JPS5884304A - Proportional controller - Google Patents

Proportional controller

Info

Publication number
JPS5884304A
JPS5884304A JP18280181A JP18280181A JPS5884304A JP S5884304 A JPS5884304 A JP S5884304A JP 18280181 A JP18280181 A JP 18280181A JP 18280181 A JP18280181 A JP 18280181A JP S5884304 A JPS5884304 A JP S5884304A
Authority
JP
Japan
Prior art keywords
hysteresis
current
flow rate
control
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18280181A
Other languages
Japanese (ja)
Inventor
Hideo Uematsu
英夫 植松
Takashi Tanahashi
隆 棚橋
Masaji Yamauchi
山内 正次
Tomohide Matsumoto
朋秀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18280181A priority Critical patent/JPS5884304A/en
Publication of JPS5884304A publication Critical patent/JPS5884304A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric

Abstract

PURPOSE:To eliminate the hysteresis and to increase the control accuracy, by compensating the current on the basis of the control characteristics obtained when the current increases and decreases with the current flow rate control characteristics of a proportional control valve. CONSTITUTION:A proportional controller S1 is provided with a storing part S3 which stores a relational equation of the current flow rate control characteristics of the hysteresis occuring within the controller S1 as well as an intermediate relational control characteristics of the hysteresis which is induced from the first mentioned relational equation, and a discriminating part S2 which discriminates the increase or decrease of the driving current, that is, which side the control is carried out centering on the hysteresis straight line. A hysteresis compensating arithmetic part S4 functions to compensate the hysteresis on the basis of the information signals given from the parts S3 and S2. A driving part S5 is driven by the part S4. Thus the electric signal is transmitted to a pressure type proportional control valve S6.

Description

【発明の詳細な説明】 本発゛明は、燃焼機器の出力制御等に用いる比例制御弁
のヒステリシスを減少させる為の制御手段に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control means for reducing the hysteresis of a proportional control valve used for controlling the output of combustion equipment.

第1図は、圧力式比例制御弁の概要図でアシ。Figure 1 is a schematic diagram of a pressure type proportional control valve.

圧力式比例制御弁列装置内上部に電磁コイル2を2、−
、。
The electromagnetic coil 2 is installed in the upper part of the pressure type proportional control valve train device.
,.

配置し、この電磁コイル2の中央に板バネ3で支えられ
た電磁プランジャ4が挿通され、そして。
An electromagnetic plunger 4 supported by a leaf spring 3 is inserted into the center of the electromagnetic coil 2.

この電磁プランジャ4の下部に、ダイヤフラム部6と弁
体6が固着されている。また7は電磁プランジャ4.ダ
イヤフラム部6及び弁体6等の自重を支える為のスプリ
ング5aVi弁座部、9aは一次圧室、9bは燃料流入
口、10iLは二次圧室、10bは燃料出口を示してい
る。
A diaphragm portion 6 and a valve body 6 are fixed to the lower part of the electromagnetic plunger 4. 7 is an electromagnetic plunger 4. A spring 5aVi is used to support the weight of the diaphragm 6 and the valve body 6, and 9a is a primary pressure chamber, 9b is a fuel inlet, 10iL is a secondary pressure chamber, and 10b is a fuel outlet.

上記構成において、電磁コイル2に駆動電流iを加える
と電磁プランジャ4に吸引力が働き、弁体6は下方に押
し下げられ、板バネ3の上向きの復元力とつりあった位
置に停止する。このとき1、弁体6と弁座8で形成ぎれ
る弁開度の大IJ〜により燃料流入口9bの圧力/cあ
る一次産力P1に対し燃料出口10bの圧力である巳次
圧力P2が一義的に制御される。また、このタイプの圧
力式比例制御弁は、−次圧力P1を受けるダイヤフラム
部6の有効径と、同様に一次圧力P1を受ける弁体6の
上面有効径が同一寸法の為に、上下方向に働く力が打消
し合い電磁コイル2に加える駆動電流3、−2−・ iが同一の場合は、−次圧力P1が変化しても。
In the above configuration, when a driving current i is applied to the electromagnetic coil 2, an attractive force acts on the electromagnetic plunger 4, and the valve body 6 is pushed down and stopped at a position balanced with the upward restoring force of the leaf spring 3. At this time, 1. Due to the large valve opening IJ~ formed by the valve body 6 and the valve seat 8, the pressure at the fuel inlet 9b/c is the primary production P1, and the pressure at the fuel outlet 10b, which is the pressure P2, is significant. controlled. In addition, in this type of pressure proportional control valve, the effective diameter of the diaphragm portion 6 that receives the secondary pressure P1 and the effective diameter of the upper surface of the valve body 6 that similarly receives the primary pressure P1 are the same, so that If the driving currents 3, -2-·i applied to the electromagnetic coil 2 are the same, even if the -order pressure P1 changes.

二次圧力P2は変化しない。すなわち、二次圧力P2 
は−次圧力の変化に関係なく電磁コイル2に加える駆動
電流iの関数にな?) 、P2 = f(i)で表わさ
れる。故に駆動電流iの増減に対応して、二次圧力P2
が制御されるものである。
Secondary pressure P2 does not change. That is, secondary pressure P2
Is it a function of the driving current i applied to the electromagnetic coil 2 regardless of the change in the -order pressure? ), P2 = f(i). Therefore, in response to an increase or decrease in the drive current i, the secondary pressure P2
is controlled.

諸実験の結果、更に具体的には二次圧力P2はP2 =
 k1i2 ・・・・・・■(ただし、klは比例定数
)で表現することができる。また圧力比例制御弁の後流
に設置されるノズルから大気圧中に噴出する燃料流量を
Qで表わすと、流路断面積形状が同一の場合には、Q=
に2v/¥2・・・・・・■(ただし、k2は比例定数
)で表現することができる。したがりて上記■及び■か
らQ=kg、i・・・・・・0(ただし、に5は比例定
数)として表現することができる。すなわち、燃料流量
Qは、電磁コイル2に与える駆動電流iと正比例の関係
にあるにの様子を示した図が、第2図の電流流量制御特
性図である。縦軸は最大流量を100%にした場合の流
量を流量比で表わし、横軸は駆動電流iを表わしている
As a result of various experiments, more specifically, the secondary pressure P2 is P2 =
It can be expressed as k1i2...■ (where kl is a proportionality constant). Also, if the flow rate of fuel jetted into atmospheric pressure from a nozzle installed downstream of the pressure proportional control valve is expressed as Q, then if the cross-sectional area shape of the flow path is the same, then Q=
can be expressed as 2v/¥2...■ (where k2 is a proportionality constant). Therefore, from (1) and (2) above, it can be expressed as Q=kg, i...0 (where, 5 is a proportionality constant). That is, the current flow rate control characteristic diagram in FIG. 2 shows that the fuel flow rate Q is in direct proportion to the drive current i applied to the electromagnetic coil 2. The vertical axis represents the flow rate when the maximum flow rate is 100%, and the horizontal axis represents the drive current i.

第2図をみれば明らかのように、ある一定の一動電流i
0から駆動電流iが増大する側では、燃料流量qは駆動
電流1の一次式で表わされるが駆動電流iの増大した場
合と減少した場合ではヒステリシスが生じる。したがっ
て駆動電流iを減少させた場合には増加させた場合の同
一駆動電流iに対しその燃料流量Qは駆動電流iを増大
させた場合の流量値’i−uに対してΔ?だけ多い値?
dになる。すなわち、同一駆動電流iに対して制御され
る流量がg、uと?dの二通シ存在することになる。
As is clear from Figure 2, a certain dynamic current i
On the side where the drive current i increases from 0, the fuel flow rate q is expressed by a linear equation of the drive current 1, but hysteresis occurs when the drive current i increases and decreases. Therefore, when the drive current i is decreased, the fuel flow rate Q for the same drive current i when increased is Δ? with respect to the flow rate value 'i-u when the drive current i is increased? Only more value?
It becomes d. That is, the flow rates controlled for the same drive current i are g and u? There will be two copies of d.

又4 toの点はバーナの能力から決定される最少燃焼
流量値をg−Mけ最大燃焼流量値を示している。
Further, the point 4to indicates the maximum combustion flow rate determined by multiplying the minimum combustion flow rate by g-M, which is determined from the burner capacity.

したがって燃料流量Qの制御範囲はfl、oがらfMの
範囲である。
Therefore, the control range of the fuel flow rate Q is a range from fl and o to fM.

以上のような電流流量制御特性をもっ圧力式比例制御弁
を燃焼効高アップを主目的とした燃焼機器の空燃比制御
に応用した場合、送風機風景と送風機の回転数を制御す
る駆動電流との間のヒステリシスは無視できるほど微小
であるのに対して。
When a pressure-type proportional control valve with the above-mentioned current flow control characteristics is applied to air-fuel ratio control of combustion equipment with the main purpose of increasing combustion efficiency, the relationship between the blower scenery and the drive current that controls the blower rotation speed will increase. whereas the hysteresis between them is negligible.

燃料測流量を制御する圧力式比例制御弁のヒステ5.7
−、 リシスが大きい為に、しかも低流量制御域はど大きくな
る為に、燃焼出力を増大する方向に働く場合、すなわち
駆動電流が増大する方向に働く場合は、空気過剰の状態
になり、又、燃焼出力が減少する方向に働く場合、すな
わち駆動電流が減少する方向に働く場合には、反対に空
気不足の状態になり、精度の高い空燃比制御が実現でき
ないという欠点があった。特に、゛低燃焼域のヒステリ
シスの大きい領域では空気不足カニ号−生じた場合には
、−酸化炭素濃度が急に高くなったシ、立消えの心配が
予測される為必要以上に過剰な空気量になるべく制御す
る必要があシ、その為に、燃焼効率が低下し、燃焼効率
向上を主目的とした空燃比制御の阻害要因になっていた
Hysteresis of the pressure-type proportional control valve that controls the measured fuel flow rate 5.7
- Because the lysis is large and the low flow rate control region is also large, if it works in the direction of increasing the combustion output, that is, if it works in the direction of increasing the drive current, it will lead to a state of excess air, or However, when the combustion output decreases, that is, when the drive current decreases, an air shortage occurs and highly accurate air-fuel ratio control cannot be achieved. In particular, in the area where hysteresis is large in the low combustion range, if an air shortage occurs, the carbon oxide concentration will suddenly increase, and there is a risk of the gas being extinguished, so the amount of air may be more than necessary. It is necessary to control the combustion efficiency as much as possible, and as a result, the combustion efficiency decreases, which becomes an impediment to air-fuel ratio control whose main purpose is to improve combustion efficiency.

本発明は、ヒステリシスの大きさが無視できない高精度
の空燃比制御をオープンループ制御方式で可能にする為
に、ヒステリシスを補正制御することで、上記従来の欠
点を解消するものである。
The present invention eliminates the above-mentioned drawbacks of the conventional technology by correcting hysteresis in order to enable highly accurate air-fuel ratio control in which the magnitude of hysteresis cannot be ignored using an open-loop control method.

以下1本発明の一実施例を尭付図面にもとづいて説明す
る。第3図は本発明の比例制御装置の主6、−  ・ 要ブロック線図と圧力式比例制御弁への電気信号系を示
した概略図であシ、slは比例制御装置の一部を示し、
この中に駆動電流iの増減を識別する判別部82.ヒス
テリシス直線を記憶する記憶部S3そして判別部S2及
び記憶部s3の信号に対応して作動するヒステリシス補
正演算部s4があシ、更に駆動部S5で制御されて圧力
式比例制御弁S6へ電気信号が伝達される。第4図は電
流流量制御特性図において、ヒステリシス補正手段を示
す説明図であり、第6図は、送風機の電流風量制御特性
図である。
An embodiment of the present invention will be described below with reference to the illustrative drawings. Figure 3 is a schematic diagram showing the main block diagram of the proportional control device of the present invention and the electrical signal system to the pressure type proportional control valve, and sl indicates a part of the proportional control device. ,
This includes a determining section 82 that identifies an increase or decrease in the drive current i. There is a storage section S3 that stores the hysteresis straight line, a hysteresis correction calculation section s4 that operates in response to signals from the discrimination section S2 and the storage section s3, and is further controlled by a drive section S5 to send an electric signal to the pressure type proportional control valve S6. is transmitted. FIG. 4 is an explanatory diagram showing the hysteresis correction means in the current flow rate control characteristic diagram, and FIG. 6 is a current flow rate control characteristic diagram of the blower.

第4図において、流量制御範囲はバーナの燃焼特性から
決まる最低燃焼流量値toと最大燃焼流量値fMの範囲
にあり、これに対応して電流制御範囲がioからiMの
範囲にある。
In FIG. 4, the flow rate control range is between the minimum combustion flow rate value to and the maximum combustion flow rate value fM determined from the combustion characteristics of the burner, and correspondingly, the current control range is between io and iM.

電流流量制御特性にはヒステリシスがあり、その値は、
低流量領域になるにしたがい大きくなる傾向にある。ま
た、比例制御弁単体の電流流量制御特性において負荷を
変化させた場合、すなわち負荷を増大させた場合には、
直線(イ)に従って制御71,2゜ され、逆に負荷を減少させた場合には直線(ロ)に従っ
て制御される。
There is hysteresis in the current flow control characteristics, and its value is
It tends to increase as the flow rate becomes lower. In addition, when the load is changed in the current flow control characteristics of the proportional control valve alone, that is, when the load is increased,
It is controlled 71, 2 degrees according to the straight line (a), and conversely, when the load is decreased, it is controlled according to the straight line (b).

(イ)の直線は10 (i (iy (又はto < 
Q < g、M)においてQ=ai−4−b・・・・・
・・・・・・・・・・・・・・・・・・・(イ)(a、
bは既知定数) (ロ)の直線はQ=ci+d・・・・・・・・・・・・
・・・・・・・・・・・・(ロ)(c、dは既知定数) で表わされる直線である。
The straight line in (a) is 10 (i (iy (or to <
Q < g, M), Q=ai-4-b...
・・・・・・・・・・・・・・・・・・(b)(a,
b is a known constant) The straight line in (b) is Q=ci+d...
・・・・・・・・・・・・(b) (c and d are known constants) It is a straight line expressed as follows.

そして、この既に判明している圧力比例制御弁の電流と
流量との関係式すなわち直線(イ)、(ロ)を第3図に
示した、記憶部S3に前もって記憶させておく。更に、
(イ)及び(ロ)の関係式から誘導される(イ)と(ロ
)の直線の中間の直線を(ハ)とすると。
The already known relational expressions between the current and the flow rate of the pressure proportional control valve, that is, straight lines (a) and (b), are stored in advance in the storage section S3 shown in FIG. 3. Furthermore,
Let (c) be the straight line between the straight lines of (a) and (b) derived from the relational expressions of (a) and (b).

Q =’(”L+0)/2i+(b+(1)/2= e
i +f  ・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・(ハ)(a、fは既知定
数) で表現され、直線(ハ)も同様にして記憶部S3に記憶
させておく。又、直線(ハ)は電流流量制御特性の基準
直線と定義づけておく。
Q ='(''L+0)/2i+(b+(1)/2=e
i + f ・・・・・・・・・・・・・・・・・・
. . . (c) (a and f are known constants) The straight line (c) is similarly stored in the storage unit S3. Further, the straight line (C) is defined as the reference straight line for the current flow rate control characteristics.

このように定義しておくと、駆動電流iの時の流8−2 量値は?として一義的に決定される。With this definition, the flow when the drive current i is 8-2 What is the quantity value? is uniquely determined as .

上記構成において、負荷が変動した場合、燃料流量Q及
び空気流量−Q・を変化させるべく、比例制御弁、及び
送風機の夫々の駆動電流が連動して制御される高精度の
空燃比制御を実現する為には、第4図における駆動電流
iに対して、燃料流量値tが、第6図における空気流量
値?・と常に1対1の対応関係にあることが必要である
In the above configuration, when the load fluctuates, highly accurate air-fuel ratio control is realized in which the drive currents of the proportional control valve and the blower are controlled in conjunction to change the fuel flow rate Q and air flow rate -Q. In order to do this, for the drive current i in FIG. 4, the fuel flow rate value t must be the air flow rate value in FIG. 6? It is necessary that there is always a one-to-one correspondence with .

空気側の流゛量制御は、ヒステリシスが無視できるほど
小さいのでこの場合ヒステリシス零と゛して取扱かう。
In air flow rate control, the hysteresis is so small that it can be ignored, so in this case it is treated as having zero hysteresis.

すなわち、第6図に示、した単一の′直線(:=)がこ
れを示している。
That is, the single straight line (:=) shown in FIG. 6 indicates this.

今負荷が゛増尖すると、直線(イ)、に面、・て豐御さ
れるが、その制御信号を第一回にセける判別部S2−で
まず識別1、つ炉いてS4のヒス、テリシス補正演算部
で、既にS3の記憶部(記憶してお埴た基準直線(ハ)
と直線(イ)から駆動電些iに対面した基準の制御電流
は、工+Δ讐として制御する木のである。又逆に負荷が
減少した場合には%(ロ)の直線に基準直線(ハ)と直
線(ロ)から駆動電流iに対応した基準流量?になるよ
うに補正電流値Δi・を算出し、実際の制御電流はi−
Δi′として制御するものである。
Now, when the load increases, it is controlled by the straight line (A), but the control signal is first set in the discriminating section S2-, which first identifies 1, then turns on the hiss of S4, In the teresis correction calculation unit, the reference straight line (c) that has already been stored in the storage unit of S3 (memorized)
The reference control current facing the driving voltage i from the straight line (A) is the tree to be controlled as +Δ. Conversely, when the load decreases, the standard flow rate corresponding to the drive current i is drawn from the standard line (c) and the straight line (b) on the % (b) line. The corrected current value Δi・ is calculated so that the actual control current is i−
It is controlled as Δi'.

一方、空気流量制御は第6図のに)の線上に沿って、負
荷の変動に対応して、ヒステリシスなしに制御されると
とになる。
On the other hand, the air flow rate control is performed without hysteresis in response to load fluctuations along the line 2) in FIG. 6.

以上の説明から明らかのように、本発明の比例制御装置
は、その制御装置内部にヒステリシスのある電流流量制
御特性の関係式及び、この関係式から誘導されるヒステ
リシスの中間の関係式を記憶させておく記憶部と、駆動
電流が増大方向にあるか、減少方向にあるか、つまり、
ヒステリシス直線のどちら側に沿った制御なのかを識別
する為の判別部、及び、記憶部1判別部からの情報信号
にもとづいて、ヒステリシスを補正すべく作動する。ヒ
ステリシス補正演算部により構成したことで、次のよう
な効果を有するものである。すなわ、ね 19・−・・ (1)電磁式駆動部、ダイヤフラム、機械的摺動部等で
構成された制御弁において、磁気ヒステリシスやダイヤ
フラムによるヒステリシスは皆無にすることはできない
As is clear from the above description, the proportional control device of the present invention stores within the control device a relational expression of current flow rate control characteristics with hysteresis and an intermediate relational expression of hysteresis derived from this relational expression. The memory section to store and whether the drive current is increasing or decreasing, that is,
It operates to correct the hysteresis based on the information signal from the discrimination section for identifying which side of the hysteresis straight line the control is being carried out and from the discrimination section of the storage section 1. The configuration of the hysteresis correction calculation section provides the following effects. That is, 19... (1) In a control valve composed of an electromagnetic drive section, a diaphragm, a mechanical sliding section, etc., magnetic hysteresis and hysteresis caused by the diaphragm cannot be completely eliminated.

これらのヒステリシスの為に、その制御特性にもヒステ
リシスが存在し、かつ、ヒステリシスの伴う制御特性が
一定の関係式で表現されるとき、このヒステリシスを見
かけ上解消することができる。
Because of these hysteresis, hysteresis also exists in the control characteristics, and when the control characteristics accompanied by hysteresis are expressed by a fixed relational expression, this hysteresis can be apparently eliminated.

(2)  ヒステリシスを解消することにより、特にオ
ープンループ方式の空燃比制御を高精度に制御すること
ができるものである。
(2) By eliminating hysteresis, it is possible to control air-fuel ratio control with high precision, especially in an open-loop system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧力式比例制御弁の構成図、第2図は同
圧力式比例制御弁の電流流量制御特性図、第3図は本発
明の一実施例における比例制御装置の主要ブロック線図
、第4図は同比例制御装置におけるヒステリシス補正手
段を示す特性図、第6図は送風機の電流風量制御特性図
である。 Sl・・・・・・比例制御装置、82・・・・・・判別
部、aS1η一つ、 ・・・・・・記憶部、84・・・・・・ヒステリシス補
正演算部、S6・・・・・・比例制御弁。 11図 第2図 Q(%) 第3図 第4図 1115図 O′
Fig. 1 is a configuration diagram of a conventional pressure type proportional control valve, Fig. 2 is a current flow control characteristic diagram of the same pressure type proportional control valve, and Fig. 3 is a main block diagram of a proportional control device in an embodiment of the present invention. FIG. 4 is a characteristic diagram showing the hysteresis correction means in the proportional control device, and FIG. 6 is a characteristic diagram of the current and air volume control of the blower. Sl...Proportional control device, 82...Discrimination unit, one aS1η,...Storage unit, 84...Hysteresis correction calculation unit, S6... ...proportional control valve. Figure 11 Figure 2 Q (%) Figure 3 Figure 4 1115 Figure O'

Claims (1)

【特許請求の範囲】[Claims] 流体の流通路内に流通路断面積を可変し得る弁体を設け
、この弁体と連動する電磁駆動部を制御して前記流体の
流量を連続的に可変する比例制御弁と、この比例制御弁
の電流流量制御特性における電流が増大する場合の制御
特性、及び減少する場合の制御特性の両特性を記憶する
記憶部と、前記電流が増大方向にあるか減少方向にある
かを識別する判別部と、前記電流流量制御特性のヒステ
リシスを小さくするように前記電流を補正するヒステリ
シス補正演算部とからなる比例制御装置。
A proportional control valve that includes a valve body that can vary the cross-sectional area of the flow passage in a fluid flow passage, and controls an electromagnetic drive unit that operates in conjunction with the valve body to continuously vary the flow rate of the fluid, and the proportional control valve. A storage unit that stores both a control characteristic when the current increases and a control characteristic when the current decreases in the current flow control characteristics of the valve, and a discrimination unit that identifies whether the current is in an increasing direction or a decreasing direction. and a hysteresis correction calculating section that corrects the current so as to reduce the hysteresis of the current flow rate control characteristic.
JP18280181A 1981-11-13 1981-11-13 Proportional controller Pending JPS5884304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18280181A JPS5884304A (en) 1981-11-13 1981-11-13 Proportional controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18280181A JPS5884304A (en) 1981-11-13 1981-11-13 Proportional controller

Publications (1)

Publication Number Publication Date
JPS5884304A true JPS5884304A (en) 1983-05-20

Family

ID=16124653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18280181A Pending JPS5884304A (en) 1981-11-13 1981-11-13 Proportional controller

Country Status (1)

Country Link
JP (1) JPS5884304A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384507A (en) * 1991-11-29 1995-01-24 Hitachi Construction Machinery Co., Ltd. Method of and device for driving piezo-electric elements and system for controlling micromotion mechanism
JP2005538462A (en) * 2002-09-13 2005-12-15 メッツォ オートメーション オイ Method and apparatus for determining hysteresis
CN107781258A (en) * 2016-08-30 2018-03-09 南京晨光集团有限责任公司 Proportioning valve performance test algorithm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533295A (en) * 1978-08-30 1980-03-08 Omron Tateisi Electronics Co Temperature controller
JPS5697728A (en) * 1979-12-31 1981-08-06 Omron Tateisi Electronics Co Proportional valve controlling circuit in combustion control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533295A (en) * 1978-08-30 1980-03-08 Omron Tateisi Electronics Co Temperature controller
JPS5697728A (en) * 1979-12-31 1981-08-06 Omron Tateisi Electronics Co Proportional valve controlling circuit in combustion control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384507A (en) * 1991-11-29 1995-01-24 Hitachi Construction Machinery Co., Ltd. Method of and device for driving piezo-electric elements and system for controlling micromotion mechanism
WO2004081684A1 (en) * 1991-11-29 2004-09-23 Ryuji Takada Method and apparatus for driving piezoelectric device, and controller of macromanipulator
JP2005538462A (en) * 2002-09-13 2005-12-15 メッツォ オートメーション オイ Method and apparatus for determining hysteresis
CN107781258A (en) * 2016-08-30 2018-03-09 南京晨光集团有限责任公司 Proportioning valve performance test algorithm
CN107781258B (en) * 2016-08-30 2019-05-07 南京晨光集团有限责任公司 Proportioning valve performance test methods

Similar Documents

Publication Publication Date Title
US9791172B2 (en) Dual sensor combustion system
US3113582A (en) Pressure control system
JPS6333001B2 (en)
JPS5884304A (en) Proportional controller
JPH0219845Y2 (en)
JPH0243070B2 (en)
JPS624846B2 (en)
GB2125944A (en) Regulating valve
JPS6260789B2 (en)
JPH0132525B2 (en)
JPH033847B2 (en)
RU2773115C1 (en) Jet-pneumatic semi-proportional regulator
JPH10220609A (en) Constant flow value with water temperature compensation function
JPH102446A (en) Proportional control valve device
JPS634074B2 (en)
JPS5929915A (en) Gas feeder
JPH0658608B2 (en) Adjustment method of pressure regulator controller
JPS6133338Y2 (en)
JPS6231954A (en) Fuel cell differential pressure control device
US1735678A (en) Illasle copy
SU1164468A1 (en) Method of controlling capacity of power-driven compressor
JPS6314366B2 (en)
JPS5888426A (en) Fuel injection controller for diesel engine
JP2618368B2 (en) Pressure control device
JPH0424602B2 (en)