JPH0424602B2 - - Google Patents

Info

Publication number
JPH0424602B2
JPH0424602B2 JP60214066A JP21406685A JPH0424602B2 JP H0424602 B2 JPH0424602 B2 JP H0424602B2 JP 60214066 A JP60214066 A JP 60214066A JP 21406685 A JP21406685 A JP 21406685A JP H0424602 B2 JPH0424602 B2 JP H0424602B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
valve
control valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60214066A
Other languages
Japanese (ja)
Other versions
JPS6273010A (en
Inventor
Hiroyuki Oochi
Masaru Tsunekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP60214066A priority Critical patent/JPS6273010A/en
Publication of JPS6273010A publication Critical patent/JPS6273010A/en
Publication of JPH0424602B2 publication Critical patent/JPH0424602B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/20Membrane valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、燃焼制御機構に関するものであり、
例えばボイラーや外機関等の連続燃焼炉に利用さ
れる。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention relates to a combustion control mechanism,
For example, it is used in continuous combustion furnaces such as boilers and external engines.

(従来の技術) 従来の例として第2図に示すものがある。(Conventional technology) A conventional example is shown in FIG.

燃料供給源1には、圧力Pgなる燃料があつて
ダイヤフラム減圧弁2によつて2次圧力Proに減
圧される。該減圧弁2のダイヤフラム上室2aは
大気と連通しているため、2次圧力は常に大気圧
よりも高い任意の一定圧力Proに保たれている。
The fuel supply source 1 has fuel at a pressure Pg, which is reduced to a secondary pressure Pro by a diaphragm pressure reducing valve 2. Since the diaphragm upper chamber 2a of the pressure reducing valve 2 communicates with the atmosphere, the secondary pressure is always maintained at an arbitrary constant pressure Pro higher than the atmospheric pressure.

制御弁3の弁3aには駆動モータ4が取付けら
れていて駆動モータ4の回転により弁3aが開閉
し、燃料流量を制御する。駆動モータ4はさらに
コントローラ5により制御されている。流量を制
御された燃料は噴射弁6から燃焼炉7の内へ供給
される。
A drive motor 4 is attached to the valve 3a of the control valve 3, and the rotation of the drive motor 4 opens and closes the valve 3a to control the fuel flow rate. The drive motor 4 is further controlled by a controller 5. Fuel whose flow rate is controlled is supplied from the injection valve 6 into the combustion furnace 7 .

一方、燃焼用空気は、送風機8により燃焼炉7
に供給される。ここに示したものは空気流量をス
ロツトバルブ9により制御している。スロツトバ
ルブ9はさらにコントローラ5により制御されて
いる。
On the other hand, combustion air is supplied to the combustion furnace 7 by a blower 8.
supplied to In the one shown here, the air flow rate is controlled by a slot valve 9. The slot valve 9 is further controlled by a controller 5.

コントローラ5は燃焼状態を監視しており必要
に応じて、燃料と空気の量を制御する。燃料と空
気は燃焼炉7で混合しいわゆる連続拡散燃焼を行
う。
The controller 5 monitors the combustion state and controls the amount of fuel and air as necessary. Fuel and air are mixed in a combustion furnace 7 to perform so-called continuous diffusion combustion.

制御弁3の入口の圧力をPro、出口を大気開放
にした場合の流量特性を第3図の実線で示す。流
量Qは弁開度φに比例している。又Qは制御弁の
前後の差圧の平方根に比例するから Q=k1・φ・√−=k2・φ −(1) (k1、k2定数) と表わされる。
The solid line in Fig. 3 shows the flow rate characteristics when the inlet pressure of the control valve 3 is Pro and the outlet is open to the atmosphere. The flow rate Q is proportional to the valve opening degree φ. Also, since Q is proportional to the square root of the differential pressure across the control valve, it can be expressed as Q= k1・φ・√−= k2・φ−(1) ( k1 , k2 constants).

実際の使用時は第2図に示すように制御弁3の
後流には噴射弁6がある。噴射弁6の入口圧力Pi
は Pi=C1・d・(Q/S)2 −(2) C1:定数、d:燃料の比重、S:噴射弁の出口
面積 で表わされる。配管での圧力損失を無視すればPi
は制御弁3の出口圧力に等しいから弁開度φに対
する流量Qは Q=k1・φ・√− −(3) と表わされる。これに(2)式を代入して Q=k1・φ・√−1・・()2 −(4) と表わされる。これは第3図の点線で示す特性と
なる。噴射弁なし(実線)と比較すると同じ弁開
度φに対して流量が小さく特に高流量程差が大き
い。これは噴射弁がある場合は流量の増加と共に
Piが増加し(式(2))それにより制御弁前後の差圧
Pro−Piが減少したことに起因する。
In actual use, the injection valve 6 is located downstream of the control valve 3, as shown in FIG. Inlet pressure Pi of injection valve 6
is expressed as Pi=C 1・d・(Q/S) 2 −(2) where C 1 is a constant, d is the specific gravity of the fuel, and S is the outlet area of the injector. If you ignore the pressure loss in the piping, Pi
is equal to the outlet pressure of the control valve 3, so the flow rate Q with respect to the valve opening degree φ is expressed as Q= k1 ·φ·√−−(3). By substituting equation (2) into this, it is expressed as Q=k 1 ·φ ·√− 1 ··· () 2 −(4). This results in the characteristic shown by the dotted line in FIG. Compared to the case without an injection valve (solid line), the flow rate is small for the same valve opening φ, and the difference is particularly large at higher flow rates. This will occur as the flow rate increases if there is an injection valve.
Pi increases (Equation (2)), which causes the differential pressure before and after the control valve to
This is due to the decrease in Pro-Pi.

(発明が解決しようとする問題点) この流量特性からわかるように、従来の装置は
次の(1)〜(2)の不具合がある。
(Problems to be Solved by the Invention) As can be seen from this flow rate characteristic, the conventional device has the following problems (1) and (2).

(1) 流量範囲が小さい。(1) Small flow range.

第3図に示すように、噴射弁での圧力損失Pi
により、最大流量QmaxがQ′maxまで落ち込ん
でいる。
As shown in Figure 3, the pressure loss Pi at the injection valve
As a result, the maximum flow rate Qmax has dropped to Q′max.

(2) コントロールの精度が悪い。(2) Poor control accuracy.

最大流量Qmaxを確保するためにはProを
大きくする必要がある。(第3図1点鎖線参
照)そうすると差圧Pro−Piが大きくなつて
微妙な弁開度Δφに対する流量変化ΔQが大き
くなりいわゆる精度が悪い状態になる。
In order to secure the maximum flow rate Qmax, it is necessary to increase Pro. (Refer to the one-dot chain line in FIG. 3) If this happens, the differential pressure Pro-Pi will increase, and the flow rate change ΔQ with respect to the delicate valve opening Δφ will become large, resulting in what is called a state of poor accuracy.

流量特性からわかるように噴射弁の影響に
より流量特性はリニアでなくなりΔQは低流
量で大きく高流量で小さい、それとQ自身の
大きさを考え合わせると、流量変化率Q+
ΔQ/Qは低流量側で(Qは小さくΔQが大
きいため)非常に大きくなる。その結果低流
量では所定の流量にコントロールすることが
困難となり、弁3aのハンチングや流れの脈
動等の問題が発生しやすい。
As can be seen from the flow rate characteristics, due to the influence of the injection valve, the flow rate characteristics are no longer linear, and ΔQ is large at low flow rates and small at high flow rates. Considering this and the size of Q itself, the flow rate change rate Q +
ΔQ/Q becomes very large on the low flow rate side (because Q is small and ΔQ is large). As a result, when the flow rate is low, it becomes difficult to control the flow rate to a predetermined level, and problems such as hunting of the valve 3a and flow pulsation are likely to occur.

このように広い流量範囲の確保と良好な流
量特性の確保は相対するものであり、実際に
はどちらか一方を犠牲にするか両者の妥協点
で使用することを余儀なくされていた。
As described above, ensuring a wide flow rate range and ensuring good flow characteristics are contradictory, and in reality, one has been forced to sacrifice one or the other or use a compromise between the two.

噴射弁のヨゴレや使用条件の変化により流
量特性も変化してしまうことである。例え
ば、 ヨゴレやスラツチ等が噴射弁につまり出
口面積Sが変化した場合。
The flow rate characteristics also change due to dirt on the injection valve or changes in usage conditions. For example, if dirt or sludge clogs the injection valve, the outlet area S changes.

該計変更により噴射弁を交換した場合
(前記K、Sの変化) 燃焼室の圧力が何らかの原因で変化した
場合このような場合は結果としてPiが変化
し流量特性も変化して正しい燃料流量制御
を行なうことができなくなる。
When the injector is replaced due to a change in the meter (change in K and S mentioned above) When the pressure in the combustion chamber changes for some reason In such a case, Pi changes as a result, and the flow characteristics also change, making it impossible to control the fuel flow rate correctly become unable to do so.

そこで、本発明の技術的課題は前記欠点を解消
して、流量範囲が広く制御精度が良好で、噴射弁
の入口圧力の変化により流量特性が影響されない
燃焼制御装置を提供することである。
SUMMARY OF THE INVENTION Accordingly, the technical problem of the present invention is to eliminate the above-mentioned drawbacks and provide a combustion control device that has a wide flow rate range, has good control accuracy, and whose flow characteristics are not affected by changes in the inlet pressure of the injection valve.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記技術的課題を解決するために講じた技術的
手段は、減圧弁2の2次圧力を任意の一定値と前
記制御弁の出口圧力Piとの和となるように制御す
ることである。
(Means for solving the problem) The technical means taken to solve the above technical problem is to set the secondary pressure of the pressure reducing valve 2 to the sum of an arbitrary constant value and the outlet pressure Pi of the control valve. It is to control so that it becomes.

上記技術的手段は次の様に作用する。即ち、一
定の圧力Proに流量により変化する圧力Piを加え
た圧力Pro+Piになるように減圧弁2の2次圧力
を制御する。そうすると流量制御弁前後の差圧
ΔPは ΔP=Pr−Pi=(Pro+Pi)−Pi=Pro (Pr:減圧弁1次圧) となり常に一定値に保たれる。
The above technical means works as follows. That is, the secondary pressure of the pressure reducing valve 2 is controlled so that the pressure Pro+Pi is obtained by adding a pressure Pi that changes depending on the flow rate to a constant pressure Pro. Then, the differential pressure ∆P before and after the flow control valve becomes ∆P = Pr - Pi = (Pro + Pi) - Pi = Pro (Pr: pressure reducing valve primary pressure) and is always kept at a constant value.

これは、減圧弁の1次圧力をProに保ち、2次
側を大気開放にした場合と同じになる。(流量特
性は図3の実線で示される。) これにより、 (1) 流量制御弁3前後の差圧は常にProに保たれ
るので大気開放時と同じ流量範囲が確保でき
る。
This is the same as keeping the primary pressure of the pressure reducing valve at Pro and opening the secondary side to the atmosphere. (The flow rate characteristics are shown by the solid line in Figure 3.) As a result, (1) The differential pressure before and after the flow control valve 3 is always maintained at Pro, ensuring the same flow range as when opening to the atmosphere.

(2) 低流量での分解能が良好となる。(2) Better resolution at low flow rates.

●流量範囲を確保するためにProを大きくとる
必要がないから。
●There is no need to make Pro large in order to secure the flow rate range.

●前述のように差圧は常にProに保たれるので
低流量でΔQが特に大きくなることがないか
ら (3) 噴射弁の交換、外部の圧力の変化により流量
特性が変化することがない。
●As mentioned above, the differential pressure is always maintained at Pro, so ΔQ does not become particularly large at low flow rates (3) The flow characteristics do not change due to injection valve replacement or changes in external pressure.

流量Qは差圧Proと弁開度φのみにより決定
されるから。
The flow rate Q is determined only by the differential pressure Pro and the valve opening φ.

(実施例) 以下、本発明の一実施例を第1図にもとずいて
説明するが、第2図に示した従来例と同一部品に
は同符号を記し、その説明を省略する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described based on FIG. 1. Parts that are the same as those of the conventional example shown in FIG.

管11はダイヤフラム式減圧弁2のダイヤフラ
ム上室2aと制御弁3の出口を連通させる配管で
ある。管11によりダイヤフラム上室2aの圧力
は常に制御弁3の出口圧力と等しくなるから制御
弁3の前後の差圧は常に或る一定値に保たれる。
The pipe 11 is a pipe that communicates the diaphragm upper chamber 2a of the diaphragm type pressure reducing valve 2 with the outlet of the control valve 3. Since the pressure in the upper diaphragm chamber 2a is always equal to the outlet pressure of the control valve 3 through the pipe 11, the differential pressure across the control valve 3 is always maintained at a certain constant value.

●実施態様 減圧弁としてピストン式減圧弁を用いた場合
も同様にピストン上室と制御弁3の出口を管で
連通させれば同様の効果が得られる。
●Embodiment When a piston-type pressure reducing valve is used as the pressure reducing valve, the same effect can be obtained by communicating the upper chamber of the piston and the outlet of the control valve 3 through a pipe.

制御弁3の出口圧力を検知して減圧弁の2次
圧をPro+Piになるように電気的に制御するこ
とも可能である。
It is also possible to detect the outlet pressure of the control valve 3 and electrically control the secondary pressure of the pressure reducing valve to become Pro+Pi.

〔発明の効果〕〔Effect of the invention〕

本発明は次の特有の効果を有する。即ち広い流
量範囲を確保するために減圧弁の2次圧力を大き
くしかつ制御精度を向上させるために精度の良い
駆動モータを使用しても良いが、駆動モータが高
価になると共に弁開度φを検知してフイードバツ
クをかけるような場合は、微妙な弁開度の検出が
困難となる。又駆動モータとしてステツピングモ
ータを使用する場合はモータと弁軸との減連比を
変えて1ステツプ当りの開度を小さくして精度を
向上させることも可能であるが、応答性が悪くて
つてしまう。これに対して本発明においては減圧
弁の2次圧力に制御弁の出口圧力を上乗せするだ
けであり、上記のような問題がない。
The present invention has the following unique effects. In other words, it is possible to increase the secondary pressure of the pressure reducing valve to ensure a wide flow range and to use a highly accurate drive motor to improve control accuracy, but this increases the cost of the drive motor and reduces the valve opening φ. When detecting and applying feedback, it becomes difficult to detect subtle valve openings. Also, when using a stepping motor as the drive motor, it is possible to improve accuracy by changing the reduction ratio between the motor and the valve shaft to reduce the opening per step, but the response is poor. I get tired. In contrast, in the present invention, the outlet pressure of the control valve is simply added to the secondary pressure of the pressure reducing valve, and the above-mentioned problem does not arise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る燃焼制御装置の説明図、
第2図は従来の燃焼制御装置の説明図、および第
3図は第2図示装置の流量特性図である。 1……燃料供給源、2……減圧弁、2a……加
圧手段、3……燃料流量制御弁、5……制御手
段、6……噴射弁、8……送風機、9……空気流
量制御弁。
FIG. 1 is an explanatory diagram of a combustion control device according to the present invention,
FIG. 2 is an explanatory diagram of a conventional combustion control device, and FIG. 3 is a flow rate characteristic diagram of the device shown in the second diagram. DESCRIPTION OF SYMBOLS 1... Fuel supply source, 2... Pressure reducing valve, 2a... Pressurizing means, 3... Fuel flow control valve, 5... Control means, 6... Injection valve, 8... Air blower, 9... Air flow rate control valve.

Claims (1)

【特許請求の範囲】 1 所定圧の燃料を貯える燃料供給源、 前記燃料の圧を減ずる減圧弁、 減圧された前記燃料の流量を制御する燃料流量
制御弁、 前記燃料流量制御弁の後流にあつて前記燃料を
燃焼炉に供給する噴射弁、 前記減圧弁と一体的に構成され、前記燃料流量
制御弁の入口に、前記燃料流量制御弁の出口圧力
と一定圧力との和となる圧力を印加する加圧手
段、 前記燃焼炉に空気を供給する送風機、 前記燃焼炉と前記送風機との間に介設された空
気流量制御弁、及び 前記燃料流量制御弁及び前記空気流量制御弁を
制御する制御手段とからなる燃料制御装置。
[Scope of Claims] 1. A fuel supply source that stores fuel at a predetermined pressure, a pressure reducing valve that reduces the pressure of the fuel, a fuel flow control valve that controls the flow rate of the reduced pressure fuel, and a downstream of the fuel flow control valve. an injection valve for supplying the fuel to the combustion furnace; configured integrally with the pressure reducing valve; and applying a pressure to the inlet of the fuel flow control valve that is the sum of the outlet pressure of the fuel flow control valve and a constant pressure; a pressurizing means for applying pressure; a blower for supplying air to the combustion furnace; an air flow control valve interposed between the combustion furnace and the blower; and controlling the fuel flow control valve and the air flow control valve. A fuel control device comprising a control means.
JP60214066A 1985-09-26 1985-09-26 Combustion control device Granted JPS6273010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60214066A JPS6273010A (en) 1985-09-26 1985-09-26 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214066A JPS6273010A (en) 1985-09-26 1985-09-26 Combustion control device

Publications (2)

Publication Number Publication Date
JPS6273010A JPS6273010A (en) 1987-04-03
JPH0424602B2 true JPH0424602B2 (en) 1992-04-27

Family

ID=16649686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214066A Granted JPS6273010A (en) 1985-09-26 1985-09-26 Combustion control device

Country Status (1)

Country Link
JP (1) JPS6273010A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20080088A1 (en) 2008-03-19 2009-09-20 Sit La Precisa Spa METHOD AND DEVICE FOR THE CONTROL OF THE DELIVERY OF A FUEL GAS, TOWARDS A BURNER UNIT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119550U (en) * 1979-02-16 1980-08-23
JPS55158421U (en) * 1979-05-02 1980-11-14

Also Published As

Publication number Publication date
JPS6273010A (en) 1987-04-03

Similar Documents

Publication Publication Date Title
US6939127B2 (en) Method and device for adjusting air ratio
US4752211A (en) Flow proportioning system
US4085723A (en) Fuel control system for internal combustion engine
JPH0424602B2 (en)
JPH0776612B2 (en) Proportional combustion controller for gas fired boiler system
JPS5885016A (en) Combustion control device
US4222237A (en) Exhaust gas purifying apparatus for internal combustion engine
US4119061A (en) Method and equipment for control of internal combustion engine including a fuel-reforming device
JP2000020135A (en) Flow rate controller
JPS60212636A (en) Fuel jet apparatus
JPS6329111A (en) Control method and device for air-fuel ratio in combustion apparatus
JPS5997421A (en) Combustion controlling device
JPS60211A (en) Gas burning control device
JPS6029516A (en) Gas combustion controller
JP2569649Y2 (en) Fuel injection device
CA1080062A (en) Fuel flow control system
JPS5969611A (en) Combustion control device
KR880004145Y1 (en) Combustion control device
JPS649525B2 (en)
JPH08261444A (en) Fuel controller for mixed-fuel firing boiler of heavy oil and emulsion
GB1116412A (en) Flow-ratio controller
JPS6226414A (en) Control device of flow control valve
JPS6410734B2 (en)
JPS5969612A (en) Gas combustion control device
JPS59212621A (en) Gas combustion controller