JPS5886702A - Method of producing varistor - Google Patents

Method of producing varistor

Info

Publication number
JPS5886702A
JPS5886702A JP56186275A JP18627581A JPS5886702A JP S5886702 A JPS5886702 A JP S5886702A JP 56186275 A JP56186275 A JP 56186275A JP 18627581 A JP18627581 A JP 18627581A JP S5886702 A JPS5886702 A JP S5886702A
Authority
JP
Japan
Prior art keywords
varistor
film
zno
metal oxide
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56186275A
Other languages
Japanese (ja)
Other versions
JPS6253923B2 (en
Inventor
陽之 江口
江田 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56186275A priority Critical patent/JPS5886702A/en
Publication of JPS5886702A publication Critical patent/JPS5886702A/en
Publication of JPS6253923B2 publication Critical patent/JPS6253923B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、超小型で機器の小型化や軽量化に適したバリ
スタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a varistor that is ultra-compact and suitable for reducing the size and weight of equipment.

印加する電圧を上げていくにしたがって、急激に抵抗の
減少する素子は、一般にバリスタと呼ばれている。従来
、バリスタとして、ZnOと微量のB12O3などの金
属酸化物から成るZnOバリスタが知らnている。Zn
Oバリスタは、Zn□□□体に0.1、数モルチのBi
2O3,C020C02O31゜5b2o3などを添加
した粉体を成型し、1250℃前lの空気中で焼結する
ことによって得られる。
An element whose resistance rapidly decreases as the applied voltage increases is generally called a varistor. Conventionally, as a varistor, a ZnO varistor made of ZnO and a trace amount of a metal oxide such as B12O3 is known. Zn
O varistor is made of Zn□□□ with 0.1 and several mol of Bi.
It is obtained by molding a powder to which 2O3, C020C02O31°5b2o3, etc. are added, and sintering it in air at 1250°C.

このようにして得られたZnOバリスタは、厚みを変え
ることによって立上り電圧を側倒することができる。ま
メ電圧関−電流(I)特性を、v a    c:定数 l=(で) として近似した場合のα(電圧非直線指数)が30〜6
0程度のものが得られ、非オーム性もきわめて優れてい
る。しかしながらこの方法では、小型で特性の良いもの
が得にくいといり難点がある。
The ZnO varistor thus obtained can have a rising voltage to the side by changing the thickness. When the voltage-current (I) characteristic is approximated as vac: constant l=(), α (voltage nonlinear index) is 30 to 6.
A value of about 0 was obtained, and the non-ohmic property was also extremely excellent. However, this method has the disadvantage that it is difficult to obtain a small size and good characteristics.

、ZnOバリスタの非オーム性は、ZnO粒子の粒界の
障壁に起因しており、したがって立上シミ圧(は、電極
間に直列に接続さ扛た粒界の数、換言すれば、素子の厚
みに比例する。したがって、希望とする立上り電圧を1
有したバリスタを得よ、うとすると、自動的に素子の厚
みがきまってしまう。通常得られる素子の立上り電圧は
11xあたり・10o〜200Vであり、したがって多
くの民生用の用途に対しては、厚み11aIL前後の焼
結体が必要とされる。
, the non-ohmic nature of the ZnO varistor is due to the barrier of the grain boundaries of the ZnO particles, and therefore the rising stain pressure (is the number of grain boundaries connected in series between the electrodes, in other words, the number of grain boundaries of the device It is proportional to the thickness. Therefore, if the desired rise voltage is 1
If you try to obtain a varistor with a varistor, the thickness of the element will automatically be determined. The rise voltage of the normally obtained device is 100 to 200 V per 11x, and therefore, for many consumer applications, a sintered body with a thickness of about 11aIL is required.

一方、近年、電子部品の小型、高密度化が進み、その技
術を利用して、各種軽量小型の民生用電子機器が開発さ
れている。それらには多くの半導体IC,LSIが使用
され、これらの異常過電圧(サージ)からの保護が重要
な課題となっている。
On the other hand, in recent years, electronic components have become smaller and more dense, and various light and compact consumer electronic devices are being developed using this technology. Many semiconductor ICs and LSIs are used in these devices, and protecting them from abnormal overvoltages (surges) has become an important issue.

これらの用途に対し、先はどのZt+Oバリスタは立上
り電圧と形状の大きさのために不適当である。
For these applications, any Zt+O varistor is unsuitable due to its rise voltage and feature size.

そこで、・これらの超小型回路にふされしい、超小型の
サージ保護素子が必要とされている。
Therefore, there is a need for an ultra-small surge protection element suitable for these ultra-small circuits.

本発明はかかる状況に基づきな搭れたもので、これらの
超小型回路への応用に適した超小型バリスタの製造方法
を提供するものであり、以下に実施例と共に、その詳細
を述べる。
The present invention was developed based on this situation, and provides a method for manufacturing a micro-varistor suitable for application to these micro-circuits, and details thereof will be described below along with examples.

第1図〜第3図は本発明の方法を用いて得られるバリス
タの断面図を示したものであり、以下、まず第1図に基
すいて本発明の一実施例を説明する。
1 to 3 show cross-sectional views of a varistor obtained using the method of the present invention. Hereinafter, one embodiment of the present invention will first be described based on FIG. 1.

アルミナ基板1に対して真空槽内で原料を加熱蒸発させ
る、いわゆる真空蒸着法で金(Au)k厚み4ooo八
に蒸着して電%2aを、形成した。次に、これf 1 
x 10−’Tor r  O高真空にできる排気部を
有した気密槽内の金属電極上に装着し、これに対向して
酸化亜鉛(Z n O)から成る焼結体と、酸化ビスマ
ス(Bi  O)から成る金属酸化物焼結体 3 をそれぞれの電極(ターゲット)に装着した。この気密
槽内にアルゴンガスを微量の雰囲気ガスとして満たし、
気密槽内i 2 x 10−2Tor rの圧力に設定
した後、両電極間に高周波スパッタ電力10oWを印加
して放電させた。この方法は、放電によって分離したガ
スの分子の衝突によりターゲットの原材料物質がスパッ
タリング蒸発し、基板上に膜として形成できるもので、
いわゆる高周波スパッタリング法である。この方法を用
いてZnO膜3′f!:厚み6000人、さらにコノ上
にB Z 203膜4を厚みSOO人付着させて積層し
た。その後、気密槽内から取り出して空気中SOO℃の
温度で熱処理を行ない、更−にBi2O3膜4の上に真
空蒸着法で厚み2000人のAuを施し電%2bとした
この電極2aと電極2bの間で電圧(ト)−電流(I)
特性を調べてみると、V−I特性に整流性が見られ、逆
方向特性は立上り電圧的6V、(Zが50程度のものが
得られ、順方向特性は立上り電圧が1v以下で、αが3
0程度のものが得られた。すなわち上記の方法で製作し
た第1図のバリスタは、V−■特性に方向性を持つ、い
わゆる非対称型バリスタである。
Gold (Au) was deposited to a thickness of 400 mm on an alumina substrate 1 using a so-called vacuum evaporation method in which a raw material was heated and evaporated in a vacuum chamber to form an electric layer of 2a. Next, this f 1
x 10-' Tor r O It is mounted on a metal electrode in an airtight tank with an exhaust part that can create a high vacuum, and facing it, a sintered body made of zinc oxide (ZnO) and a bismuth oxide (Bi A metal oxide sintered body 3 consisting of O) was attached to each electrode (target). This airtight tank is filled with argon gas as a trace amount of atmospheric gas,
After setting the pressure in the airtight tank to i 2 x 10 −2 Torr, a high frequency sputtering power of 10 oW was applied between both electrodes to cause discharge. In this method, the source material of the target is sputtered and evaporated by the collision of gas molecules separated by electric discharge, forming a film on the substrate.
This is a so-called high frequency sputtering method. Using this method, ZnO film 3'f! : A thickness of 6,000 layers was applied, and a B Z 203 film 4 of a thickness of SOO layers was deposited on top of the layer. Thereafter, the electrodes 2a and 2b were taken out from the airtight tank and heat-treated in the air at a temperature of SOO°C, and then Au was applied to a thickness of 2,000 by vacuum evaporation on the Bi2O3 film 4 to give a conductivity of 2b. Voltage (T) - Current (I) between
When examining the characteristics, rectification was observed in the V-I characteristic, the reverse characteristic had a rising voltage of 6 V, (Z was about 50), and the forward characteristic had a rising voltage of 1 V or less, α is 3
About 0 was obtained. That is, the varistor shown in FIG. 1 manufactured by the above method is a so-called asymmetric varistor that has directionality in the V-■ characteristic.

第2図は本発明の第2の実施例で得られたバリスタの断
面図を示したものであり、B12O3膜4iZno膜3
ではさんだ構成になっていて、V−1特性に方向性を持
たない、いわゆる対称型バリスタが得られた。この場合
の立上り電圧は約iv。
FIG. 2 shows a cross-sectional view of the varistor obtained in the second embodiment of the present invention, in which the B12O3 film 4iZno film 3
A so-called symmetrical varistor, which has a sandwiched structure and has no directionality in V-1 characteristics, was obtained. The rising voltage in this case is about iv.

αは約50であった。第3図は本゛発明の第3の実施例
で得られたバリスタの断面図を示したもので、対称型バ
リスタであるが積層数を増した構造となっており、立上
り電圧の高い対称型バリスタが得られた。この場合の立
上り電圧は約18v、αは約60であった。本発明で得
られる素子の非オーム性は、ZnO膜とB12O3膜の
へテロ接合に起因しており、したがって立上り電圧は、
ZnO膜とB12O3膜を交互に積層し、この積層数を
任意に選ぶことによって制御できるものである。
α was approximately 50. Figure 3 shows a cross-sectional view of the varistor obtained in the third embodiment of the present invention, which is a symmetrical varistor, but has a structure with an increased number of laminated layers, and has a high rising voltage. Got a barista. In this case, the rising voltage was about 18V, and α was about 60. The non-ohmic property of the device obtained by the present invention is due to the heterojunction between the ZnO film and the B12O3 film, and therefore the rising voltage is
This can be controlled by alternately laminating ZnO films and B12O3 films and arbitrarily selecting the number of laminated layers.

なお、上記いずれの実施例においても、ZnO膜3.B
12o3膜4の製作方法は同一である。また、膜形成後
の熱処理条件についても同様で、積層数にかかわらず空
気中8oo℃の温度で熱処理することによって、スパッ
タリングにより形成されたアモルファス状態のB12O
3を主成分とする金属酸化物膜が結晶化し、Z!10膜
との境界で形成されたベテロ接合の安定化が起り、安定
性に優れた非オーム性を得ることができた。スパッタリ
ングにより形成したアモルファス状態のBi2O3を主
成分、とする膜を結晶化する温度以下(上記各実施例の
場合には結晶化温度は600℃であった)で熱処理した
ものはv−I特性が不安定であり、バリスタとして実用
には耐えられないものであった。
Note that in any of the above embodiments, the ZnO film 3. B
The manufacturing method of the 12o3 film 4 is the same. The same applies to the heat treatment conditions after film formation; regardless of the number of laminated layers, the amorphous B12O formed by sputtering is heat treated in air at a temperature of 80°C.
The metal oxide film whose main component is Z! The beterojunction formed at the boundary with the No. 10 film was stabilized, and non-ohmic properties with excellent stability could be obtained. Films formed by sputtering and whose main component is Bi2O3 in an amorphous state are heat-treated at a temperature below the crystallization temperature (in the case of each of the above examples, the crystallization temperature was 600°C), the v-I characteristic is It was unstable and could not be put to practical use as a ballista.

すなわち、膜形成時にはアモルファス状態のため金属酸
化物膜そのものもまた、そのペテロ接合部も不完全、不
安定であったものが、結晶化温度以上で熱処理すること
により、安定な膜、安定なヘテロ接合となるため、安定
性に優れた非オーム性が得られるものである。
In other words, when the film was formed, the metal oxide film itself and its petrojunction were incomplete and unstable due to the amorphous state, but by heat treatment at a temperature higher than the crystallization temperature, a stable film and a stable heterojunction can be obtained. Since this is a bond, non-ohmic properties with excellent stability can be obtained.

以上に述べた実施例では、ZnO膜とB12O3から成
る膜を交互に少なくとも一層以上積層する組合せについ
て述べたが、金属酸化物膜として、焼結型ZnOバリス
タの粒界層形成添加物として知られているビスマス(B
i )以外の元素、例えば、プラセオジウム(Pr )
 、ランタン(La)などの希土類や、バリウム(Ba
 ) 、ストロンチウム(Sr )などのアルカリ土類
および、鉛(pb)などのZnOよりも比抵抗の大きい
金属酸化物から成る膜を用いた場合にも、結晶化が起こ
る温度以上において空気中で熱処理することにより、Z
nO膜との間で良好な非オーム性が得られ、優れたバリ
スタを製造することができる。なお、ZnOよりも比抵
抗の小さい金属酸化物から成る膜の場合は非オーム性が
得られない。また、上記実施例では金属酸化物としてB
12O3単体を用いたが、これに焼結型ZnOバリスタ
に有効な添加物々して知られている5b203゜Sio
2.Cr2O2,Ga2o32MnO2,B2O3,N
1゜などを加えることによってバリスタ特性をさらに改
善することが可能である。同様に、ZnO膜にAQ2o
3.Ga2o3などの添加物を加えることによって、バ
リスタ特性を改善することが可能である。
In the embodiments described above, a combination of alternately laminating at least one layer of a ZnO film and a film of B12O3 was described. bismuth (B
i) Elements other than i), such as praseodymium (Pr)
, rare earths such as lanthanum (La), and barium (Ba
), alkaline earth metals such as strontium (Sr), and metal oxides with higher resistivity than ZnO, such as lead (PB), can also be heat-treated in air at temperatures above the temperature at which crystallization occurs. By doing so, Z
Good non-ohmic properties can be obtained between the nO film and an excellent varistor can be manufactured. Note that non-ohmic properties cannot be obtained in the case of a film made of a metal oxide having a resistivity lower than that of ZnO. In addition, in the above example, B was used as the metal oxide.
Although 12O3 alone was used, 5b203°Sio, which is known as an effective additive for sintered ZnO varistors, was used.
2. Cr2O2, Ga2o32MnO2, B2O3, N
It is possible to further improve the varistor characteristics by adding, for example, 1°. Similarly, AQ2o is added to the ZnO film.
3. By adding additives such as Ga2o3 it is possible to improve the varistor properties.

、基板材料としてアルミナ基板以外に温度に対して安定
なる材料としてジルコニアなどのセラミック基板、サフ
ァイヤなどの単結晶基板、石英などのガラス基板、白金
、金、ステンレスなどの金属基板を用いて、上記各実施
例と同様な方法でバリスタを製作しても優れたバリスタ
特性を得ることができる。
In addition to the alumina substrate, ceramic substrates such as zirconia, single crystal substrates such as sapphire, glass substrates such as quartz, and metal substrates such as platinum, gold, and stainless steel are used as substrate materials that are stable against temperature. Excellent varistor characteristics can be obtained even if the varistor is manufactured by the same method as in the example.

上記各実施例では膜の作成方法として高周波スパッタリ
ング法を用いたが、スパッタリング法以外の方法、例え
ば、電子ビーム蒸着法、イオンブレーティング法、分子
線エビキクシー法などの膜形成技術によってZ n O
f主成分とする膜、Bi2O3を主成分とする膜を形成
でき、したがって非オーム性を有するバリスタを製造す
ることも可能である。
Although the high-frequency sputtering method was used as the method for forming the film in each of the above examples, Z n O
It is possible to form a film mainly composed of f and a film mainly composed of Bi2O3, and therefore it is also possible to manufacture a varistor having non-ohmic properties.

以上の説明から明らかなように、本発明によれば、超小
型で機器の小型化や軽量化に適したノ(リスクを量産性
良く製造する゛ことが可能となる。
As is clear from the above description, according to the present invention, it is possible to manufacture an ultra-compact device suitable for downsizing and reducing the weight of equipment.

【図面の簡単な説明】[Brief explanation of drawings]

1・・・・・・アルミナ基板、2a、”2b・・・・・
・電極、3・・・・・・ZnO膜、4・・・・・・B1
2o3膜。
1...Alumina substrate, 2a, "2b..."
・Electrode, 3...ZnO film, 4...B1
2o3 membrane.

Claims (2)

【特許請求の範囲】[Claims] (1)温度に対して安定な材料から成る基板上に電極を
設け、この電極上に高周波スパッタリング法によって酸
化亜鉛(ZnO)を主成分とする膜とZnOよりも比抵
抗の大きい金属酸化物を主成分とする膜を交互に少なく
とも一層以上積層し、その後、前記金属酸化物を主成分
とする膜の結晶化が起こる温度以上で熱処理することを
特徴とするバリスタの製造方法。
(1) An electrode is provided on a substrate made of a temperature-stable material, and a film mainly composed of zinc oxide (ZnO) and a metal oxide with a higher resistivity than ZnO are deposited on this electrode by high-frequency sputtering. 1. A method for manufacturing a varistor, comprising alternately stacking at least one layer of films containing metal oxide as a main component, and then heat-treating the film at a temperature higher than that at which crystallization of the film containing metal oxide as a main component occurs.
(2)金属酸化物を主成分とする膜として酸化ビスマス
(B1203)を主成分とする膜を用いることを特徴と
する特許請求の範囲第(1)項記載のバリスタの製造方
法。
(2) A method for manufacturing a varistor according to claim (1), characterized in that a film containing bismuth oxide (B1203) as a main component is used as the film containing a metal oxide as a main component.
JP56186275A 1981-11-19 1981-11-19 Method of producing varistor Granted JPS5886702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56186275A JPS5886702A (en) 1981-11-19 1981-11-19 Method of producing varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186275A JPS5886702A (en) 1981-11-19 1981-11-19 Method of producing varistor

Publications (2)

Publication Number Publication Date
JPS5886702A true JPS5886702A (en) 1983-05-24
JPS6253923B2 JPS6253923B2 (en) 1987-11-12

Family

ID=16185440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186275A Granted JPS5886702A (en) 1981-11-19 1981-11-19 Method of producing varistor

Country Status (1)

Country Link
JP (1) JPS5886702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257104A (en) * 1984-06-01 1985-12-18 松下電器産業株式会社 Thin film surge absorber
JPS63202003A (en) * 1987-02-17 1988-08-22 三菱マテリアル株式会社 Manufacture of thin film varistor
JPH02214101A (en) * 1989-02-14 1990-08-27 Tdk Corp Voltage dependent nonlinear resistance element
JP2010232460A (en) * 2009-03-27 2010-10-14 Tdk Corp Voltage nonlinear resistor element and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201606813A (en) * 2014-03-19 2016-02-16 日本碍子股份有限公司 Voltage nonlinear resistive element and method for manufacturing the same
JP6496581B2 (en) * 2014-03-19 2019-04-03 日本碍子株式会社 Voltage non-linear resistance element and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150204A (en) * 1979-05-10 1980-11-22 Matsushita Electric Ind Co Ltd Nonnlinear voltage resistor and method of fabricating same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150204A (en) * 1979-05-10 1980-11-22 Matsushita Electric Ind Co Ltd Nonnlinear voltage resistor and method of fabricating same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257104A (en) * 1984-06-01 1985-12-18 松下電器産業株式会社 Thin film surge absorber
JPS63202003A (en) * 1987-02-17 1988-08-22 三菱マテリアル株式会社 Manufacture of thin film varistor
JPH02214101A (en) * 1989-02-14 1990-08-27 Tdk Corp Voltage dependent nonlinear resistance element
JP2010232460A (en) * 2009-03-27 2010-10-14 Tdk Corp Voltage nonlinear resistor element and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6253923B2 (en) 1987-11-12

Similar Documents

Publication Publication Date Title
JPS61170005A (en) Varistor
US5281845A (en) PTCR device
JPS5886702A (en) Method of producing varistor
JP6496582B2 (en) Voltage non-linear resistance element and manufacturing method thereof
JP2021522673A (en) Varistor for high temperature applications
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JPH05343202A (en) Monolithic semiconductor ceramic for positive characteristic thermistor
JP2008218592A (en) Thin-film varistor and its manufacturing method
JP2705221B2 (en) Ceramic capacitor and method of manufacturing the same
JPS63312616A (en) Semiconductor porcelain composition
JPS5912002B2 (en) Voltage nonlinear resistor and its manufacturing method
KR102137936B1 (en) Zinc oxide based varistor composition, varistor using the same and method of manufacturing the varistor
JPH0431163B2 (en)
JP3237202B2 (en) Stacked varistor
JPS5914603A (en) Voltage nonlinear resistor and method of producing same
JPS5914602A (en) Voltage nonlinear resistor and method of producing same
JPS6236607B2 (en)
RU2025910C1 (en) Backing for electroluminescent radiator
JPS5886704A (en) Method of producing thin film varistor
JPS6236606B2 (en)
JPS5917207A (en) Voltage nonlinear resistor and method of producing same
JPH01228102A (en) Positive coefficient thermistor material and manufacture thereof
JPH0296301A (en) Varistor element
JPH0475301A (en) Thin film varistor
JPS58101403A (en) Method of producing thin film varistor