JPS5914603A - Voltage nonlinear resistor and method of producing same - Google Patents

Voltage nonlinear resistor and method of producing same

Info

Publication number
JPS5914603A
JPS5914603A JP57124693A JP12469382A JPS5914603A JP S5914603 A JPS5914603 A JP S5914603A JP 57124693 A JP57124693 A JP 57124693A JP 12469382 A JP12469382 A JP 12469382A JP S5914603 A JPS5914603 A JP S5914603A
Authority
JP
Japan
Prior art keywords
pressure
voltage
oxide
zno
nonlinear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57124693A
Other languages
Japanese (ja)
Other versions
JPS6410082B2 (en
Inventor
江田 和生
陽之 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57124693A priority Critical patent/JPS5914603A/en
Publication of JPS5914603A publication Critical patent/JPS5914603A/en
Publication of JPS6410082B2 publication Critical patent/JPS6410082B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は立上9電圧のきわめて低い電圧非直線抵抗器と
、その製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an extremely low voltage nonlinear resistor with a rising voltage of 9, and a method for manufacturing the same.

近年、各種電気機器や電子機器に半導体素子が広く用い
□られるようになりた。しかし、これら半導体素子は一
般にサージ(異常過電圧)に弱いものである。そこで、
半導体素子をサージの発生する回路に使用する場合には
耐圧の高いものを選んで使用するか、あるいはサージか
ら保護するだめのサージ吸収器を用いるか、いずれかの
方法がとられている。通常、前者のサージ対策では十分
でなく、また価格も高くなるため、後者の方法がとられ
ている。
In recent years, semiconductor elements have come to be widely used in various electrical and electronic devices. However, these semiconductor devices are generally susceptible to surges (abnormal overvoltage). Therefore,
When semiconductor devices are used in circuits where surges occur, either one of two methods is used: select one with a high withstand voltage, or use a surge absorber to protect against surges. The latter method is usually used because the former method of surge protection is not sufficient and is also expensive.

従来、これらのサージ保護素子として、ZnOにBi2
O3’+ CO2O3,MnO2など微量の添加物を加
えて焼結して得られるZnO電圧非直線抵抗器(以下バ
リスタと云う)が知られている02nOバリスタはサー
ジに対して安定であり、優れたサージ保護能力を示す。
Conventionally, as these surge protection elements, Bi2 was added to ZnO.
The 02nO varistor, which is known as a ZnO voltage nonlinear resistor (hereinafter referred to as a varistor) obtained by adding a small amount of additives such as O3'+ CO2O3 and MnO2 and sintering, is stable against surges and has an excellent Indicates surge protection ability.

しかし、ZnOバリスタは焼結体の粒界の非オーム性を
利用しており、そのため低圧用のものを得ることが困難
である。すなわち、立上り電圧は電極間に直列に挿入さ
れた粒界の数に比例するため、立上り電圧の低いものを
得ようとすると、素子の厚みを薄くしなければならない
Oしかし、ZnO粒子の粒径は数μmから1o数μmの
ため、低圧用のものを得ようとすると、厚みを数100
μm以下にする必要があるが、機械的強わめて困難であ
る。したがって、集積回路などの半導体素子を保護する
ための適当なバリスタが得られていない。
However, the ZnO varistor utilizes the non-ohmic nature of the grain boundaries of the sintered body, and therefore it is difficult to obtain one for low pressure. In other words, the rise voltage is proportional to the number of grain boundaries inserted in series between the electrodes, so in order to obtain a low rise voltage, the thickness of the element must be reduced.However, the grain size of the ZnO particles The thickness ranges from several micrometers to several micrometers, so if you want to obtain one for low pressure, the thickness will need to be several hundreds of micrometers.
It is necessary to make the thickness smaller than μm, but it is extremely difficult to strengthen it mechanically. Therefore, suitable varistors for protecting semiconductor devices such as integrated circuits have not been available.

これらの焼結形バリスタの欠点をなくすものとして、Z
nOf:主成分とする基板に、酸化ビスマス。
In order to eliminate the drawbacks of these sintered varistors, Z
nOf: Bismuth oxide on the substrate as the main component.

酸化コバルト、希土類酸化物、アルカリ土類酸化物など
から成る膜をスパッタリングによって形成し、さらにZ
nO膜を同じくスパッタリングによってその上に重ねた
バリスタが報告されている0これらのバリスタは立上り
電圧が低く、低圧半導体のサージ保護に適している。し
かし、これらの素子のバリスタとしての性能を現わす定
数、電圧非直線指数α(αはI = (Vlo fで定
着される。
A film made of cobalt oxide, rare earth oxide, alkaline earth oxide, etc. is formed by sputtering, and then Z
Varistors on which an nO film is similarly deposited by sputtering have been reported. These varistors have a low rise voltage and are suitable for surge protection of low-voltage semiconductors. However, a constant representing the performance of these elements as a varistor, the voltage nonlinearity index α (α, is fixed as I = (Vlo f).

但し、工:電流、v二電圧、C:定数戸、それぞれ大き
くない。
However, engineering: current, v2 voltage, C: constant, each is not large.

また、積層構造の低圧バリスタを得る方法として、Zn
Oを主体とするオーム性層と、酸化バリウムを含む非オ
ーム性層を積層する方法が知られている。この方法によ
れば、非オーム性層の薄いものを用いることによって低
圧のバリスタが得られる。しかしながら、この横路では
立ち上り電圧が非オーム性層の厚みに比例するはずなの
で非オーム性層の厚みに分布があると、その最も薄い部
分に電流が集中するため、きわめて不安定な特性のもの
、ないしはサージに対してきわめて弱いものしか得られ
ない。
In addition, as a method for obtaining a low-pressure varistor with a laminated structure, Zn
A method is known in which an ohmic layer mainly composed of O and a non-ohmic layer containing barium oxide are laminated. According to this method, a low voltage varistor can be obtained by using a thin non-ohmic layer. However, in this horizontal path, the rising voltage should be proportional to the thickness of the non-ohmic layer, so if there is a distribution in the thickness of the non-ohmic layer, the current will concentrate at the thinnest part, resulting in extremely unstable characteristics. Or you can only get something that is extremely weak against surges.

本発明はこれらの欠点を改善するもので、立上り電圧が
低く、αの大きな電圧非直線抵抗器を実現したものであ
る。以下、その実施例について詳細に説明する。
The present invention improves these drawbacks by realizing a voltage nonlinear resistor with a low rise voltage and a large α. Examples thereof will be described in detail below.

図面は本発明による素子の基本的な構造を示したもので
、1はZnOを主成分とする層、2は酸化コバルトおよ
び金属酸化物MO(但し、Mはバリウム、ストロンチウ
ムまたは鉛)を含む層、3は電極である。このような構
成とすることにより、ZnO主成分層と酸化コバルトお
よび金属酸化物を含む層の界面にエネルギー障壁が形成
され、このエネルギー障壁が非オーム性を示し、バリス
タとしての効果が得られる。エネルギー障壁は2つの界
面にそれぞれ形成されるので、正負いずれの電圧に対し
ても同じように動作することから、本構造の素子は正負
対称製の電圧非直線性を示す。
The drawings show the basic structure of the device according to the present invention, in which 1 is a layer mainly composed of ZnO, 2 is a layer containing cobalt oxide and a metal oxide MO (where M is barium, strontium, or lead). , 3 are electrodes. With such a configuration, an energy barrier is formed at the interface between the ZnO main component layer and the layer containing cobalt oxide and metal oxide, and this energy barrier exhibits non-ohmic properties, providing an effect as a varistor. Since the energy barrier is formed at each of the two interfaces, it operates in the same way for both positive and negative voltages, so the element with this structure exhibits voltage nonlinearity with positive and negative symmetry.

(実施例1) ZnO粉体を、通常の成型方法によって直径40騙、厚
さ20鵡に成型し、SiCの型に入れて1200℃で圧
力200 Kt/c、aを加えながら、空気中で10時
間加圧焼成した0得られた焼結体を厚み0.6脇の円板
に切断加工し、アルミナ微粉を用いて鏡面研磨を施した
後、有機溶剤で十分に洗浄した。次に、第1表に示す酸
化物組成粉体を有機バインダーおよび有機溶剤に分散し
てペースト状とし、前記ZnO鏡面基板上に塗布した0
このようにして得た2組の塗布膜付基板を、塗布膜同志
が接し合うように重ねた。この積層基板を760℃の温
度で4 o、o Ky/cdの圧力を加えながら空気中
において1時間加圧焼成し、その後素子両面のZnO基
板上にムl蒸着電極を設け、1W角のチップに切り出し
て電気特性を測定した。、第1表に、それぞれの素子に
ついて01〜1mム/cJの領域における電圧非直線指
数αおよび立上り電圧(1mム/11s2の電流を流し
た時の端子電圧)を示す。第1表の組成A1〜16は本
発明の範囲内の例であり、*印を付した71fli17
〜20は比較例として示したものである。第1表より、
酸化コノ(ルトをCo 203の形に換算して99.9
9〜46モル%、金属酸化物iMo(但し、Mは〕くリ
ウム、ストロンチウムまたは鉛)の形に換算して0.0
1〜66モル%含む組成を用いることにより、αが11
以上、立上り電圧が8v以下の良好な低圧ノ(リスクの
得られることがわかる。またBaO、SrO、PbOは
同時に加えても同様の効果のあることがわかる。
(Example 1) ZnO powder was molded into a diameter of 40 mm and a thickness of 20 mm by a normal molding method, and placed in a SiC mold at 1200° C. while applying a pressure of 200 Kt/c and a in air. The obtained sintered body, which was pressure-fired for 10 hours, was cut into disks with a thickness of 0.6 mm, mirror-polished using alumina fine powder, and thoroughly washed with an organic solvent. Next, the oxide composition powder shown in Table 1 was dispersed in an organic binder and an organic solvent to form a paste, and the powder was coated on the ZnO mirror substrate.
Two sets of substrates with coated films thus obtained were stacked so that the coated films were in contact with each other. This laminated substrate was pressure-fired in air for 1 hour at a temperature of 760°C while applying a pressure of 4 o, o Ky/cd, and then a mulch vapor deposition electrode was provided on the ZnO substrate on both sides of the element, and a 1W square chip was formed. It was cut out and its electrical properties were measured. , Table 1 shows the voltage non-linearity index α and the rising voltage (terminal voltage when a current of 1 mm/11s2 is passed) in the range of 01 to 1 mm/cJ for each element. Compositions A1 to 16 in Table 1 are examples within the scope of the present invention, and 71fli17 marked with an *
-20 are shown as comparative examples. From Table 1,
99.9 in terms of Co203 form
9 to 46 mol%, 0.0 in terms of metal oxide iMo (where M is lithium, strontium, or lead)
By using a composition containing 1 to 66 mol%, α is 11
From the above, it can be seen that a good low voltage (no risk) can be obtained with a rising voltage of 8 V or less.It can also be seen that the same effect can be obtained even if BaO, SrO, and PbO are added at the same time.

(以下余白) 第1表 本印は比較例 (実施例2) 実施例1で用いた組成のうち、第1表のA3に示す組成
を用いて、製造条件の効果を調べた0第2表は積層して
加圧焼成する時の焼成温度と電気特性の関係を示したも
ので1)、500℃から960℃の焼成温度で良好な特
性が得られている0なお600℃未満で焼成した場合、
積層部の接着強度が弱く、実用的なものが得られなかっ
た。
(Margin below) Table 1: Comparative example (Example 2) Among the compositions used in Example 1, the composition shown in A3 of Table 1 was used to investigate the effect of manufacturing conditions.Table 2 This shows the relationship between firing temperature and electrical properties when laminated and pressure fired. 1) Good properties were obtained at firing temperatures of 500°C to 960°C. case,
The adhesive strength of the laminated portion was weak, and a practical product could not be obtained.

第2表 本実施例では、400 h/cAの圧力で積層加圧焼成
しているが、その時の圧力の効果について更に検討して
みた。その結果、s O”tlc4未満の圧−力では、
焼成後取り出した時、ZnO基板と、酸化コバル□トお
よび金属酸化物を含む層の接着強度の十分なものが得ら
れなかった。一方、1000Kp /dよシ大きい圧力
で焼成すると、ZnO基板にひび割れの生ずるものが多
く、適当でなかった。
Table 2 In this example, lamination and pressure firing was carried out at a pressure of 400 h/cA, but the effect of the pressure at that time was further investigated. As a result, at a pressure lower than s O”tlc4,
When taken out after firing, sufficient adhesion strength between the ZnO substrate and the layer containing cobalt oxide and metal oxide could not be obtained. On the other hand, firing at a pressure as high as 1000 Kp/d often caused cracks in the ZnO substrate, which was not appropriate.

これに対口て50 ’&/ca〜1000 Ky、/c
Aの圧力で焼成されたものは、はぼ同じ電気特性を示し
、接着強度、ひび割れの点でも問題がなかった0以上の
結果から、積層加圧圧力として50〜1000 ’C1
/lUが適当であることがわかった。
Against this, 50'&/ca ~ 1000 Ky,/c
The products fired at pressure A showed almost the same electrical properties and had no problems in terms of adhesive strength and cracking, which was a result of 0 or more, so the lamination pressure was 50 to 1000'C1.
/lU was found to be appropriate.

次に、積層加圧焼成の焼成時間の効果について検討した
。その結果、焼成温度で10分以上保てば、とくに電気
特性に大きな変化の現われないことがわかった。
Next, we investigated the effect of firing time in laminated pressure firing. As a result, it was found that if the sintering temperature was maintained for 10 minutes or more, no significant change appeared in the electrical properties.

次に、基板として用いるZnO基板の焼成条件について
検討した。焼成圧力を0〜1tsoo++;p/c、A
、焼成温度を700℃〜1500℃の間で変化させ、そ
の効果を調べた。その結果、焼成時の圧力が60 今/
c4未満であると研磨後のZnO基板表面に気孔が多く
、そのため特性のきわめて不安定なものしか得られなか
った。60 ’&/ca以上の圧力をかけて焼成した場
合には、いずれの圧力においても良好なZnO基板が得
られた。圧力はあまり高くすると装置が高価になるなど
他の問題も生ずるの上げても意味がない。ZnO基板の
焼成圧力としては50〜15001j/c’が適当であ
った。
Next, the firing conditions for the ZnO substrate used as the substrate were studied. Firing pressure 0~1tsoo++; p/c, A
The firing temperature was varied between 700°C and 1500°C, and the effects thereof were investigated. As a result, the pressure during firing is 60 /
If it was less than c4, there would be many pores on the surface of the ZnO substrate after polishing, and therefore only those with extremely unstable characteristics could be obtained. When firing was performed under a pressure of 60'&/ca or higher, good ZnO substrates were obtained at any pressure. If the pressure is too high, other problems such as the equipment will become expensive, so there is no point in raising the pressure too high. The appropriate firing pressure for the ZnO substrate was 50 to 15001j/c'.

焼成温度は800℃未満の場合焼結が不十分であり、1
400℃より高温にすると、ZnOの粒成長が進みすぎ
て、機械的強度が弱くなるなど問題を生じた。したがっ
て8oo℃〜14oO℃が適当な焼成温度である。また
、焼成時間は1時間以上あれば十分緻密なZnO基板の
得られたことがわかった。
If the firing temperature is less than 800°C, sintering will be insufficient;
When the temperature was higher than 400° C., ZnO grain growth progressed too much, causing problems such as weakening of mechanical strength. Therefore, a suitable firing temperature is 80°C to 140°C. It was also found that a sufficiently dense ZnO substrate could be obtained if the firing time was one hour or more.

本実施例では、酸化コバルトと金属酸化物を含む1つの
層を2つのZnO基板でサンドイッチ状に積層している
が、さらにこの上にもう1つの酸化コバルトと金属酸化
物を含む層を設け、さらにZnO基板を積層してやれば
、実施例の初めに述べた如く、本発明のバリスタ作用が
酸化コバルトと金属酸化物を含む層とZnO基板の界面
で生じることから考えて、実施例1のバリスタを直列に
2ケ接続したのと同様の効果が得られることは明らかで
あり、このように積層数を増すことによって、さらに高
電圧のバリスタを得ることができる。
In this example, one layer containing cobalt oxide and a metal oxide is laminated in a sandwich manner between two ZnO substrates, and on top of this, another layer containing cobalt oxide and a metal oxide is provided. Furthermore, if ZnO substrates are laminated, the varistor of Example 1 can be stacked, considering that the varistor action of the present invention occurs at the interface between the layer containing cobalt oxide and metal oxide and the ZnO substrate, as described at the beginning of the example. It is clear that the same effect as when two varistors are connected in series can be obtained, and by increasing the number of laminated layers in this way, a higher voltage varistor can be obtained.

なお、本実施例ではZnO基板を用いたが、ZnO基板
の比抵抗を制御する各種の添加物、たとえば3価元素で
あるアルミニウムやガリウム、また1価元素であるリチ
ウムなどを加えて、特性を種々に変化させることも可能
であり、したがって本発明は純粋なZnO基板に限定さ
れるものではない。
Although a ZnO substrate was used in this example, various additives that control the specific resistance of the ZnO substrate, such as trivalent elements such as aluminum and gallium, and monovalent elements such as lithium, may be added to improve the characteristics. Various variations are possible, so the invention is not limited to pure ZnO substrates.

また、酸化コバルトと金属酸化物を含む層を形成する場
合、本実施例ではCO2O3を用いたが、Coo 、 
0o504などを用いても同様の結果が得られた。した
がって、本発明は本実施例に示した表現の酸化物にのみ
限定されるものではない。
In addition, when forming a layer containing cobalt oxide and metal oxide, CO2O3 was used in this example, but Coo,
Similar results were obtained using 0o504 and the like. Therefore, the present invention is not limited only to the oxides expressed in this example.

本発明の材料組成および方法により得られる素子のうち
、酸化コバルトおよび金属酸化物を含む層はオーム性の
抵抗値を示した。すなわち、本発明で用いられる組成範
囲内で混合した酸化コバルトおよび金属酸化物から成る
粉末を、本発明で用いられる温度範囲で焼成し、その電
圧−電流特性を測定した結果、1〜10にΩ・口のオー
ム性抵抗特性を示した。また、本発明に用いられるZn
O基板の抵抗値を測定した結果、約1Ω・mの値が得ら
れた。本発明の素子における酸化コバルトと金属酸化物
を含む層の厚みは約o、o s wであったので、11
1B  チップの場合の素子全体としての抵抗は約SO
OΩ〜6にΩである。しかるに、素子の立上シミ圧以下
の電圧−電流特性より得られる抵抗は約1MΩであった
。したがって、この高抵抗の原因は別の原因によるもの
であり、検討の結果、ZnO層と酸化コバルトと金属酸
化物を含む層の界面にエネルギー障壁が形成されておシ
、このエネルギー障壁が高抵抗を示し、ある電圧以上に
なると急激に電流を流す非オーム性を有しているためと
わかった。このことは、静電容量の2乗の逆数がバイア
ス電圧に比例することがられかった。
Among the devices obtained by the material composition and method of the present invention, the layer containing cobalt oxide and metal oxide exhibited an ohmic resistance value. That is, powder consisting of cobalt oxide and metal oxide mixed within the composition range used in the present invention was fired in the temperature range used in the present invention, and the voltage-current characteristics were measured.・Exhibited ohmic resistance characteristics of the mouth. Moreover, Zn used in the present invention
As a result of measuring the resistance value of the O substrate, a value of approximately 1 Ω·m was obtained. Since the thickness of the layer containing cobalt oxide and metal oxide in the device of the present invention was approximately o, o sw, 11
The resistance of the entire element in the case of a 1B chip is approximately SO
OΩ to 6Ω. However, the resistance obtained from the voltage-current characteristics below the rising stain pressure of the element was about 1 MΩ. Therefore, the cause of this high resistance is due to another cause, and as a result of investigation, an energy barrier is formed at the interface between the ZnO layer and a layer containing cobalt oxide and metal oxide, and this energy barrier is responsible for the high resistance. It was found that this is because it has a non-ohmic property that allows current to flow rapidly when the voltage exceeds a certain level. This means that the reciprocal of the square of the capacitance is proportional to the bias voltage.

したがって本発明の素子の立上り電圧は酸化コバルトと
金属酸化物を含む層の厚みにはほとんど依存せず、それ
とZnO層との界面に形成されたエネルギー障壁に依存
している。したがって本発明の素子は酸化コバルトと金
属酸化物を含む層の厚みにバラツキがありても電流集i
を起こさず、良好なサージ特性を示す。実際、1人、1
0x100μBのインパルス電流を印加してもほとんど
劣化は見られなかった。また数多くサンプルを作っても
ほとんど同じ特性を示し、しかも、きわめて安定であっ
た。このような特性は非オーム性層をZnO層でサンド
イッチしたものでは決して見られなかった。
Therefore, the rising voltage of the device of the present invention hardly depends on the thickness of the layer containing cobalt oxide and metal oxide, but depends on the energy barrier formed at the interface between it and the ZnO layer. Therefore, even if the thickness of the layer containing cobalt oxide and metal oxide varies, the device of the present invention has a current concentration i
Shows good surge characteristics. In fact, one person, one
Almost no deterioration was observed even when an impulse current of 0x100 μB was applied. Moreover, even when many samples were made, they showed almost the same characteristics and were extremely stable. Such properties have never been observed with a non-ohmic layer sandwiched between ZnO layers.

以上述べた如く、本発明は材料組成および製法の巧みな
組み合せにより初めて得られたものであり、本発明によ
る電圧非直線抵抗器は半導体素子を用いた電子機器の信
頼性を向上させるのに有用なものである。
As described above, the present invention was first obtained through a skillful combination of material composition and manufacturing method, and the voltage nonlinear resistor according to the present invention is useful for improving the reliability of electronic equipment using semiconductor elements. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の構造を示す断面図である0 1・・・・・・ZnO主成分層、2・・・・・・酸化コ
バルトと金属酸化物を含む層、3・・・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名f 13−
The drawings are cross-sectional views showing the structure of an embodiment of the present invention.01...ZnO main component layer,2...layer containing cobalt oxide and metal oxide,3... ···electrode. Name of agent: Patent attorney Toshio Nakao and one other person f 13-

Claims (1)

【特許請求の範囲】 (1)  コバルトヲ酸化コバル) (CO2O3)の
形に換xして45〜99.99モル%と、バリウム、ス
トロンチウム、鉛のうち1種以上を酸化物MO(但し、
Mはバリウム、ストロンチウムまたは鉛)の形に換算し
て0.01〜66モル%含有する領域を、酸化亜鉛を主
成分とする2つの領域によりてサンドイッチ状にはさみ
、これを−組以上積み重ねて積層体を構成し、この積層
体の表裏両生面に電極を形成したことを特徴とする電圧
非直線抵抗器。 (功 少なくとも2枚の酸化亜鉛を主成分とする基板の
主面上に、それぞれ酸化コバルトとバリウム、ストロン
チウムまたは鉛の酸化物のうチ一種以上の成分を含む膜
を形成し、前記基板と前記膜が交互に配置され、かつ最
外層が前記酸化亜鉛を主成分とする基板となるように積
層した後、圧力を加えながら熱処理を行って接着し、得
られた積層体の表裏両生面に電極を形成することを特徴
とする電圧非直線抵抗器の製造方法。 (3)  50〜1000%=/cJの圧力を加えなが
ら、500〜960℃で熱処理を行って積層体を接着す
ることを特徴とする特許請求の範囲第@)項=81の電
圧非直線抵抗器の製造方法ρ(4基板として、酸化亜鉛
を主成分とする粉末を成型して、SOO〜14oO℃の
空気中で60〜16004 /c4の圧力を加えながら
焼成して得られた焼結体を用いることを特徴とする特許
請求の範囲第(2)項記載の電圧非直線抵抗器の製造方
法。
[Claims] (1) 45 to 99.99 mol% x of cobalt oxidized (CO2O3) and one or more of barium, strontium, and lead as an oxide MO (however,
A region containing 0.01 to 66 mol% in terms of barium, strontium or lead (M is barium, strontium or lead) is sandwiched between two regions containing zinc oxide as the main component, and these are stacked in pairs or more. A voltage nonlinear resistor comprising a laminate, and electrodes are formed on both front and back surfaces of the laminate. (Effectiveness) A film containing at least one of cobalt oxide and barium, strontium, or lead oxide is formed on the main surfaces of at least two substrates containing zinc oxide as a main component, and After laminating the films in such a way that they are arranged alternately and the outermost layer is the substrate mainly composed of zinc oxide, they are bonded by heat treatment while applying pressure, and electrodes are placed on both the front and back surfaces of the resulting laminate. (3) A method for manufacturing a voltage nonlinear resistor, characterized in that the laminate is bonded by heat treatment at 500 to 960°C while applying a pressure of 50 to 1000% = /cJ. The method of manufacturing a voltage non-linear resistor according to Claim No. @) = 81 (4 substrates are molded from powder containing zinc oxide as a main component, A method for manufacturing a voltage nonlinear resistor according to claim (2), characterized in that a sintered body obtained by firing while applying a pressure of 16004/c4 is used.
JP57124693A 1982-07-16 1982-07-16 Voltage nonlinear resistor and method of producing same Granted JPS5914603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124693A JPS5914603A (en) 1982-07-16 1982-07-16 Voltage nonlinear resistor and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124693A JPS5914603A (en) 1982-07-16 1982-07-16 Voltage nonlinear resistor and method of producing same

Publications (2)

Publication Number Publication Date
JPS5914603A true JPS5914603A (en) 1984-01-25
JPS6410082B2 JPS6410082B2 (en) 1989-02-21

Family

ID=14891747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124693A Granted JPS5914603A (en) 1982-07-16 1982-07-16 Voltage nonlinear resistor and method of producing same

Country Status (1)

Country Link
JP (1) JPS5914603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105913987A (en) * 2016-05-30 2016-08-31 苏州米盟智能装备科技有限公司 Zinc oxide pressure sensitive resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105913987A (en) * 2016-05-30 2016-08-31 苏州米盟智能装备科技有限公司 Zinc oxide pressure sensitive resistor

Also Published As

Publication number Publication date
JPS6410082B2 (en) 1989-02-21

Similar Documents

Publication Publication Date Title
JPS5823921B2 (en) voltage nonlinear resistor
KR101329682B1 (en) Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
JPS5918602A (en) Low voltage ceramic varistor
JPS5914603A (en) Voltage nonlinear resistor and method of producing same
JPS5914602A (en) Voltage nonlinear resistor and method of producing same
JPS5886702A (en) Method of producing varistor
JPS62282411A (en) Voltage-dependent nonlinear resistor
JPS5914604A (en) Voltage nonlinear resistor and method of producing same
JP3186199B2 (en) Stacked varistor
JPS6410085B2 (en)
JPS6410084B2 (en)
JPS62282409A (en) Voltage-dependent nonlinear resistor
JP2548299B2 (en) Manufacturing method of voltage-dependent nonlinear resistor element
JPS6348802A (en) Porcelain compound for voltage dependent nonlinear resistor
JP2707706B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JPS5912002B2 (en) Voltage nonlinear resistor and its manufacturing method
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JPS62179103A (en) Voltage-dependant nonlinear resistance porcelain compound
JPS62134903A (en) Voltage-dependant nonlinear resistance porcelain compound
JPS6236607B2 (en)
JPS625610A (en) Voltage depending non-linear resistor ceramic composition
JPH0682562B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPS6281004A (en) Voltage dependency nonlinear resistor porcelain composition
JPS62134902A (en) Voltage-dependant nonlinear resistor
JPS6245003A (en) Voltage dependent non-linear resistor