JPH04330320A - Air suction system - Google Patents

Air suction system

Info

Publication number
JPH04330320A
JPH04330320A JP12694291A JP12694291A JPH04330320A JP H04330320 A JPH04330320 A JP H04330320A JP 12694291 A JP12694291 A JP 12694291A JP 12694291 A JP12694291 A JP 12694291A JP H04330320 A JPH04330320 A JP H04330320A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust
passage
way catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12694291A
Other languages
Japanese (ja)
Inventor
Masaharu Naruse
成瀬 雅晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP12694291A priority Critical patent/JPH04330320A/en
Publication of JPH04330320A publication Critical patent/JPH04330320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To prevent deterioration of exhaust purifying performance in an air suction system for purifying exhaust gas in an internal combustion engine by regulating a flow rate of secondary air in such a manner that an air-fuel ratio on the upstream side of a three-way catalyst becomes a theoretical air-fuel ratio when a rich air-fuel ratio of an intake passage is determined on the basis of an exhaust component value detected by an exhaust sensor and an exhaust temperature is lower than a predetermined temperature. CONSTITUTION:A controller 28 selectively supplies a negative pressure and an atmospheric pressure to a negative pressure chamber 52 of an opening/closing valve mechanism 46 by a negative changeover valve mechanism 60 of a flow rate regulator 44 if an air-fuel ratio of an intake passage 4 is richer than a theoretical air-fuel ratio on the basis of concentration of oxygen detected by an oxygen sensor 36 and an exhaust temperature detected by an exhaust temperature sensor 42 is lower than a predetermined temperature, to operate a diaphragm 50. Consequently, an opening/closing valve body 54 is displaced so that an air-fuel ratio of an exhaust passage 6 on the upstream side of a three- way catalyst 24 from a secondary air passage 18 can be maintained in the theoretical air-fuel ratio.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はエアサクションシステ
ムに係り、特に理論空燃比よりも濃側の濃側空燃比の混
合気を供給される内燃機関の高負荷運転状態における排
気浄化性能を運転性の低下を招くことなく向上し得るエ
アサクションシステムに関する。
[Field of Industrial Application] This invention relates to an air suction system, and in particular improves the performance of exhaust purification under high-load operating conditions of an internal combustion engine that is supplied with a mixture having a richer air-fuel ratio than the stoichiometric air-fuel ratio. The present invention relates to an air suction system that can be improved without causing a decrease in performance.

【0002】0002

【従来の技術】車両等に搭載される内燃機関においては
、エアサクションシステムを備えたものがある。エアサ
クションシステムは、内燃機関の排気通路の排気脈動に
より生ずる負圧を利用し、排気通路に2次空気を供給す
る2次空気通路を備えている。エアサクションシステム
は、2次空気通路により排気通路に2次空気を供給して
排気を二次燃焼させ、排気有害成分であるHCやCOを
酸化させ、浄化を果たすものである。
2. Description of the Related Art Some internal combustion engines installed in vehicles are equipped with an air suction system. The air suction system includes a secondary air passage that supplies secondary air to the exhaust passage by utilizing negative pressure generated by exhaust pulsation in the exhaust passage of an internal combustion engine. The air suction system supplies secondary air to the exhaust passage through a secondary air passage to perform secondary combustion of the exhaust gas, oxidizes harmful exhaust gas components such as HC and CO, and purifies the exhaust gas.

【0003】このようなエアサクションシステムとして
は、図3に示すものがある。図において、102は内燃
機関、104は吸気通路、106は排気通路である。内
燃機関102の吸気通路104は、上流端のエアクリー
ナ108と、このエアクリーナ108に連続するスロッ
トルボディ110と、このスロットルボディ110を内
燃機関102に連絡する吸気マニホルド112と、によ
り構成される。前記排気通路106は、内燃機関102
に連絡する排気マニホルド114と、この排気マニホル
ド114に連続する排気管116と、により構成される
An example of such an air suction system is shown in FIG. In the figure, 102 is an internal combustion engine, 104 is an intake passage, and 106 is an exhaust passage. The intake passage 104 of the internal combustion engine 102 includes an air cleaner 108 at the upstream end, a throttle body 110 continuous to the air cleaner 108, and an intake manifold 112 communicating the throttle body 110 to the internal combustion engine 102. The exhaust passage 106 is connected to the internal combustion engine 102.
The exhaust manifold 114 is connected to the exhaust manifold 114, and the exhaust pipe 116 is continuous with the exhaust manifold 114.

【0004】エアサクションシステムは、前記吸気通路
104の上流端のエアクリーナ108に上流側を連絡す
るとともに、下流側を前記排気通路104の排気マニホ
ルド114に連絡する2次空気通路118を備えている
。この2次空気通路118には、排気の逆流を防止する
逆止め弁120を設けている。逆止め弁120は、逆方
向領域におけ2次空気通路118への排気の逆流を阻止
するとともに、順方向領域における排気通路106への
2次空気の流通を許容する。また、2次空気通路118
の連通する部位よりも下流側の排気通路104には、酸
化触媒122を設けている。
The air suction system includes a secondary air passage 118 that communicates upstream with the air cleaner 108 at the upstream end of the intake passage 104 and communicates downstream with the exhaust manifold 114 of the exhaust passage 104 . This secondary air passage 118 is provided with a check valve 120 that prevents backflow of exhaust gas. The check valve 120 prevents the exhaust gas from flowing back into the secondary air passage 118 in the reverse direction region, and allows the secondary air to flow into the exhaust passage 106 in the forward direction region. In addition, the secondary air passage 118
An oxidation catalyst 122 is provided in the exhaust passage 104 on the downstream side of the portion communicating with the exhaust passage 104 .

【0005】これにより、エアサクションシステムは、
内燃機関102の排気通路106の排気脈動により生ず
る負圧を利用して、順方向領域において吸気通路104
のエアクリーナ108から排気通路106に2次空気を
供給し、排気を二次燃焼させて排気有害成分であるHC
やCOを酸化し、排気浄化を果たす。また、酸化触媒1
22は、HCやCOを酸化して排気浄化を果たす。
[0005] As a result, the air suction system:
Using the negative pressure generated by exhaust pulsation in the exhaust passage 106 of the internal combustion engine 102, the intake passage 104 is
Secondary air is supplied from the air cleaner 108 to the exhaust passage 106, and the exhaust gas is subjected to secondary combustion to remove HC, which is a harmful component of the exhaust gas.
It oxidizes and CO and purifies exhaust gas. In addition, oxidation catalyst 1
22 oxidizes HC and CO to purify exhaust gas.

【0006】このようなエアサクションシステムとして
は、特開昭56−60814号公報に開示のものがある
。この公報に開示のものは、内燃機関の排気通路に設け
た排気センサの検出する排気成分値により前記内燃機関
の吸気通路の空燃比が理論空燃比になるよう制御する空
燃比制御装置を備えるとともに排気通路に三元触媒を備
えた内燃機関において、排気通路に2次空気を供給する
2次空気通路に内燃機関の冷機時に開放動作する開閉弁
手段を設けることにより、内燃機関の冷機時に排気通路
に2次空気を供給してHCの燃焼を促進し、三元触媒の
迅速な活性化を図ったものである。
[0006] Such an air suction system is disclosed in Japanese Unexamined Patent Publication No. 56-60814. The device disclosed in this publication includes an air-fuel ratio control device that controls the air-fuel ratio in the intake passage of the internal combustion engine to a stoichiometric air-fuel ratio based on the exhaust gas component value detected by an exhaust sensor provided in the exhaust passage of the internal combustion engine. In an internal combustion engine equipped with a three-way catalyst in the exhaust passage, the secondary air passage that supplies secondary air to the exhaust passage is provided with an on-off valve that opens when the internal combustion engine is cold. This is to promote the combustion of HC by supplying secondary air to the reactor, thereby rapidly activating the three-way catalyst.

【0007】[0007]

【発明が解決しようとする課題】ところで、内燃機関は
、高負荷運転状態において、理論空燃比よりも濃側の濃
側空燃比の混合気を供給される。ところが、三元触媒は
、空燃比が理論空燃比付近(ウインドウ)にある場合に
、排気浄化性能を充分に発揮し得るものである。
By the way, an internal combustion engine is supplied with an air-fuel mixture having a rich air-fuel ratio, which is richer than the stoichiometric air-fuel ratio, in a high-load operating state. However, the three-way catalyst can sufficiently exhibit exhaust purification performance when the air-fuel ratio is around the stoichiometric air-fuel ratio (window).

【0008】このため、前記公報に開示のエアサクショ
ンシステムは、加速運転等の高負荷運転状態において、
排気浄化性能が低下する不都合がある。また、三元触媒
は、空燃比が理論空燃比よりも濃側の濃側空燃比となる
ことにより、熱的負荷を軽減し得るものであるが、前記
の如く、空燃比が理論空燃比付近から外れて濃側空燃比
となることにより、排気浄化性能が低下する不都合があ
る。
[0008] For this reason, the air suction system disclosed in the above-mentioned publication, in high-load operating conditions such as accelerated operation,
There is an inconvenience that exhaust purification performance deteriorates. Additionally, a three-way catalyst can reduce thermal load by setting the air-fuel ratio to a rich air-fuel ratio that is richer than the stoichiometric air-fuel ratio. If the air-fuel ratio deviates from the above range and becomes a rich air-fuel ratio, there is a disadvantage that the exhaust purification performance deteriorates.

【0009】[0009]

【課題を解決するための手段】このような不都合を解消
すべく、この発明は、内燃機関の排気通路に2次空気を
供給する2次空気通路を備えたエアサクションシステム
において、前記内燃機関の排気通路に設けた排気センサ
の検出する排気成分値により前記内燃機関の吸気通路の
空燃比が理論空燃比になるよう制御する空燃比制御装置
を備えるとともに前記排気センサの下流側の排気通路に
三元触媒を備え、この三元触媒よりも上流側の排気通路
に前記2次空気通路の下流側を連絡して設けるとともに
排気温度を検出する排気温度センサを設け、前記排気セ
ンサの検出する排気成分値により前記吸気通路の空燃比
が理論空燃比よりも濃側の濃側空燃比であり前記排気温
度センサの検出する排気温度が所定温度以下である場合
に前記2次空気通路の2次空気流量を調整して前記三元
触媒よりも上流側の排気通路の空燃比が理論空燃比にな
るよう制御される流量調整手段を設けたことを特徴とす
る。
[Means for Solving the Problems] In order to eliminate such inconveniences, the present invention provides an air suction system equipped with a secondary air passage that supplies secondary air to the exhaust passage of the internal combustion engine. An air-fuel ratio control device that controls the air-fuel ratio in the intake passage of the internal combustion engine to a stoichiometric air-fuel ratio based on the exhaust component value detected by an exhaust sensor installed in the exhaust passage; A primary catalyst is provided, an exhaust passage upstream of the three-way catalyst is connected to the downstream side of the secondary air passage, and an exhaust temperature sensor is provided for detecting exhaust temperature, and the exhaust gas components detected by the exhaust sensor are provided. According to the value, when the air-fuel ratio of the intake passage is a rich side air-fuel ratio that is richer than the stoichiometric air-fuel ratio and the exhaust temperature detected by the exhaust temperature sensor is below a predetermined temperature, the secondary air flow rate of the secondary air passage. The present invention is characterized in that a flow rate adjusting means is provided for controlling the air-fuel ratio in the exhaust passage upstream of the three-way catalyst to the stoichiometric air-fuel ratio by adjusting the air-fuel ratio.

【0010】0010

【作用】この発明の構成によれば、流量調整手段によっ
て、排気センサの検出する排気成分値により吸気通路の
空燃比が理論空燃比よりも濃側の濃側空燃比であり、排
気温度センサの検出する排気温度が所定温度以下である
場合に、2次空気通路の2次空気流量を調整して三元触
媒よりも上流側の排気通路の空燃比が理論空燃比になる
よう制御することにより、加速運転等の高負荷運転状態
において、三元触媒に流入する排気の空燃比を理論空燃
比に制御することができる。
[Operation] According to the structure of the present invention, the air-fuel ratio in the intake passage is set to a rich-side air-fuel ratio richer than the stoichiometric air-fuel ratio according to the exhaust component value detected by the exhaust sensor, and the exhaust temperature sensor When the detected exhaust temperature is below a predetermined temperature, the secondary air flow rate in the secondary air passage is adjusted so that the air-fuel ratio in the exhaust passage upstream of the three-way catalyst becomes the stoichiometric air-fuel ratio. The air-fuel ratio of the exhaust gas flowing into the three-way catalyst can be controlled to the stoichiometric air-fuel ratio in high-load operating conditions such as accelerated driving.

【0011】[0011]

【実施例】次にこの発明の実施例を図に基づいて詳細に
説明する。
Embodiments Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0012】図1・図2は、この発明の実施例を示すも
のである。図1において、2は内燃機関、4は吸気通路
、6は排気通路である。この内燃機関2の吸気通路4は
、上流端のエアクリーナ8と、このエアクリーナ8に連
続するスロットルボディ10と、このスロットルボディ
10を内燃機関2に連絡する吸気マニホルド12と、に
より構成される。前記排気通路6は、内燃機関2に連絡
する排気マニホルド14と、この排気マニホルド14に
連続する排気管16と、により構成される。
FIGS. 1 and 2 show an embodiment of the present invention. In FIG. 1, 2 is an internal combustion engine, 4 is an intake passage, and 6 is an exhaust passage. The intake passage 4 of the internal combustion engine 2 includes an air cleaner 8 at an upstream end, a throttle body 10 continuous to the air cleaner 8, and an intake manifold 12 communicating the throttle body 10 to the internal combustion engine 2. The exhaust passage 6 is composed of an exhaust manifold 14 communicating with the internal combustion engine 2 and an exhaust pipe 16 continuous with the exhaust manifold 14.

【0013】エアサクションシステムは、前記吸気通路
4の上流端のエアクリーナ8に上流側を連絡するととも
に、下流側を前記排気通路4の排気マニホルド14に連
絡する2次空気通路18を備えている。この2次空気通
路18には、排気の逆流を防止する逆止め弁20を設け
ている。逆止め弁20は、逆方向領域におけ2次空気通
路18への排気の逆流を阻止するとともに、順方向領域
における排気通路6への2次空気の流通を許容する。
The air suction system includes a secondary air passage 18 that communicates upstream with the air cleaner 8 at the upstream end of the intake passage 4 and communicates downstream with the exhaust manifold 14 of the exhaust passage 4. This secondary air passage 18 is provided with a check valve 20 that prevents backflow of exhaust gas. The check valve 20 prevents the exhaust gas from flowing back into the secondary air passage 18 in the reverse direction region, and allows the secondary air to flow into the exhaust passage 6 in the forward direction region.

【0014】このような、エアサクションシステムにお
いて、内燃機関2は、空燃比制御装置22及び三元触媒
24を備えている。空燃比制御装置22は、内燃機関2
の燃料系として、スロットルボディ10の上流側の吸気
通路4に単一の燃料噴射弁26を備えている。この燃料
噴射弁26は、制御部28に接続されている。制御部2
8には、スロットルボディ10に設けスロットルバルブ
30の開度を検出するスロットルセンサ32と、吸気通
路4の吸気圧力を検出する圧力センサ34と、排気通路
6の排気成分値を検出すべく排気マニホルド14に設け
た排気センサたる酸素センサ36と、が接続されている
。なお、符号38は点火コイル、符号40はバッテリで
ある。
In such an air suction system, the internal combustion engine 2 includes an air-fuel ratio control device 22 and a three-way catalyst 24. The air-fuel ratio control device 22 is an internal combustion engine 2
As a fuel system, a single fuel injection valve 26 is provided in the intake passage 4 on the upstream side of the throttle body 10. This fuel injection valve 26 is connected to a control section 28. Control part 2
8 includes a throttle sensor 32 provided in the throttle body 10 to detect the opening degree of the throttle valve 30, a pressure sensor 34 to detect the intake pressure in the intake passage 4, and an exhaust manifold to detect the exhaust gas component value in the exhaust passage 6. An oxygen sensor 36, which is an exhaust sensor provided at 14, is connected. Note that the reference numeral 38 is an ignition coil, and the reference numeral 40 is a battery.

【0015】これにより、空燃比制御装置22は、制御
部28によって、スロットルセンサ32の検出するスロ
ットルバルブ30の開度と、圧力センサ34の検出する
吸気通路4の吸気圧力とにより、内燃機関2の運転状態
に応じて吸気通路4の空燃比が要求空燃比になるよう燃
料噴射弁26を制御するとともに、排気通路6に設けた
酸素センサ36の検出する排気成分値である酸素濃度に
より、吸気通路4の空燃比が理論空燃比になるよう燃料
噴射弁26を制御する。
Thereby, the air-fuel ratio control device 22 controls the internal combustion engine 2 by the control section 28 based on the opening degree of the throttle valve 30 detected by the throttle sensor 32 and the intake pressure in the intake passage 4 detected by the pressure sensor 34. The fuel injection valve 26 is controlled so that the air-fuel ratio of the intake passage 4 becomes the required air-fuel ratio according to the operating state of the intake passage 4, and the intake air is The fuel injection valve 26 is controlled so that the air-fuel ratio in the passage 4 becomes the stoichiometric air-fuel ratio.

【0016】また、前記三元触媒24は、空燃比制御装
置22を構成する酸素センサ36の下流側の排気通路6
を構成する排気管16に設けられている。この三元触媒
24よりも上流側の排気通路6には、前記2次空気通路
18の下流側を連絡して設けるとともに、排気温度を検
出する排気温度センサ42を設けている。
Further, the three-way catalyst 24 is connected to the exhaust passage 6 downstream of the oxygen sensor 36 constituting the air-fuel ratio control device 22.
It is provided in the exhaust pipe 16 that constitutes the. The exhaust passage 6 upstream of the three-way catalyst 24 is provided in communication with the downstream side of the secondary air passage 18, and is also provided with an exhaust temperature sensor 42 for detecting exhaust temperature.

【0017】前記2次空気通路18には、流量調整手段
44を設けている。流量調整手段44は、この実施例に
おいては、逆止め弁20の上流側の2次空気通路18に
開閉弁機構46を設けている。開閉弁機構46は、本体
内48にダイヤフラム50により負圧室52を区画して
設け、ダイヤフラム50に2次空気通路18を開閉する
開閉弁体54を設けるとともにこの開閉弁体54により
2次空気通路18を閉鎖する方向にダイヤフラム50を
付勢する閉鎖バネ56を設けている。
The secondary air passage 18 is provided with a flow rate adjusting means 44 . In this embodiment, the flow rate adjusting means 44 includes an on-off valve mechanism 46 in the secondary air passage 18 on the upstream side of the check valve 20. The on-off valve mechanism 46 has a negative pressure chamber 52 partitioned into a main body 48 by a diaphragm 50, and the diaphragm 50 is provided with an on-off valve body 54 for opening and closing the secondary air passage 18. A closing spring 56 is provided that biases the diaphragm 50 in a direction to close the passageway 18.

【0018】開閉弁機構46の負圧室52は、負圧通路
58により吸気マニホルド12の吸気通路4に連絡され
ている。負圧通路58には、負圧切換弁機構60を設け
ている。負圧切換弁機構60は、前記負圧室52側の第
1負圧通路58−1に、吸気マニホルド12側のマニホ
ルド側負圧通路58−2と大気孔62とを選択的に切換
連絡する切換弁体64を設け、この切換弁体64を切換
駆動する切換ソレノイド66を設けている。切換ソレノ
イド66は、前記制御部28に接続されている。
The negative pressure chamber 52 of the on-off valve mechanism 46 is connected to the intake passage 4 of the intake manifold 12 through a negative pressure passage 58. A negative pressure switching valve mechanism 60 is provided in the negative pressure passage 58. The negative pressure switching valve mechanism 60 selectively connects the first negative pressure passage 58-1 on the negative pressure chamber 52 side to the manifold side negative pressure passage 58-2 on the intake manifold 12 side and the atmospheric hole 62. A switching valve body 64 is provided, and a switching solenoid 66 for switching and driving the switching valve body 64 is provided. The switching solenoid 66 is connected to the control section 28 .

【0019】これにより、制御部28は、前記酸素セン
サ36及び排気温度センサ42の検出値にしたがって、
負圧切換弁機構60の切換ソレノイド66に電源を給排
して切換弁体64を動作させ、開閉弁機構46の負圧室
52に負圧と大気圧とを選択的に供給してダイヤフラム
50を動作させ、開閉弁体54を変位させて2次空気通
路18を開閉することにより、2次空気流量を調整する
[0019] Thereby, the control unit 28, according to the detected values of the oxygen sensor 36 and the exhaust temperature sensor 42,
Power is supplied to and discharged from the switching solenoid 66 of the negative pressure switching valve mechanism 60 to operate the switching valve body 64, and negative pressure and atmospheric pressure are selectively supplied to the negative pressure chamber 52 of the opening/closing valve mechanism 46, so that the diaphragm 50 The secondary air flow rate is adjusted by operating the on-off valve body 54 to open and close the secondary air passage 18.

【0020】このように、流量調整手段44は、制御部
28によって、前記酸素センサ42の検出する排気成分
値により吸気通路4の空燃比が理論空燃比よりも濃側の
濃側空燃比であり、前記排気温度センサ42の検出する
排気温度が三元触媒24や酸素センサ36の劣化を来さ
ない所定温度以下である場合に、2次空気通路18の2
次空気流量を調整して三元触媒24よりも上流側の排気
通路6の空燃比が理論空燃比になるよう制御される。な
お、2次空気は、2次空気通路18の逆止め弁20によ
って、逆方向領域におけ2次空気通路18への排気の逆
流を阻止されるとともに、順方向領域における排気通路
6への2次空気の流通を許容される。したがって、流量
調整手段44は、順方向領域において、2次空気通路1
8の2次空気流量を調整して三元触媒24よりも上流側
の排気通路6の空燃比が理論空燃比になるよう制御され
る。
In this manner, the flow rate adjusting means 44 controls the air-fuel ratio of the intake passage 4 to be a rich-side air-fuel ratio richer than the stoichiometric air-fuel ratio according to the exhaust gas component value detected by the oxygen sensor 42. , when the exhaust gas temperature detected by the exhaust gas temperature sensor 42 is below a predetermined temperature that does not cause deterioration of the three-way catalyst 24 or the oxygen sensor 36, two of the secondary air passages 18
The air-fuel ratio in the exhaust passage 6 upstream of the three-way catalyst 24 is controlled to be the stoichiometric air-fuel ratio by adjusting the secondary air flow rate. Note that the check valve 20 of the secondary air passage 18 prevents the secondary air from flowing back into the secondary air passage 18 in the reverse direction area, and prevents the secondary air from flowing back into the exhaust passage 6 in the forward direction area. Next air circulation is allowed. Therefore, the flow rate adjustment means 44 controls the secondary air passage 1 in the forward direction region.
8 is controlled so that the air-fuel ratio in the exhaust passage 6 upstream of the three-way catalyst 24 becomes the stoichiometric air-fuel ratio.

【0021】次に作用を説明する。Next, the operation will be explained.

【0022】内燃機関2の加速運転時等以外の運転状態
、例えば、アイドル運転状態において、空燃比制御装置
22は、制御部28によって、スロットルセンサ32の
検出するスロットルバルブ30の開度と、圧力センサ3
4の検出する吸気通路4の吸気圧力とにより、吸気通路
4の空燃比が理論空燃比になるよう燃料噴射弁26を制
御する。このとき、三元触媒24は、流入する排気の空
燃比が理論空燃比に制御されていることにより、排気浄
化性能を充分に発揮することができる。
When the internal combustion engine 2 is in an operating state other than acceleration, for example, in an idling state, the air-fuel ratio control device 22 uses the control section 28 to control the opening degree of the throttle valve 30 and the pressure detected by the throttle sensor 32. sensor 3
4 controls the fuel injection valve 26 so that the air-fuel ratio in the intake passage 4 becomes the stoichiometric air-fuel ratio. At this time, the three-way catalyst 24 can sufficiently exhibit exhaust purification performance because the air-fuel ratio of the inflowing exhaust gas is controlled to the stoichiometric air-fuel ratio.

【0023】また、このとき、酸素センサ36の検出す
る酸素濃度により吸気通路4の空燃比が理論空燃比であ
るので、制御部28は、流量調整手段44の負圧切換弁
機構60により閉弁弁機構46の負圧室52に大気圧を
供給させ、2次空気通路18を閉鎖して排気通路6への
2次空気の供給を阻止している。これにより、空燃比が
理論空燃比よりも薄側の薄側空燃比となることを防止で
き、三元触媒24等の劣化を防止できる。
At this time, since the air-fuel ratio in the intake passage 4 is the stoichiometric air-fuel ratio based on the oxygen concentration detected by the oxygen sensor 36, the control section 28 causes the negative pressure switching valve mechanism 60 of the flow rate adjustment means 44 to close the valve. Atmospheric pressure is supplied to the negative pressure chamber 52 of the valve mechanism 46, and the secondary air passage 18 is closed to prevent the supply of secondary air to the exhaust passage 6. This can prevent the air-fuel ratio from becoming a lean air-fuel ratio that is leaner than the stoichiometric air-fuel ratio, and can prevent the three-way catalyst 24 and the like from deteriorating.

【0024】内燃機関2の加速運転時等の高負荷運転状
態において、酸素センサ36の検出する酸素濃度により
吸気通路4の空燃比が理論空燃比よりも濃側の濃側空燃
比であり、排気温度センサ42の検出する排気温度が所
定温度以下である場合に、制御部28は、流量調整手段
44の負圧切換弁機構60により開閉弁機構46の負圧
室52に負圧と大気圧とを選択的に供給してダイヤフラ
ム50を動作させ、開閉弁体50を変位させて2次空気
通路18を開閉することにより、三元触媒24よりも上
流側の排気通路6の空燃比が理論空燃比になるよう2次
空気流量を調整する。
When the internal combustion engine 2 is in a high-load operating state such as during acceleration, the air-fuel ratio in the intake passage 4 is richer than the stoichiometric air-fuel ratio due to the oxygen concentration detected by the oxygen sensor 36. When the exhaust gas temperature detected by the temperature sensor 42 is below a predetermined temperature, the control unit 28 causes the negative pressure switching valve mechanism 60 of the flow rate adjustment means 44 to cause the negative pressure chamber 52 of the on-off valve mechanism 46 to have a negative pressure and atmospheric pressure. is selectively supplied to operate the diaphragm 50 and displace the on-off valve body 50 to open and close the secondary air passage 18, thereby adjusting the air-fuel ratio in the exhaust passage 6 upstream of the three-way catalyst 24 to stoichiometric air. Adjust the secondary air flow rate to match the fuel ratio.

【0025】これにより、流量調整手段44は、加速運
転時等の高負荷運転状態において、逆止め弁20による
順方向領域で三元触媒24に流入する排気の空燃比を理
論空燃比に制御することができる。
[0025] Accordingly, the flow rate adjusting means 44 controls the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 24 to the stoichiometric air-fuel ratio in the forward direction region of the check valve 20 in a high-load operating state such as during acceleration operation. be able to.

【0026】このため、理論空燃比よりも濃側の濃側空
燃比の混合気を供給される内燃機関2の加速時等の高負
荷運転状態において、三元触媒24に流入する排気の空
燃比を理論空燃比に制御し得ることにより、排気浄化性
能を向上することができる。また、高負荷運転状態にお
いて、吸気通路4の空燃比を理論空燃比に制御すること
なく、三元触媒24の排気浄化性能を向上することがで
きることにより、運転性の低下を招くこともない。
Therefore, in a high-load operating state such as during acceleration of the internal combustion engine 2 supplied with a mixture having a rich air-fuel ratio that is richer than the stoichiometric air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 24 changes. By controlling the air-fuel ratio to the stoichiometric air-fuel ratio, exhaust purification performance can be improved. Further, in a high-load operating state, the exhaust gas purification performance of the three-way catalyst 24 can be improved without controlling the air-fuel ratio of the intake passage 4 to the stoichiometric air-fuel ratio, so that no deterioration in drivability occurs.

【0027】また、たとえ加速運転時等の高負荷運転状
態であっても、逆方向領域では、流量調整手段44によ
る排気通路6への2次空気の供給を逆止め弁20により
阻止している。このため、排気の逆流による不都合を回
避することができる。
Furthermore, even in a high-load operating state such as during acceleration, the check valve 20 prevents the flow rate adjusting means 44 from supplying secondary air to the exhaust passage 6 in the reverse direction region. . Therefore, inconveniences caused by backflow of exhaust gas can be avoided.

【0028】なお、この実施例においては、開閉弁機構
46と負圧切換弁機構60とからなる流量調整手段44
を例示したが、図2に示す如く、デューティ制御される
制御弁機構68を設けることもできる。この制御弁機構
68は、2次空気通路18に対して出没されるテーパ状
の制御弁体70と、2次空気通路18を閉鎖する方向に
前記制御弁体70を押進付勢する閉鎖ばね72と、2次
空気通路18を開放する方向に前記制御弁体70を牽引
付勢する制御ソレノイド74と、から構成される。この
制御弁機構68の制御ソレノイド74を制御部28に接
続し、前記の如く、酸素センサ36の検出する酸素濃度
により吸気通路4の空燃比が理論空燃比よりも濃側の濃
側空燃比であり、排気温度センサ42の検出する排気温
度が所定温度以下である場合に、流量調整手段44の制
御弁機構68により2次空気通路18を開閉して三元触
媒24よりも上流側の排気通路6の空燃比が理論空燃比
になるよう2次空気流量を調整することもできる。
In this embodiment, the flow rate adjusting means 44 is composed of an on-off valve mechanism 46 and a negative pressure switching valve mechanism 60.
Although shown as an example, a control valve mechanism 68 whose duty is controlled may be provided as shown in FIG. The control valve mechanism 68 includes a tapered control valve body 70 that extends and retracts from the secondary air passage 18, and a closing spring that pushes and urges the control valve body 70 in a direction to close the secondary air passage 18. 72, and a control solenoid 74 that pulls and biases the control valve body 70 in the direction of opening the secondary air passage 18. The control solenoid 74 of the control valve mechanism 68 is connected to the control unit 28, and as described above, the air-fuel ratio of the intake passage 4 is set to a rich side air-fuel ratio richer than the stoichiometric air-fuel ratio according to the oxygen concentration detected by the oxygen sensor 36. If the exhaust gas temperature detected by the exhaust temperature sensor 42 is below a predetermined temperature, the control valve mechanism 68 of the flow rate adjustment means 44 opens and closes the secondary air passage 18 to open and close the exhaust passage upstream of the three-way catalyst 24. The secondary air flow rate can also be adjusted so that the air-fuel ratio of 6 becomes the stoichiometric air-fuel ratio.

【0029】このように、流量調整手段44をデューテ
ィ制御される制御弁機構68とすることにより、前述実
施例と同様の効果を奏し得て、さらに、制御弁機構68
によってデューティ制御することにより、2次空気流量
をさらに細かく制御することができ、制御精度を向上す
ることができる。
As described above, by using the control valve mechanism 68 whose duty is controlled as the flow rate adjusting means 44, the same effects as those of the above-mentioned embodiment can be achieved, and furthermore, the control valve mechanism 68
By controlling the duty by , the secondary air flow rate can be controlled more finely, and control accuracy can be improved.

【0030】[0030]

【発明の効果】このように、この発明によれば、加速運
転時等の高負荷運転状態において、三元触媒に流入する
排気の空燃比を理論空燃比に制御することができる。
As described above, according to the present invention, the air-fuel ratio of the exhaust gas flowing into the three-way catalyst can be controlled to the stoichiometric air-fuel ratio during high-load operating conditions such as during acceleration.

【0031】このため、理論空燃比よりも濃側の濃側空
燃比の混合気を供給される内燃機関の加速運転時等の高
負荷運転状態において、三元触媒に流入する排気の空燃
比を理論空燃比に制御し得ることにより排気浄化性能を
向上し得て、また、高負荷運転状態において、吸気通路
の空燃比を理論空燃比に制御することなく、三元触媒の
排気浄化性能を向上し得ることにより、運転性の低下を
招くこともない。
Therefore, in a high-load operating state such as during acceleration operation of an internal combustion engine that is supplied with a mixture having a rich air-fuel ratio that is richer than the stoichiometric air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is Exhaust purification performance can be improved by controlling the air-fuel ratio to the stoichiometric air-fuel ratio, and the exhaust purification performance of the three-way catalyst can be improved without controlling the air-fuel ratio in the intake passage to the stoichiometric air-fuel ratio under high-load operating conditions. As a result, drivability does not deteriorate.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例を示すエアサクションシステ
ムの概略構成図である。
FIG. 1 is a schematic configuration diagram of an air suction system showing an embodiment of the present invention.

【図2】流量調整手段の別の実施例を示す断面図である
FIG. 2 is a sectional view showing another embodiment of the flow rate adjusting means.

【図3】従来例を示すエアサクションシステムの概略構
成図である。
FIG. 3 is a schematic configuration diagram of an air suction system showing a conventional example.

【符号の説明】[Explanation of symbols]

2  内燃機関 4  吸気通路 6  排気通路 8  エアクリーナ 10  スロットルボディ 12  吸気マニホルド 14  排気マニホルド 16  排気管 18  2次空気通路 20  逆止め弁 22  空燃比制御装置 24  三元触媒 26  燃料噴射弁 28  制御部 30  スロットルバルブ 32  スロットルセンサ 34  圧力センサ 36  酸素センサ 42  排気温度センサ 44  流量調整手段 46  開閉弁機構 60  負圧切換弁機構 68  制御弁機構 2 Internal combustion engine 4 Intake passage 6 Exhaust passage 8 Air cleaner 10 Throttle body 12 Intake manifold 14 Exhaust manifold 16 Exhaust pipe 18 Secondary air passage 20 Check valve 22 Air-fuel ratio control device 24 Three-way catalyst 26 Fuel injection valve 28 Control section 30 Throttle valve 32 Throttle sensor 34 Pressure sensor 36 Oxygen sensor 42 Exhaust temperature sensor 44 Flow rate adjustment means 46 Opening/closing valve mechanism 60 Negative pressure switching valve mechanism 68 Control valve mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  内燃機関の排気通路に2次空気を供給
する2次空気通路を備えたエアサクションシステムにお
いて、前記内燃機関の排気通路に設けた排気センサの検
出する排気成分値により前記内燃機関の吸気通路の空燃
比が理論空燃比になるよう制御する空燃比制御装置を備
えるとともに前記排気センサの下流側の排気通路に三元
触媒を備え、この三元触媒よりも上流側の排気通路に前
記2次空気通路の下流側を連絡して設けるとともに排気
温度を検出する排気温度センサを設け、前記排気センサ
の検出する排気成分値により前記吸気通路の空燃比が理
論空燃比よりも濃側の濃側空燃比であり前記排気温度セ
ンサの検出する排気温度が所定温度以下である場合に前
記2次空気通路の2次空気流量を調整して前記三元触媒
よりも上流側の排気通路の空燃比が理論空燃比になるよ
う制御される流量調整手段を設けたことを特徴とするエ
アサクションシステム。
Claims: 1. An air suction system comprising a secondary air passage supplying secondary air to an exhaust passage of an internal combustion engine, wherein the internal combustion engine an air-fuel ratio control device for controlling the air-fuel ratio in the intake passage to a stoichiometric air-fuel ratio, a three-way catalyst in the exhaust passage downstream of the exhaust sensor, and a three-way catalyst in the exhaust passage upstream of the three-way catalyst; An exhaust temperature sensor is provided to connect the downstream side of the secondary air passage and detect the exhaust temperature, and the air-fuel ratio of the intake passage is on the richer side than the stoichiometric air-fuel ratio based on the exhaust component value detected by the exhaust sensor. When the air-fuel ratio is on the rich side and the exhaust temperature detected by the exhaust temperature sensor is below a predetermined temperature, the secondary air flow rate in the secondary air passage is adjusted to reduce the air in the exhaust passage upstream of the three-way catalyst. An air suction system characterized by being provided with a flow rate adjustment means that controls the fuel ratio to be the stoichiometric air-fuel ratio.
JP12694291A 1991-04-30 1991-04-30 Air suction system Pending JPH04330320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12694291A JPH04330320A (en) 1991-04-30 1991-04-30 Air suction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12694291A JPH04330320A (en) 1991-04-30 1991-04-30 Air suction system

Publications (1)

Publication Number Publication Date
JPH04330320A true JPH04330320A (en) 1992-11-18

Family

ID=14947715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12694291A Pending JPH04330320A (en) 1991-04-30 1991-04-30 Air suction system

Country Status (1)

Country Link
JP (1) JPH04330320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237330B1 (en) * 1998-04-15 2001-05-29 Nissan Motor Co., Ltd. Exhaust purification device for internal combustion engine
JP2013036362A (en) * 2011-08-04 2013-02-21 Keihin Corp Air-fuel ratio control device
KR20160068773A (en) 2013-10-11 2016-06-15 린텍 가부시키가이샤 Process sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237330B1 (en) * 1998-04-15 2001-05-29 Nissan Motor Co., Ltd. Exhaust purification device for internal combustion engine
JP2013036362A (en) * 2011-08-04 2013-02-21 Keihin Corp Air-fuel ratio control device
KR20160068773A (en) 2013-10-11 2016-06-15 린텍 가부시키가이샤 Process sheet

Similar Documents

Publication Publication Date Title
JPS61132745A (en) Air-fuel ratio controller of internal-conbustion engine
JPH04330320A (en) Air suction system
JPH0123649B2 (en)
JPH0228699B2 (en)
JPS6128033Y2 (en)
JP3801266B2 (en) Secondary air supply device for internal combustion engine
JPS624532B2 (en)
JPS6120275Y2 (en)
JPH021473Y2 (en)
JPH05106431A (en) Secondary air feeding control device for catalyst converter
JP2614766B2 (en) Air-fuel ratio control device for gas engine
JPS6318765Y2 (en)
JPS624678Y2 (en)
JPS6342095B2 (en)
JPS60261949A (en) Air-fuel ratio controller for internal-combustion engine
JPS6142093B2 (en)
JPH0134293B2 (en)
JPS60222542A (en) Exhaust gas reflux controlling device for internal-combustion engine
JPS58119950A (en) Exhaust pupifying unit of internal-combustion enging for car
JP2001208236A (en) Control device for solenoid controlled valve
JPH07103036A (en) Air fuel ratio controller of engine
JPH039014A (en) Exhaust purifying device of internal combustion engine
JPS61272437A (en) Exhaust gas purifying device for engine
JPS5888447A (en) Correction device for air-fuel ratio of engine
JPS61232353A (en) Air-fuel ratio controller for internal-combustion engine