts the fuel supply amount @7 to the intake passage 2 so that the air-fuel ratio becomes almost the stoichiometric air-fuel ratio, 7<-1'/, 7, 11.
□6゜, 1 A secondary air passage 11 is connected to the exhaust gas upstream of the exhaust sensor 5, and the output from the sensor 15 detects the engine temperature.
When the temperature of the secondary air control means 6b is below a set temperature, the shutoff valve 13 of the secondary air passage 11 is opened to introduce secondary air into the exhaust gas.

(作用) したがって、機関の暖機中、あるいは暖機直後に二次空
気が排気中に供給されると、排気センサ5の出力からは
見かけ上、吸気通路2の混合気が理論空燃比よりも薄く
なったと判断され、空燃比制御手段6aが燃料を増量し
て燃焼混合気を濃くする。しかし、三元触媒4には二次
空気ど濃混合気の燃焼ガスが流入するため、結局、はぼ
理論空燃比の燃焼排気を反応させるのと同じことになる
(Function) Therefore, when secondary air is supplied to the exhaust gas during engine warm-up or immediately after engine warm-up, it appears from the output of exhaust sensor 5 that the air-fuel mixture in intake passage 2 is lower than the stoichiometric air-fuel ratio. It is determined that the mixture has become lean, and the air-fuel ratio control means 6a increases the amount of fuel to enrich the combustion mixture. However, since combustion gas with a rich mixture of secondary air flows into the three-way catalyst 4, the reaction is essentially the same as reacting combustion exhaust gas with a stoichiometric air-fuel ratio.

したがって、上記運転域での燃焼が安定するとともに、
排気浄化効率が高まるのである。
Therefore, combustion is stabilized in the above operating range, and
This increases exhaust purification efficiency.

(実施例) 第2図に本発明の実施例を示1 。(Example) FIG. 2 shows an embodiment of the present invention.

1は機関本体、2は吸気通路、3は排気通路であり、排
気通路3にはNOxの還元と)−IC,C0の酸化を行
なう三元触媒4が設()られる。
Reference numeral 1 designates an engine body, 2 an intake passage, and 3 an exhaust passage. The exhaust passage 3 is provided with a three-way catalyst 4 for reducing NOx and oxidizing -IC and CO.

三元触媒4の上流排気中の酸素濃度を測定する排気レン
ザ(酸素センサ)5が設けられ、この出力を制御回路6
に入力する。吸気通路2に設けた燃料供給装置としての
気化器7は、燃料供給量をフィードバック制御するため
燃料制御電磁弁8を右し、該電磁弁8の開度に応じて生
成混合気の空燃比が微調整できる(ただし、これらの構
造は周知なので詳細は省略する)。
An exhaust sensor (oxygen sensor) 5 is provided to measure the oxygen concentration in the exhaust upstream of the three-way catalyst 4, and this output is sent to a control circuit 6.
Enter. The carburetor 7, which serves as a fuel supply device provided in the intake passage 2, controls a fuel control solenoid valve 8 to perform feedback control of the fuel supply amount, and adjusts the air-fuel ratio of the generated air-fuel mixture according to the opening degree of the solenoid valve 8. It can be fine-tuned (however, these structures are well known, so details will be omitted).

工)7クリーナ10の一部には、排気通路3の排気レン
普す5の上流に接続する二次空気通路11が、fJl気
圧ツノ脈動に応じて開閉するり−ド弁12を間しτ連通
する。
In a part of the cleaner 10, there is a secondary air passage 11 connected upstream of the exhaust pipe 5 of the exhaust passage 3. communicate.

二次空気通路11の十流には遮断弁13が介装され、遮
断弁13は三方電磁弁13aを介して選択的に供給され
る負圧通路13bからの吸入負圧に応じて開閉し、この
三方電磁弁13a並びに前記電磁弁8は前記制御回路6
からの信号により、ぞのoff閉間度開度御される。な
お、18cは大気通路、18dはダイヤフラム室を示す
A cutoff valve 13 is interposed in the ten streams of the secondary air passage 11, and the cutoff valve 13 opens and closes according to the suction negative pressure from the negative pressure passage 13b selectively supplied via the three-way solenoid valve 13a. This three-way solenoid valve 13a and the solenoid valve 8 are connected to the control circuit 6.
The opening and closing degrees of the OFF valves are controlled by the signals from the OFF valves. Note that 18c represents an atmospheric passage, and 18d represents a diaphragm chamber.

制御回路6には、機関本体1のウォータジャケット14
の冷却水潤度を検出する水温センサ15の出力とともに
、図示しない各[L=ンザからの機関運転状態を代表、
する種々の信丹が入力される。
The control circuit 6 includes a water jacket 14 of the engine body 1.
In addition to the output of the water temperature sensor 15 that detects the cooling water moisture level of
Various types of Shintan are input.

制御回路6は基本的には通常運転時に混合気の空燃比が
理論空燃比となるように、排気センサ5の出力をもとに
空燃比制御電磁弁8の聞瓜をフィードバック制御するも
ので、例えば排気中に酸素が含まれているときは燃料を
増量し、酸素のないときは逆に減量する一方、機関暖機
時など水温センサ15の出力にもとづいて、機関温度が
第1の設定値(例えば60℃)以下のどきは空燃比のフ
ィードバック制御を中止し、上記電磁弁8を全開して混
合気が理論空燃比よりも濃い所定値となるようにオープ
ン制御に切替え、同時に機関温度が第2の設定値(例え
ば70℃)以下のときは、空燃比のフィードバック制御
のいかんにかかわらず二次空気通路11の遮断弁13を
開いて、三元触媒4及び排気センサ5の上流に二次空気
を導入さ−せる。
The control circuit 6 basically performs feedback control of the air-fuel ratio control solenoid valve 8 based on the output of the exhaust sensor 5 so that the air-fuel ratio of the mixture becomes the stoichiometric air-fuel ratio during normal operation. For example, when the exhaust gas contains oxygen, the amount of fuel is increased, and when there is no oxygen, the amount of fuel is decreased, while the engine temperature is set to the first set value based on the output of the water temperature sensor 15, such as when warming up the engine. (for example, 60°C) or below, the feedback control of the air-fuel ratio is stopped, and the solenoid valve 8 is fully opened to switch to open control so that the air-fuel mixture becomes a predetermined value richer than the stoichiometric air-fuel ratio, and at the same time, the engine temperature is When the temperature is below the second set value (for example, 70°C), the shutoff valve 13 of the secondary air passage 11 is opened regardless of the feedback control of the air-fuel ratio, and the Next, introduce air.

なお、この制御回路6はマイクロ−1ンビユータなどで
構成され、その動作は第3図のフローチャートに示すよ
うに行なわれる。
The control circuit 6 is composed of a micro-1 viewer or the like, and its operation is performed as shown in the flowchart of FIG.

次にこの第3図を参照しながら作用を説明する。Next, the operation will be explained with reference to FIG. 3.

機関を冷間状態から始動するとして、制御回路6は、水
温センサ15の出力から水温TWを読み込み、排気セン
サ(0,センサ)の活性状態を判断し、非活性状態の場
合、また水温が60℃以下の場合は、いずれも二次空気
通路11の遮断弁13を開き、同時に気化器7の電磁弁
8を全開保持して混合気を理論空燃比よりも濃くする。
Assuming that the engine is started from a cold state, the control circuit 6 reads the water temperature TW from the output of the water temperature sensor 15, determines the active state of the exhaust sensor (0, sensor), and if it is in the inactive state, the water temperature is 60. ℃ or below, the shutoff valve 13 of the secondary air passage 11 is opened, and at the same time, the solenoid valve 8 of the carburetor 7 is held fully open to make the air-fuel mixture richer than the stoichiometric air-fuel ratio.

このため、機関本体1には濃い混合気が供給され、機関
の暖機が促進されるとともに、排気中に導入される二次
空気により三元触媒4での反応効率を高める。
Therefore, a rich air-fuel mixture is supplied to the engine body 1, which promotes warm-up of the engine, and improves the reaction efficiency at the three-way catalyst 4 due to the secondary air introduced into the exhaust gas.

検出水WTwが60℃〜70℃の範囲にあるとぎは、遮
断弁13を開いたまま空燃比のフィードバック制御に移
行する。
When the detected water WTw is in the range of 60° C. to 70° C., the air-fuel ratio feedback control is performed while the shutoff valve 13 is kept open.

排気センサ5の上流に二次空気が導入されると、#) 
% # 、″z’pa−r:5y−i;n;bt=h・
tll: ’A t > +J−5。
When secondary air is introduced upstream of the exhaust sensor 5, #)
% #, ″z'par:5y-i;n;bt=h・
tll: 'A t > +J-5.

の出力から制御回路6は空燃比が理論空燃比よりも薄い
状態であると判断し、気化器7の生成混合気を濃くする
ような制御が行なわれる。
Based on the output, the control circuit 6 determines that the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, and performs control to enrich the air-fuel mixture produced by the carburetor 7.

したがって、結局三元触媒4に流入する排気は、濃い燃
焼ガスと二次空気との合成により正しく理論空燃比に制
御され、また燃焼混合気は理論空燃比よりもやや濃い、
暖機直後には最適な状態に制御されるのであり、これに
よって円滑な運転性能を確保する一方で、排気浄化効率
を最大限に維持する。 その後、さらに機関温度が上昇
してTwが70℃以上になると、制御回路6は遮断弁1
3を閉じて空燃比のフィードバック制御を行なう。
Therefore, the exhaust gas that eventually flows into the three-way catalyst 4 is correctly controlled to the stoichiometric air-fuel ratio by combining rich combustion gas and secondary air, and the combustion mixture is slightly richer than the stoichiometric air-fuel ratio.
Immediately after warming up, the system is controlled to the optimum state, ensuring smooth operating performance while maintaining maximum exhaust purification efficiency. After that, when the engine temperature rises further and Tw becomes 70°C or higher, the control circuit 6
3 is closed to perform feedback control of the air-fuel ratio.

二次空気の供給が断たれるため、排気センサ5の検出値
はそのまま燃焼混合気の空燃比に正しく対応し、したが
って、理論空燃比の混合気ガスが二元触媒4にそっくり
流入し、通常運転時の良好な燃費、出力特性と排気浄化
を実現J“る。
Since the supply of secondary air is cut off, the detected value of the exhaust sensor 5 directly corresponds to the air-fuel ratio of the combustion mixture. Therefore, the mixture gas at the stoichiometric air-fuel ratio flows completely into the two-way catalyst 4, and normally Achieves good fuel efficiency, output characteristics, and exhaust purification during operation.

以上の実施例は燃料供給手段として気化器を備える場合
を示したが、吸気ポートなどに燃1!3I噴射弁を設け
て機関回転に同期して燃料を噴射するものにも、本発明
を適用できることは明白である。
Although the above embodiment shows a case in which a carburetor is provided as a fuel supply means, the present invention is also applicable to a case in which a fuel 1!3I injection valve is provided in an intake port or the like to inject fuel in synchronization with engine rotation. It is obvious that it can be done.

また、二次空気の導入は暖1後の空燃比フィードバック
制御時に所定の温瓜に上昇するまで、あるいはフィード
バック制御開始後所定の時間だけ行なってもよいし、さ
らにはスロットルスイッヂを用いCアイドル時のみ二次
空気を導入すれば、アイドル安定性も向上する。
In addition, the secondary air may be introduced until the air-fuel ratio reaches a predetermined level during the air-fuel ratio feedback control after warming up, or for a predetermined period of time after the start of the feedback control. Idle stability can also be improved by introducing secondary air only when the engine is running.

(発明の効果) 以上のJ:うに本発明によれば、機関の暖機中あるいは
暖機直接の比較的不安定な運転時に、燃焼混合気を理論
空燃比よりも濃くするとともに三元触媒の流入排気を正
しく理論空燃比にフィードバック制御でき、機関の燃焼
安定性を高めると同時にυF気気中NOxの還元とHC
,Coの酸化を共に効率よく行なうことができるという
効果がある。
(Effects of the Invention) According to the present invention, the combustion air-fuel mixture is made richer than the stoichiometric air-fuel ratio, and the three-way catalyst is Feedback control of the inflow exhaust gas to the stoichiometric air-fuel ratio is possible, which improves engine combustion stability and at the same time reduces υF atmospheric NOx and improves HC.
, Co can be oxidized efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、第2図は本発明の実施例を示
す断面図、第3図はその制御動作を示すフローチャート
である。 1・・・機関本体、2・・・吸気通路、3・・・排気通
路、4・・・三元触媒、5・・・排気センサ、6・・・
制御回路、7・・・気化器、8・・・電磁弁、11・・
・二次空気通路、12・・・リード弁、13・・・遮断
弁、15・・・水温センサ。 特許出願人 日産自動車株式会社 第1図
FIG. 1 is a configuration diagram of the present invention, FIG. 2 is a cross-sectional view showing an embodiment of the present invention, and FIG. 3 is a flow chart showing its control operation. DESCRIPTION OF SYMBOLS 1... Engine body, 2... Intake passage, 3... Exhaust passage, 4... Three-way catalyst, 5... Exhaust sensor, 6...
Control circuit, 7... Carburizer, 8... Solenoid valve, 11...
- Secondary air passage, 12... Reed valve, 13... Shutoff valve, 15... Water temperature sensor. Patent applicant Nissan Motor Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 吸気通路に燃料供給装置を設けるとともに、排気通路に
排気センサと三元触媒を設置し、排気センサの出力にも
とづいてほぼ理論空燃比の混合気が得られるように燃料
供給装置をフィードバック制御Jる手段を備えた内燃機
関において、排気センサの上流の排気通路に二次空気通
路を接続する一方、機関温度を検出する手段を設U、I
M!関が設定温度以下のどきに二次空気通路を開いて二
次空気を導入する制御手段を設け、機関暖機中あるいは
暖機直後に二次空気を導入した排気空燃比がほぼ理論空
燃比となるようにしたことを特徴とJる内燃機関の空燃
比制御装置。
A fuel supply device is installed in the intake passage, and an exhaust sensor and a three-way catalyst are installed in the exhaust passage, and the fuel supply device is feedback-controlled based on the output of the exhaust sensor so that a mixture at approximately the stoichiometric air-fuel ratio is obtained. In an internal combustion engine equipped with means, a secondary air passage is connected to the exhaust passage upstream of the exhaust sensor, while means for detecting engine temperature are provided.
M! A control means is provided to open the secondary air passage and introduce secondary air when the engine temperature is below a set temperature, and the exhaust air-fuel ratio when the secondary air is introduced during or immediately after engine warm-up is approximately the stoichiometric air-fuel ratio. An air-fuel ratio control device for an internal combustion engine, characterized in that:
JP11788384A 1984-06-08 1984-06-08 Air-fuel ratio controller for internal-combustion engine Pending JPS60261949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11788384A JPS60261949A (en) 1984-06-08 1984-06-08 Air-fuel ratio controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11788384A JPS60261949A (en) 1984-06-08 1984-06-08 Air-fuel ratio controller for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60261949A true JPS60261949A (en) 1985-12-25

Family

ID=14722589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11788384A Pending JPS60261949A (en) 1984-06-08 1984-06-08 Air-fuel ratio controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60261949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422843U (en) * 1987-07-31 1989-02-07
US5765368A (en) * 1995-10-26 1998-06-16 Denso Corporation Exhaust gas purification by gas reaction in exhaust catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422843U (en) * 1987-07-31 1989-02-07
US5765368A (en) * 1995-10-26 1998-06-16 Denso Corporation Exhaust gas purification by gas reaction in exhaust catalyst

Similar Documents

Publication Publication Date Title
JPS5821097B2 (en) Ninen Kikanno Idol Antei Souchi
JPS60261949A (en) Air-fuel ratio controller for internal-combustion engine
JPH0123649B2 (en)
JPS62345B2 (en)
JP2639000B2 (en) Oxygen-enriched air control device for oxygen-enriched engine
JPH04330320A (en) Air suction system
JPS6318765Y2 (en)
JP3260506B2 (en) Gas-fuel mixture mixture formation device
JPS61152962A (en) Fuel injection device for internal-combustion engine with supercharger
JPS61232353A (en) Air-fuel ratio controller for internal-combustion engine
JPH05106431A (en) Secondary air feeding control device for catalyst converter
JPS61247842A (en) Secondary air control system
JP3329550B2 (en) Engine fuel injection control device
JPS5888447A (en) Correction device for air-fuel ratio of engine
JPS61283742A (en) Method of controlling air-fuel ratio of engine
JPS63215810A (en) Air-fuel ratio controlling device for internal combustion engine
JPS61108854A (en) Method for controlling air-fuel ratio of internal-combustion engine
JPS59165839A (en) Number-of-cylinders controlled engine
JPS5836174B2 (en) Exhaust gas purification device
JPS636275A (en) Flow control valve
JPS60222542A (en) Exhaust gas reflux controlling device for internal-combustion engine
JPH0711255B2 (en) Air-fuel ratio controller for internal combustion engine
JPH1068344A (en) Output control device for internal combustion engine
JPS61272437A (en) Exhaust gas purifying device for engine
JPH0328583B2 (en)