JPS5886773A - Output protecting circuit - Google Patents

Output protecting circuit

Info

Publication number
JPS5886773A
JPS5886773A JP56185807A JP18580781A JPS5886773A JP S5886773 A JPS5886773 A JP S5886773A JP 56185807 A JP56185807 A JP 56185807A JP 18580781 A JP18580781 A JP 18580781A JP S5886773 A JPS5886773 A JP S5886773A
Authority
JP
Japan
Prior art keywords
output
series
transistor
resistor
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56185807A
Other languages
Japanese (ja)
Other versions
JPH0666468B2 (en
Inventor
Misao Higuchi
樋口 三左男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56185807A priority Critical patent/JPH0666468B2/en
Publication of JPS5886773A publication Critical patent/JPS5886773A/en
Publication of JPH0666468B2 publication Critical patent/JPH0666468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PURPOSE:To obtain a large output protecting effect in an output protecting circuit for an IGFET having a series resistor and a P-N junction diode between an output transistor and an output terminal by increasing the junction area of the diode without varying the resistance value of the resistor. CONSTITUTION:The source and drain of two output stage transistors M1, M2 are connected in series with each other, the drain of the transistor M1 is connected to an electrode voltage Vcc, and the source of the transistor M2 is grounded. The series connecting midpoint of the source and the drain is connected through a series transistor R to an output terminal, one terminal of a P-N junction diode D1 is connected to the midpoint of the resistor R, and the other terminal is grounded, thereby forming an output protecting circuit. In this structure, the shapes of the series resistor and an N<+> type layer 2 for the P-N junction diode formed on a P type semiconductor substrate 1 is constructed to have rectangular, circular elliptical slits. In this manner, the series resistor between the points X and Y is determined as an ordinary value, and the junction area in the vicinity of the surface of the substrate is increased, thereby enhancing the protecting effect.

Description

【発明の詳細な説明】 本弁明は出力保護回路に係り、5%に絶縁ゲート1゛、
弁効果トランジスタ回路による半導体集積回路における
出力保護回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present defense relates to an output protection circuit, with an insulated gate of 1.
This invention relates to an output protection circuit in a semiconductor integrated circuit using a valve effect transistor circuit.

絶縁ゲートを弁効果トランジスタによる半導体集積回路
(以下MO8LSIという)の出力端子は、通常第1図
に示すごとく電源電圧Vccと接地GND間に直列に配
置されるトランジスタM1とM2との鴫部Xに接続され
ている。XはMle M2のソースあるいはドレインで
あり、酸化膜によってゲート電極と絶縁されている。
The output terminal of a semiconductor integrated circuit (hereinafter referred to as MO8LSI) using an insulated gate as a valve-effect transistor is usually connected to the junction X between transistors M1 and M2, which are arranged in series between the power supply voltage Vcc and the ground GND, as shown in Figure 1. It is connected. X is the source or drain of Mle M2, and is insulated from the gate electrode by an oxide film.

ところで、ゲート酸化膜の破壊電圧は約7XIO’v/
cILといわれているが、近年MO8LSIにおいては
ゲート酸化膜厚が数100〜10001程度であり数1
0 V@度で破壊されZ、ことになる。この破壊はたっ
た一度の過電圧で回復不能となる。このようにゲート酸
化膜が破壊され、ゲート電極と基板、あるいはソースド
レイン領域とが短絡し。
By the way, the breakdown voltage of the gate oxide film is approximately 7XIO'v/
It is called cIL, but in recent years in MO8LSI, the gate oxide film thickness is about several 100 to 10001.
It will be destroyed by Z at 0 V@degree. This destruction becomes irreversible with just one overvoltage. In this way, the gate oxide film is destroyed, causing a short circuit between the gate electrode and the substrate or source/drain region.

トランジスタの動作が不能になってしまう。通常MO8
LSIに対し、衣服やプラスチック容器、その他、保存
中に発生する静電気によって高い電圧が加わりやすい。
The transistor becomes inoperable. Normal MO8
High voltages are likely to be applied to LSIs due to static electricity generated during storage, such as from clothes or plastic containers.

また、誤って加えられる過電圧もあり1%にMO8LS
Iの入力端子においては種々の入力保繰回路が設けられ
ている。
Also, there is an overvoltage that is applied by mistake, and MO8LS is at 1%.
Various input protection circuits are provided at the input terminal of I.

一方、出力端子においても同様に過電圧等に対する保■
は重要であり、正常な動作電圧範囲ではvLIN、を流
さす、異常電圧に対しては破壊電圧よりも十分低い電圧
で電流を流してこれをり2ンプし。
On the other hand, the output terminals are also protected against overvoltage, etc.
is important; in the normal operating voltage range, vLIN is allowed to flow; for abnormal voltages, current is passed at a voltage that is sufficiently lower than the breakdown voltage, and this is re-amplified.

更にサージ電圧に対して速やかに応答する必要がある。Furthermore, it is necessary to quickly respond to surge voltage.

第1図は出力端子に上記条件を満たすものとして、X点
との間に直列抵抗R及びPN接合ダイオードDIをそう
人した等個目路管示すものであり、第2図(atにMO
S LSIにおいて実際に実現されているパターンレイ
アウト例?示す。
Figure 1 shows an equal number of circuits in which a series resistor R and a PN junction diode DI are connected between the output terminal and the point X, as the output terminal satisfies the above conditions.
An example of a pattern layout actually realized in S LSI? show.

第1図はNチャネルMO8の例であり、基板に対して負
電圧が加えられるとPN接合ダイオードの順方向特性に
よってこれをクランプし、正電圧が加えられたときには
、ダイオードの回復可能なブレークダウンによってこれ
をクランクし、更にクランク効果を増すために直列抵抗
による分圧効果を利用している。第2図(31は以上の
効果を発揮すべく設計されたパターンレイアウト例であ
り、第2図(blはA−A/矢視断面図であり、第2図
(clはB−B/矢視断面図である。P型半導体基板l
の表面に酸化BIAn設け、活性領域全体の酸化膜を除
去し、ゲート酸化膜全形成する。6の破線部分開口11
 ポリシリコン層3.3’、3を設ける。該酸化膜5と
ポリシリコン層3.3’、3’をマスクとしてリンを拡
散してN十層2,2′を形成する。熱酸化により押込み
と酸化膜による被覆の後、コンタクト穴7,7′をホト
エツチングにより形成し、最後にアルミニウム等の配線
4.4’、4“ 4///を行なう。
Figure 1 shows an example of an N-channel MO8, in which when a negative voltage is applied to the substrate, the forward characteristic of the PN junction diode clamps it, and when a positive voltage is applied, the diode recoverable breakdown occurs. This is cranked by using the voltage divider effect created by the series resistor to further increase the cranking effect. Figure 2 (31 is an example of a pattern layout designed to achieve the above effect; It is a cross-sectional view of a P-type semiconductor substrate l.
BIAn oxide is provided on the surface of the active region, the oxide film over the entire active region is removed, and the entire gate oxide film is formed. 6 broken line partial opening 11
A polysilicon layer 3.3', 3 is provided. Using the oxide film 5 and polysilicon layers 3.3', 3' as masks, phosphorus is diffused to form N+ layers 2, 2'. After pressing in by thermal oxidation and covering with an oxide film, contact holes 7, 7' are formed by photoetching, and finally wiring 4.4', 4"4/// of aluminum or the like is formed.

以上のごとく、第1図のR及びDIは第2図の2のへ土
層によってRが2の側面と基板1との間でDIが形成さ
れたことになる。しかし、第2図(a)のパターンレイ
アウト例において、出力端子であるが為に、第1図のR
,f大きくすることは、出力レベルの悪化につながり、
あま夛Rf大きくすることは出来ない。よって、出力端
子の保護においてけI)l’に太きくすることが効果と
して大きい訳であるが、Kl適当な値におさえDlff
i大きくすることは、第2図(a)において2のへ土層
の面積の増大になってしまい、レイアウト上好ましいと
いえない。
As described above, DI is formed between R and DI in FIG. 1 and the substrate 1 by the soil layer 2 in FIG. 2. However, in the pattern layout example of FIG. 2(a), since it is an output terminal, R of FIG.
, f increases leads to deterioration of the output level,
It is not possible to increase the sweet Rf. Therefore, in protecting the output terminal, it is highly effective to make Kl' thicker, but keep Kl to an appropriate value and Dlff
Increasing i results in an increase in the area of the soil layer 2 in FIG. 2(a), which is not desirable in terms of layout.

本発明はこのような問題全解決した出力保瞳回路を提供
すZことにある。
The object of the present invention is to provide an output pupil keeping circuit that solves all of these problems.

本発明の出力保贈回路は、出力トランジスタと出力端子
間にそう人される直列抵抗とPN接合タイオードにおい
て、直列抵抗の抵抗値ケ変えないで、PN接合ダイオー
ドのPN接合面積の増大tdtす、実質的なPN接合ダ
イオードの大きさケ大きくシ1本メ゛イオードによるク
ランツー効果、更には重列抵抗による分圧効果全高めた
ものである。
In the output protection circuit of the present invention, the PN junction area of the PN junction diode is increased tdt without changing the resistance value of the series resistor in the series resistor and PN junction diode placed between the output transistor and the output terminal. The actual size of the PN junction diode is large, and the Clantz effect due to a single diode is fully enhanced, as is the voltage dividing effect due to the multilayer resistor.

以下、本発明を図面を参照して説明する。Hereinafter, the present invention will be explained with reference to the drawings.

8443図(a)は本発明の一実施例?示すパターンレ
イアウトである。製造工程は第2図(atの場合と同一
であるが% 2ON十層の形状が本パターンレイアウト
例においては異なる。すなわち、直列抵抗及びPN接合
ダイオード全形成する1層2の形状ケスリットのある形
状にする。第3図(b)に示すC−C/矢祝断面図のご
とく、第2図(clのB−B’矢祝断面図と比較して、
N”/12が3つの部分に分離されたことになる。ここ
で述べるスリットとは第3図(alでは矩形を用いてい
るが1円形、だ円形等N+層の一部を中ぬきにするよう
な形状全てを含んだものである。
8443Is Figure (a) an embodiment of the present invention? This is the pattern layout shown. The manufacturing process is the same as in the case of AT, but the shape of the 2ON 10 layers is different in this pattern layout example. In other words, the shape of 1 layer 2 that forms all the series resistors and PN junction diodes, and the shape with slits. As shown in the C-C/arrow cross-sectional view shown in Figure 3(b), compared with the B-B' arrow cross-sectional view in Figure 2 (cl),
This means that N''/12 has been separated into three parts.The slit described here is shown in Figure 3 (Al uses a rectangular shape in al, but it is a slit in which a part of the N+ layer is hollowed out, such as a circular or oval shape. It includes all such shapes.

本発明によれば、第3図(a)のX点とY点の間の直列
抵抗は従来と同一であっても3つの領域に分離された抵
抗′分は大きくなり、更に基板とN+7m側面との接合
面、特に基板表面近傍での接合面積がより大きくなる。
According to the present invention, even though the series resistance between point X and point Y in FIG. The bonding area with the substrate, especially near the substrate surface, becomes larger.

以上のことから、PN接合ダイオードのクランク効果及
び%11列抵抗抵抗よる分圧効果は従来に比べ格段に効
果を増し、出力保誇として十分のその効果を発揮するも
のである。
From the above, the crank effect of the PN junction diode and the voltage dividing effect of the %11 series resistor are much more effective than in the past, and are fully effective in maintaining the output.

上記実施例はP型基板について説明したがN型基板また
は真性半導体基板の場合も同様に実施できる。
Although the above embodiments have been described with respect to a P-type substrate, the same can be applied to an N-type substrate or an intrinsic semiconductor substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は出力保^回路の等個目略図、第2図(a)は従
来の保轄(ロ)路の場合におけるパターンレイアウト例
、第2図(b)は第2図(a)のA−A’矢祝断面図、
第2図(clけ第2図(at (D B −B’矢祝断
面図、第3図(atは本発明の実施例のパターンレイア
ウト、第3図(blけ第3図(a)のC−C’矢視断面
図、で夛る。 尚1図において、Ml、M2・・・・・・出力段のトラ
ンジスタ、R・・・・・・直列抵抗、Dト・・・・・P
N接合夕′イオード、l・・・・・・P型半導体基板、
2,2’・・・・・・N十噛=、3.3’、3“・・・
・・・ポリシリコン層、4,4.4′。 4″・・・・・・金属配線、5・・・・・・酸化膜、6
・・・・・・N+層−ポリシリコン層フンタクト、7・
・・・・・金属−ポリシリコン層コンタクト、7′・・
・・・・金M−N”7mコンタクト、である。 第 ZX(b)
Figure 1 is an equal-part schematic diagram of the output protection circuit, Figure 2 (a) is an example of the pattern layout for a conventional protection circuit, and Figure 2 (b) is the same pattern as in Figure 2 (a). A-A' arrow sectional view,
Figure 2 (cl) Figure 2 (at (D This is shown in the cross-sectional view taken along the line C-C'.In Figure 1, Ml, M2...output stage transistors, R...series resistance, D...P
N-junction diode, l...P-type semiconductor substrate,
2, 2'...N ten bites =, 3.3', 3"...
...Polysilicon layer, 4,4.4'. 4″...Metal wiring, 5...Oxide film, 6
・・・・・・N+ layer-polysilicon layer contact, 7.
...Metal-polysilicon layer contact, 7'...
... Gold M-N" 7m contact. No. ZX (b)

Claims (1)

【特許請求の範囲】[Claims] 一導゛シ形半導体基板に設けられた出力トランジスタと
出力端子間にそう人され、逆導電形不純物拡散層によっ
て形成される該不純物拡散層の抵抗と該不純、物拡散層
の側面と基板との間のPN接合ダイオードによる出力保
護回路において、該不純物拡散層に、任意のスリットを
設けて前記抵抗の値を変λずに該拡散層側面と基板との
間のPN接合而面會大きくした事を特徴とする出力保護
回路。
The resistance of the impurity diffusion layer formed by the opposite conductivity type impurity diffusion layer and the side surface of the impurity diffusion layer and the substrate are In an output protection circuit using a PN junction diode between the layers, an arbitrary slit is provided in the impurity diffusion layer to increase the PN junction between the side surface of the diffusion layer and the substrate without changing the value of the resistance. An output protection circuit characterized by:
JP56185807A 1981-11-19 1981-11-19 Output protection circuit Expired - Lifetime JPH0666468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56185807A JPH0666468B2 (en) 1981-11-19 1981-11-19 Output protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56185807A JPH0666468B2 (en) 1981-11-19 1981-11-19 Output protection circuit

Publications (2)

Publication Number Publication Date
JPS5886773A true JPS5886773A (en) 1983-05-24
JPH0666468B2 JPH0666468B2 (en) 1994-08-24

Family

ID=16177227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56185807A Expired - Lifetime JPH0666468B2 (en) 1981-11-19 1981-11-19 Output protection circuit

Country Status (1)

Country Link
JP (1) JPH0666468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262450U (en) * 1985-10-08 1987-04-17

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143778A (en) * 1976-05-25 1977-11-30 Toshiba Corp Input protection circuit
JPS56116658A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Semiconductor resistance element and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143778A (en) * 1976-05-25 1977-11-30 Toshiba Corp Input protection circuit
JPS56116658A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Semiconductor resistance element and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262450U (en) * 1985-10-08 1987-04-17
JPH0525250Y2 (en) * 1985-10-08 1993-06-25

Also Published As

Publication number Publication date
JPH0666468B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
KR0139648B1 (en) Scr protection structure and circuit with reduced trigger voltage
JP2007235151A (en) Protection structure for integrated circuit
US4543593A (en) Semiconductor protective device
US6469325B1 (en) Semiconductor integrated circuit device and its manufacture
JPH03272180A (en) Semiconductor integrated circuit
JP2822915B2 (en) Semiconductor device
KR970030780A (en) Semiconductor integrated circuit device
JPS5886773A (en) Output protecting circuit
US4922316A (en) Infant protection device
JP2002313947A (en) Semiconductor device
US8810004B2 (en) Methods, systems and devices for electrostatic discharge protection
JP3531808B2 (en) Protection circuit and semiconductor device
JP3128813B2 (en) Semiconductor integrated circuit
JPS5823471A (en) Semiconductor device
JPH01287954A (en) Electrostatic protection element
KR0182005B1 (en) Method of manufacturing electrostatic protecting device
JPH08306872A (en) Mos input protective circuit
JPH01185971A (en) Insulated gate semiconductor device
JPH05267586A (en) Output protection network
JPS59181044A (en) Input protecting circuit
JPH04291953A (en) Protective circuit
JPS6048906B2 (en) Protection circuit for integrated circuit devices
JPS5879743A (en) Monolithic integrated circuit
JPH0685160A (en) Semiconductor integrated circuit device
JPS61232658A (en) Integrated circuit device