JPS63202003A - Manufacture of thin film varistor - Google Patents

Manufacture of thin film varistor

Info

Publication number
JPS63202003A
JPS63202003A JP62034340A JP3434087A JPS63202003A JP S63202003 A JPS63202003 A JP S63202003A JP 62034340 A JP62034340 A JP 62034340A JP 3434087 A JP3434087 A JP 3434087A JP S63202003 A JPS63202003 A JP S63202003A
Authority
JP
Japan
Prior art keywords
thin film
zno
varistor
polycrystalline
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62034340A
Other languages
Japanese (ja)
Inventor
正士 駒林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62034340A priority Critical patent/JPS63202003A/en
Publication of JPS63202003A publication Critical patent/JPS63202003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子機器の小型化(一応じて、その中の電
子回路に組み込むのに適した薄@/(リスクの製造方法
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a manufacturing method for reducing the size of electronic equipment (accordingly, it is suitable for being incorporated into electronic circuits therein). be.

〔従来の技術〕[Conventional technology]

従来、ICやLSI等の電子機器の電子回路を異常過電
圧から保護するため、印加する電圧が高くなると抵抗が
急激に減少する、ZnOを主成分とし、Bi2O3、C
o2O3lMnO2、および5b203等を副成分とす
るZnO焼結体バリスタが広く実用化されており、この
ようなバリスタの電圧(V)−を流(I)特性はI Q
CV  によって表わされ、このα:電圧非直線指数が
大きいほど非オーム性のすぐれた、すなわち過電圧に対
して鋭敏に作動するバリスタとなり、現在のところα−
50〜100程度のものが得られている。
Conventionally, in order to protect the electronic circuits of electronic devices such as ICs and LSIs from abnormal overvoltage, ZnO as the main component, Bi2O3, C
ZnO sintered varistors containing o2O3lMnO2, 5b203, etc. as subcomponents have been widely put into practical use, and the voltage (V) - current (I) characteristics of such varistors are IQ
CV: The larger the voltage nonlinearity index, the better the non-ohmic property, that is, the more sensitive the varistor is to overvoltage.Currently, α-
About 50 to 100 have been obtained.

この200焼結体バリスタ(−おける上記のようなバリ
スタ特性の発現は、その焼結体中のZnO粒子間の粒界
に存在する、前記副成分で形成される電位障壁に起因し
ており、そのため、バリスタの立上り電圧は、電極間に
直列(=並んでいる粒界の数に比例するので、ZnO粒
子の粒径と焼結体の厚みによって決定される。
The above-mentioned varistor characteristics of this 200 sintered body varistor (-) are due to the potential barrier formed by the above-mentioned subcomponents existing at grain boundaries between ZnO particles in the sintered body, Therefore, the rising voltage of the varistor is proportional to the number of grain boundaries arranged in series between the electrodes, and is therefore determined by the grain size of the ZnO particles and the thickness of the sintered body.

したがって、所定の立上り電圧を有するバリスタを得る
ためには、自動的にその厚みが決ってしまうところから
、民生用として使用される立上り電圧:100〜200
vを有するZnO焼結体バリスタでは、通常1rm程度
の厚みが必要となる。
Therefore, in order to obtain a varistor with a predetermined rise voltage, its thickness is automatically determined, so the rise voltage used for consumer use is 100 to 200.
A ZnO sintered body varistor having a thickness of about 1 rm is usually required.

一方、近年では電子部品の小型化、高密度化が進んで、
各種の軽歌小型化された民生用電子機器が開発されるよ
うになって、これらの電子機器の中に組み込まれている
半導体IC%LSIを異常過電圧から保護する必要に迫
られているが、上記のZnO焼結体バリスタでは、立上
り電圧に応じてその厚みが決ってしまうため、小型化に
限界があり、そこでこの小型化の要望に対して、 Zn
Oと、Bi2O3、CO2O39Mn02 +および5
b203等のバリア、9として有効な添加物とからなる
ターゲットを用い、高周波スパッタリング法(=よって
基板上に前記ターゲットと同一組成のアモルファス薄膜
を形成した後、500℃に加熱処理することにより、前
記薄膜内部でZnOの微結晶化と、それによって形成さ
れたZnO粒界への前記添加物の偏析とを起こして、前
記アモルファス薄膜を、ZnO粒界に前記添加物が偏析
したZnO多結晶嘆とする、約500OAの厚みで約1
00vの立上り電圧を示す薄膜バリスタの製造方法が提
案されている(特開昭58−86704号公報参照)。
On the other hand, in recent years, electronic components have become smaller and more dense.
As various types of miniaturized consumer electronic devices are being developed, there is a growing need to protect the semiconductor IC%LSIs built into these electronic devices from abnormal overvoltage. Since the thickness of the ZnO sintered varistor mentioned above is determined according to the rising voltage, there is a limit to miniaturization.
O, Bi2O3, CO2O39Mn02 + and 5
Using a target consisting of a barrier such as b203 and an effective additive as 9, a high-frequency sputtering method (=therefore, after forming an amorphous thin film with the same composition as the target on the substrate, heat treatment at 500 ° C. Microcrystallization of ZnO occurs inside the thin film and segregation of the additive to the ZnO grain boundaries formed thereby, turning the amorphous thin film into a ZnO polycrystalline structure in which the additive is segregated to the ZnO grain boundaries. 1 with a thickness of about 500OA
A method for manufacturing a thin film varistor exhibiting a rise voltage of 00V has been proposed (see Japanese Patent Laid-Open No. 86704/1983).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の薄膜バリスタの製造方法において
は、アモルファス薄膜を熱処理して、それを結晶化する
際に、その薄膜が体積変化を起こして基体から剥離した
り、あるいは薄膜バリスタ中にクラックが生ずるという
問題があった。
However, in the above method for manufacturing a thin film varistor, when the amorphous thin film is heat-treated and crystallized, the thin film may change in volume and peel off from the substrate, or cracks may occur in the thin film varistor. There was a problem.

〔研究に基づく知見事項〕[Findings based on research]

そこで、本発明者等は、このような状況に鑑みて種々研
究を重ねた結果、 B2O3等の添加物(以下、単に添加物ともいう)を含
まないZnO単味のターゲツト材を用いて、スパッタリ
ング法により薄膜を形成すると、この薄膜はアモルファ
ス膜とはならないで、ZnO単味の多結晶質膜となると
ころに着目して、この薄膜の上に、前記添加物からなる
薄膜を任意の成膜法により形成させた後、これらの薄膜
に熱処理を施すと、前記添加物はZnO単味の多結晶質
膜中の粒界に拡散、偏析して、 ZnO薄膜バリスタが
生成し、そして前記ZnO単味の多結晶質膜は、成膜し
たとき既に結晶質となっているところから、前記熱処理
に際して、従来法でみられるような結晶化に基づく剥離
やクラックを生じないで、健全な薄膜バリスタとなるこ
と、 を見出した。
In view of this situation, the inventors of the present invention have conducted various studies, and as a result, the present inventors have succeeded in sputtering using a target material consisting of ZnO alone, which does not contain additives such as B2O3 (hereinafter also simply referred to as additives). When a thin film is formed by this method, this thin film does not become an amorphous film, but becomes a polycrystalline film made of ZnO alone. When these thin films are heat-treated after being formed by the method, the additives diffuse and segregate to the grain boundaries in the polycrystalline ZnO film to form a ZnO thin film varistor, and the ZnO film Aji's polycrystalline film is already crystalline when it is formed, so during the heat treatment, it does not cause peeling or cracking due to crystallization that occurs with conventional methods, and can be used to form a healthy thin film varistor. I discovered what will become.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記知見に基づいて発明されたもので、剥
離やクラックを生じないで基板上に健全なZnO薄膜バ
リスタを形成できる、ZnO薄膜バリスタの製造方法を
提供することを目的とし、スパッタリング法を用いて、
基板上にZnO多結晶質薄膜を形成させ、ついでこのZ
nO多結晶質薄膜上に、ZnOバリスタを形成させるの
に有効な添加物の薄膜を形成させた後、これらの薄膜を
熱処理して、前記添加物を前記ZnO多結晶質薄膜中の
粒界に拡散、偏析させることを特徴とするものである。
This invention was invented based on the above knowledge, and aims to provide a method for manufacturing a ZnO thin film varistor that can form a healthy ZnO thin film varistor on a substrate without peeling or cracking. Using,
A ZnO polycrystalline thin film is formed on the substrate, and then this ZnO
After forming a thin film of an additive effective for forming a ZnO varistor on the nO polycrystalline thin film, these thin films are heat-treated to bring the additive to the grain boundaries in the ZnO polycrystalline thin film. It is characterized by diffusion and segregation.

〔発明の詳細な説明〕[Detailed description of the invention]

1、スパッタリング法によるZnO多結晶質薄膜の形成 この発明においては、高周波スパッタリングが好都合に
便用され、これらのスパッタリング法により、通常、Z
nO焼結体をターゲツト材として、石英ガラス、アルミ
ナ等からなる基板上に、厚さ: 5000〜2000O
AのZnO多結晶質薄膜が形成され、この薄膜を溝成す
るZnO結晶粒の平均粒径は通常300〜2000人で
ある。
1. Formation of ZnO polycrystalline thin film by sputtering method In this invention, high frequency sputtering is advantageously used, and these sputtering methods usually
Using the nO sintered body as a target material, it was deposited on a substrate made of quartz glass, alumina, etc. to a thickness of 5000 to 2000O.
A ZnO polycrystalline thin film is formed, and the average grain size of the ZnO crystal grains forming grooves in this thin film is usually 300 to 2000 grains.

2、添加物の薄膜の形成 ZnO多結晶質薄膜中のZnO粒界に存在して、この薄
膜にバリスタ特性を付与する添加物としては、従来Zn
Oバリスタにおいて使用されているあらゆる添加物、例
えばBi2O3= Co2O32Mn02.5b203
 。
2. Formation of thin film of additives Conventionally, Zn
Any additives used in O varistors, e.g. Bi2O3 = Co2O32Mn02.5b203
.

Bi 、 Cr2O3、NiO等を使用することができ
、これらの添加物からなる薄膜は、上記ZnO多結晶質
薄膜が基体上に形成された後、前記添加物のいずれか1
種または2種以上からなる焼結体をターゲット材として
、前記第1項で述べたスパッタリング法のいずれかによ
り、あるいはその池の適宜の成膜法、例えば真空蒸着に
より、前記ZnO多結晶質薄膜上に、通常100〜6o
oiの厚みに成膜される。
Bi, Cr2O3, NiO, etc. can be used, and a thin film made of these additives can be formed by adding any one of the additives after the ZnO polycrystalline thin film is formed on the substrate.
The ZnO polycrystalline thin film is formed by using a seed or a sintered body consisting of two or more types as a target material by any of the sputtering methods described in Section 1 above, or by an appropriate film-forming method such as vacuum evaporation. above, usually 100~6o
A film is formed to a thickness of oi.

3、 熱処理 上述のZnO多結晶質薄膜と添加物薄膜に熱処理を施す
ことにより、添加物薄膜を構成している添加物は、この
薄膜と隣接しているZnO多結晶質薄膜中に拡散、偏析
して、そのZnO多結晶質薄膜中C二電位障壁を形成し
、それによってZnO多結晶質薄膜をZnO薄膜バリス
タに変えるが、このような添加物の拡散、偏析を起こさ
せる熱処理は、一般に、前記2種の薄膜を、加熱炉中、
アルゴンや空気等の雰囲気の下で、温度:400〜70
0’C+二60〜300分間保持することによって、遂
行される。
3. Heat treatment By applying heat treatment to the above-mentioned ZnO polycrystalline thin film and additive thin film, the additives constituting the additive thin film are diffused and segregated into the ZnO polycrystalline thin film adjacent to this thin film. This forms a C2 potential barrier in the ZnO polycrystalline thin film, thereby converting the ZnO polycrystalline thin film into a ZnO thin film varistor. However, heat treatment that causes such diffusion and segregation of additives generally The two types of thin films are heated in a heating furnace,
Under an atmosphere such as argon or air, temperature: 400-70
This is accomplished by holding for 60-300 minutes at 0'C+2.

〔実施例および実施例に基づく効果〕[Examples and effects based on the examples]

ついで、この発明を実施例によって説明する。 Next, the invention will be explained by way of examples.

実施例1 ターゲツト材と−してZnO焼結体を、また真空蒸着の
原料として純度:99.9%の13i板材を用意し、ま
ず、(Ar + 02 ) 、ガス雰囲気中で、高周波
スパッタリングにより、第1図のa)に示されるように
、厚さ:1■の円い石英ガラス基板1上に厚さ=1)I
 m X li径: 3.amを有するZnO多結晶質
薄膜2を形成させた後、この薄膜2の上に、真空蒸着に
より厚さ:約2ooiのBi薄膜3を形成させた。
Example 1 A ZnO sintered body was prepared as a target material, and a 13i plate material with a purity of 99.9% was prepared as a raw material for vacuum evaporation. , as shown in Figure 1 a), on a circular quartz glass substrate 1 with a thickness of 1.
m x li diameter: 3. After forming a ZnO polycrystalline thin film 2 having an am content, a Bi thin film 3 having a thickness of about 2 ooi was formed on this thin film 2 by vacuum evaporation.

ついで、基板1上に順次析出形成させた上記薄膜1およ
び2に、加熱炉中At雰囲気の下に温度=500℃に4
時間加熱保持する熱処理を施して、ZnO薄膜中の粒界
中にBiを拡散、偏析させ、それによってこのZnO薄
膜にバリスタ特性を与えた。
Next, the thin films 1 and 2 deposited sequentially on the substrate 1 were heated at a temperature of 500° C. in a heating furnace under an At atmosphere.
A heat treatment of heating and holding for a period of time was performed to diffuse and segregate Bi into the grain boundaries in the ZnO thin film, thereby imparting varistor properties to the ZnO thin film.

その後、ZnO薄膜上に残留しているBi薄膜を完全に
除去するため、5%硝酸で洗浄し、水洗し、乾燥した後
、第1図のb)−二示されるように、ZnO薄膜バリス
タ4のまわりに環状のM電極5を真空蒸着により形成し
て、バリスタ素子とした。
Thereafter, in order to completely remove the Bi thin film remaining on the ZnO thin film, the ZnO thin film varistor 4 was washed with 5% nitric acid, water, and dried, as shown in b)-2 of Fig. 1. An annular M electrode 5 was formed around it by vacuum deposition to form a varistor element.

以上の方法によって50個のバリスタ素子を作製したと
ころ、前記熱処理によるZnO薄膜の剥離とクラックは
全く生じなかった。 なお、これらの素子のバリスタ特
性を示す立上り電圧およびα値はそれぞれ95Vおよび
60であった。
When 50 varistor elements were manufactured using the above method, no peeling or cracking of the ZnO thin film occurred due to the heat treatment. Note that the rising voltage and α value indicating the varistor characteristics of these elements were 95 V and 60, respectively.

実施例2 厚さ=1圏の円い石英基板1上に、真空蒸着により厚さ
=2μmのpt電極膜6を形成し、このpt電極嘆6の
上に、実施例1に形成させたのと同様な厚さ:11Im
のZnO多結晶質薄膜を形成し、さらに、このZnO薄
膜上に、高周波スパッタリングによって@厚:3ooi
のBi2O3薄膜を形成した後、これらのZnO薄膜お
よびBi2O3薄嘆に、大気中で温度=600℃に5時
間加熱保持する熱処理を施して、ZnO多結晶質薄膜に
バリスタ特性を与え、ついでこのようにして製造された
ZnO薄膜バリスタ7の上にM電極5を真空蒸着により
形成して、第2図に示されるようなバリスタ素子を製造
した。
Example 2 A PT electrode film 6 with a thickness of 2 μm was formed on a circular quartz substrate 1 with a thickness of 1 by vacuum evaporation, and on this PT electrode film 6, the same film as in Example 1 was formed. Thickness similar to: 11Im
A ZnO polycrystalline thin film of
After forming a Bi2O3 thin film of An M electrode 5 was formed by vacuum deposition on the ZnO thin film varistor 7 manufactured in the above manner, thereby manufacturing a varistor element as shown in FIG.

以上の方法により50個のバリスタ素子を作製して、そ
れらのZnO薄膜の健全性について調査したところ、実
施例1と同様(−1前記熱処理によるZnO薄膜の剥離
とクラックは全く生じていないことがわかった。
Fifty varistor elements were fabricated using the above method, and the soundness of their ZnO thin films was investigated. As in Example 1, (-1) it was found that no peeling or cracking occurred in the ZnO thin film due to the heat treatment. Understood.

なお、上記のような構造を有するバリスタ素子において
は、熱処理後にBi2O3薄膜が残留していても、バリ
スタ特性を得ることができる。 また、これらの素子の
バリスタ特性を測定したところ、立上り電圧およびα値
はそれぞれ12Vおよび60であった。 このように立
上り電圧が実施例1と較べて低いのは、ZnO薄膜中の
ZnO結晶粒がその薄膜の厚み方向(ユ成長して、その
方向に並んだZnO結晶粒界の数が比較的少なくなって
いるためであった。
Note that in the varistor element having the above structure, even if the Bi2O3 thin film remains after the heat treatment, varistor characteristics can be obtained. Furthermore, when the varistor characteristics of these elements were measured, the rise voltage and α value were 12 V and 60, respectively. The reason why the rising voltage is lower than in Example 1 is that the ZnO crystal grains in the ZnO thin film grow in the thickness direction of the thin film, and the number of ZnO crystal grain boundaries aligned in that direction is relatively small. This was because

〔発明の総合的効果〕[Overall effect of the invention]

以上述べた説明から明らかなように、この発明によると
、クラックや基板からの剥離を生ずることなく、種々の
小型化した電子機器C二組み込むのに適した健全なZn
O薄膜バリスタを提供できるという産業上有用な効果が
得られる。
As is clear from the above explanation, according to the present invention, healthy Zn suitable for incorporating into various miniaturized electronic devices C2 can be produced without causing cracks or peeling from the substrate.
The industrially useful effect of being able to provide an O thin film varistor is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

$1図のa)はこの発明の実施例ζ二おける成膜状態を
示す断面図、第1図のb)は前記実施例C;よって製造
された薄膜バリスタをバリスタ素子として示す断面図、
そして第2図はこの発明の別の実施例によって製造され
た薄膜バリスタをバリスタ素子として示す断面図である
。 図において1・・・石英ガラス基板、  2・・・
ZnO多結晶質薄膜。 3・・・Bi薄模、    4,7・・・ZnO薄嘆バ
リスタ。 5・・・M電極、      6・・・pt電極。
Figure 1 a) is a cross-sectional view showing the state of film formation in Example ζ2 of the present invention, and b) in Figure 1 is a cross-sectional view showing the thin film varistor manufactured according to Example C as a varistor element.
FIG. 2 is a sectional view showing a thin film varistor manufactured according to another embodiment of the present invention as a varistor element. In the figure, 1... quartz glass substrate, 2...
ZnO polycrystalline thin film. 3... Bi thin pattern, 4,7... ZnO thin varistor. 5...M electrode, 6...pt electrode.

Claims (1)

【特許請求の範囲】[Claims]  スパッタリング法を用いて、基板上にZnO多結晶質
薄膜を形成させ、ついでこのZnO多結晶質薄膜上に、
ZnOバリスタを形成させるのに有効な添加物の薄膜を
形成させた後、これらの薄膜を熱処理して、前記添加物
を前記ZnO多結晶質薄膜中の粒界に拡散、偏析させる
ことを特徴とする、ZnO多結晶質薄膜中の粒界に前記
添加物が拡散、偏析してなる薄膜バリスタの製造方法。
A ZnO polycrystalline thin film is formed on the substrate using a sputtering method, and then on this ZnO polycrystalline thin film,
After forming thin films of additives effective for forming ZnO varistors, these thin films are heat-treated to diffuse and segregate the additives to grain boundaries in the ZnO polycrystalline thin film. A method for manufacturing a thin film varistor in which the additive is diffused and segregated at grain boundaries in a ZnO polycrystalline thin film.
JP62034340A 1987-02-17 1987-02-17 Manufacture of thin film varistor Pending JPS63202003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62034340A JPS63202003A (en) 1987-02-17 1987-02-17 Manufacture of thin film varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034340A JPS63202003A (en) 1987-02-17 1987-02-17 Manufacture of thin film varistor

Publications (1)

Publication Number Publication Date
JPS63202003A true JPS63202003A (en) 1988-08-22

Family

ID=12411411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034340A Pending JPS63202003A (en) 1987-02-17 1987-02-17 Manufacture of thin film varistor

Country Status (1)

Country Link
JP (1) JPS63202003A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886702A (en) * 1981-11-19 1983-05-24 松下電器産業株式会社 Method of producing varistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886702A (en) * 1981-11-19 1983-05-24 松下電器産業株式会社 Method of producing varistor

Similar Documents

Publication Publication Date Title
US20070189956A1 (en) Method for producing a monocrystalline cu(in,ga)se2powder, and mono-grain membrane solar cell containing said powder
JPS63202003A (en) Manufacture of thin film varistor
CN111187005A (en) Chalcogenide infrared microcrystalline glass and preparation method thereof
JP2539214B2 (en) Glass ceramics and manufacturing method thereof
EP3366816A1 (en) Method for producing lithium niobate single crystal substrate
JP2004076094A (en) Transparent conductive film and its production method
JPS6237801B2 (en)
JPS61194786A (en) Heat treatment method of oxide superconductor thin-film
JPH0552642B2 (en)
JPH04162206A (en) Thin-film magnetic head with improved coil conductor layer
JP2577128B2 (en) Welding glass composition
JPS60220505A (en) Transparent conductive film and method of forming same
JP7494583B2 (en) Thick film resistor composition and thick film resistor paste containing same
JPH0761870B2 (en) Method for manufacturing high temperature superconducting thin film
JP2005294612A (en) Metal resistor material and sputtering target
JPS6341231B2 (en)
JPS6060944A (en) Glass for coating semiconductor
CN117923802A (en) Leadless glass powder for passivation of semiconductor device and application thereof
JPH02102584A (en) Manufacture of magnetoresistive element
Lou et al. The electrical properties of As+-implanted SnOx films
JPS58175833A (en) Manufacture of compound semiconductor thin-film structure
JP2005294612A5 (en)
Perinati Tantalum Thin Film Applications–A New Approach for Capacitors
JPS58123714A (en) Grain boundary layer type porcelain dielectric material and method of producing same
JPH05299209A (en) Manufacture of thin film varistor