JPS624846B2 - - Google Patents

Info

Publication number
JPS624846B2
JPS624846B2 JP4430282A JP4430282A JPS624846B2 JP S624846 B2 JPS624846 B2 JP S624846B2 JP 4430282 A JP4430282 A JP 4430282A JP 4430282 A JP4430282 A JP 4430282A JP S624846 B2 JPS624846 B2 JP S624846B2
Authority
JP
Japan
Prior art keywords
displacement
signal
circuit
electromagnetic force
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4430282A
Other languages
Japanese (ja)
Other versions
JPS58161305A (en
Inventor
Tomohide Matsumoto
Takashi Tanahashi
Yoshuki Yokoajiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4430282A priority Critical patent/JPS58161305A/en
Publication of JPS58161305A publication Critical patent/JPS58161305A/en
Publication of JPS624846B2 publication Critical patent/JPS624846B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Description

【発明の詳細な説明】 本発明は、電磁コイル、プランジヤ、ヨーク等
から構成され、電気信号に応じて電磁力を発生す
る電磁駆動装置に関し、特に磁気回路を構成する
磁気材料の磁気ヒステリシスに起因する電磁力の
ヒステリシスの解消手段に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic drive device that is composed of an electromagnetic coil, a plunger, a yoke, etc., and generates an electromagnetic force in response to an electric signal. This invention relates to a means for eliminating hysteresis of electromagnetic force.

第1図は従来の電磁駆動装置を用いた圧力制御
弁を示す。第1図において、1は電磁コイル、2
は電磁コイル1の中央部に両端を板バネ3a,3
bにより支持して設けたプランジヤ、4はヨーク
であり、以上から電磁駆動装置5が構成されてい
る。6は圧力制御部であり、弁座7、弁座7に対
向して設けた弁体8および弁ボデイ9により外周
を気密に保持し、且つ前記弁体8と連動するダイ
ヤフラム10、弁体8を弁座7に押しつける方向
に作用するバネ11から構成されている。12は
ダイヤフラム10の背圧室イを大気と連通する大
気連通孔である。ここで、電磁コイル1に通電す
ることにより、発生する電磁力をFn、一次側圧
力をP1、二次側圧力をP2、ダイヤフラム10の有
効受圧面積をSD、弁体8の有効受圧面積をSV
し、力の釣合いを考えると、 Fn+P1・SV=P1・SD+P2・SV ……(1) また、SD≒SV=Sとすると、(1)式は Fn=P2・S ∴P2=F/S ……(2) となり、一次圧P1に関係なく、電磁力Fnに応じ
て二次圧P2(流量)を制御することができる。
FIG. 1 shows a pressure control valve using a conventional electromagnetic drive device. In Figure 1, 1 is an electromagnetic coil, 2
is a plate spring 3a, 3 at both ends in the center of the electromagnetic coil 1.
The plunger 4 is a yoke supported by b, and the electromagnetic drive device 5 is constituted by the above. Reference numeral 6 denotes a pressure control section, the outer periphery of which is kept airtight by a valve seat 7, a valve body 8 provided opposite to the valve seat 7, and a valve body 9, and a diaphragm 10 and a valve body 8 that interlock with the valve body 8. It is composed of a spring 11 that acts in the direction of pressing the valve against the valve seat 7. Reference numeral 12 denotes an atmosphere communication hole that communicates the back pressure chamber A of the diaphragm 10 with the atmosphere. Here, the electromagnetic force generated by energizing the electromagnetic coil 1 is F n , the primary pressure is P 1 , the secondary pressure is P 2 , the effective pressure receiving area of the diaphragm 10 is S D , and the effective pressure of the valve body 8 is Letting the pressure-receiving area be S V and considering the force balance, F n +P 1・S V =P 1・S D +P 2・S V ...(1) Also, if S D ≒S V =S, ( Equation 1) is F n = P 2 · S ∴P 2 = F n /S ...(2), and regardless of the primary pressure P 1 , the secondary pressure P 2 (flow rate) is determined according to the electromagnetic force F n . can be controlled.

この種の電磁駆動装置を用いた圧力制御弁にお
いて問題となるのは、プランジヤ2、ヨーク4等
磁気回路を構成する部材の磁気ヒステリシスが直
接、制御特性のヒステリシスにつながることであ
る。この様子を第2図および第3図を用いて詳し
く説明する。第2図は弁体8の変位量Xと、電磁
駆動装置5の電磁力Fnの関係をコイル電流iを
パラメータとして示したものである。
A problem with a pressure control valve using this type of electromagnetic drive device is that the magnetic hysteresis of the members constituting the magnetic circuit, such as the plunger 2 and the yoke 4, directly leads to hysteresis in the control characteristics. This situation will be explained in detail using FIGS. 2 and 3. FIG. 2 shows the relationship between the displacement amount X of the valve body 8 and the electromagnetic force F n of the electromagnetic drive device 5 using the coil current i as a parameter.

第2図からわかるようにコイル電流iを一定と
した場合においても、変位量、すなわちプランジ
ヤ2が変位することにより電磁力Fnにヒステリ
シスが発生する。したがつて各電流値における電
磁力と、(2)式P2・Sの釣合う点は、電流増加時に
おいては、それぞれa、b、c点となり、電流減
少時においては、a′、b′、c′となる。つまり、第
3図に示すコイル電流と二次圧P2の関係におい
て、電流を増加した場合と減少した場合にヒステ
リシスが発生する。この磁気ヒステリシスはプラ
ンジヤ2、ヨーク4等の磁気回路を構成する部材
の主に材質に依存するものであり、さけて通るこ
とはできない。したがつて従来例では、電流減少
時の特性を基準として、P2の制御を行なつている
が、第3図に示すようにマイナーループ的な特性
となるため電流iaにおいてΔP2の差が発生し、
高精度な圧力制御は期待できない。このことは特
に空燃比制御等高精度に圧力(流量)を制御する
場合に問題となる。
As can be seen from FIG. 2, even when the coil current i is constant, hysteresis occurs in the electromagnetic force F n due to the amount of displacement, that is, the displacement of the plunger 2. Therefore, the points at which the electromagnetic force at each current value balances equation (2) P 2 ·S are points a, b, and c, respectively, when the current increases, and points a′ and b when the current decreases. ′, c′. That is, in the relationship between the coil current and the secondary pressure P2 shown in FIG. 3, hysteresis occurs when the current increases and when the current decreases. This magnetic hysteresis depends mainly on the materials of the members constituting the magnetic circuit, such as the plunger 2 and the yoke 4, and cannot be avoided. Therefore, in the conventional example, P 2 is controlled based on the characteristics when the current decreases, but as shown in Fig. 3, the difference in ΔP 2 in the current i a becomes a minor loop characteristic. occurs,
Highly accurate pressure control cannot be expected. This becomes a problem particularly when controlling pressure (flow rate) with high precision, such as air-fuel ratio control.

また従来例では、前述のごとく一次圧P1の変動
に関係なく二次圧P2を一定に保つ周知のガバナ機
能を有するが、電流値が一定の場合においてもX
によりヒステリシスが発生するため、第4図に示
すように、同一コイル電流にもかかわらずガバナ
特性にP,Q2種類の特性が現われ、各々の特性
は良好でもΔP2sだけガバナ特性が悪化する。こ
の点について第2図および第4図を用いて詳しく
説明する。電磁コイル1に無通電状態で一次圧P1
をP1Sまで増加し、その後電磁コイル1に通電
し、二次圧P2を設定圧P2Sにする。この時の変位
量Xは第2図E点である。コイル通電量一定のま
まP1をP1nまで増加すると(2)式Fn=P2・Sから
P2が増加し、弁体8は上方に変位し、XはF点ま
で小さくなる。その後P1をOまで減少するとP2
Oとなるため、弁体8は全開点のM点まで変位す
る。その後、再度P1をP1Sまで増加するとG点と
なる。つまり電磁力のヒステリシス成分だけFn
の大きい点で力の釣合いがとれ、その結果、第4
図Pの特性が現われてしまう。
Furthermore, as mentioned above, the conventional example has a well-known governor function that keeps the secondary pressure P2 constant regardless of fluctuations in the primary pressure P1 , but even when the current value is constant,
As a result, as shown in FIG. 4, two types of P and Q characteristics appear in the governor characteristics despite the same coil current, and even if each characteristic is good, the governor characteristics deteriorate by ΔP 2s , as shown in FIG. This point will be explained in detail using FIGS. 2 and 4. When the electromagnetic coil 1 is not energized, the primary pressure P 1
is increased to P 1S , and then the electromagnetic coil 1 is energized to bring the secondary pressure P 2 to the set pressure P 2S . The amount of displacement X at this time is point E in FIG. If P 1 is increased to P 1n while keeping the coil energization amount constant, then from equation (2) F n = P 2・S
P 2 increases, the valve body 8 is displaced upward, and X decreases to point F. After that, when P 1 is decreased to O, P 2 becomes O, so the valve body 8 is displaced to point M, which is the fully open point. After that, when P 1 is increased again to P 1S , it becomes point G. In other words, only the hysteresis component of the electromagnetic force is F n
The forces are balanced at the point where is large, and as a result, the fourth
The characteristics shown in Figure P appear.

本発明は上記問題点にのぞみ、電磁駆動装置の
磁気回路を構成する部材の磁気ヒステリシスに起
因する電磁力のヒステリシスを解消することを目
的とするものである。
The present invention has been made in view of the above-mentioned problems and aims to eliminate the hysteresis of electromagnetic force caused by the magnetic hysteresis of members constituting the magnetic circuit of an electromagnetic drive device.

この目的を達成するために本発明は、電磁駆動
装置のプランジヤ等の変位量を検出する変位量検
出素子と、その信号を受けて変位量を演算する変
位演算回路および電磁力設定器を設けるととも
に、前記変位量検出素子の信号を受けて、前記電
磁力設定器の信号に近づくよう電磁力を補正する
補正回路を設けたものである。
In order to achieve this object, the present invention provides a displacement detection element that detects the displacement of a plunger or the like of an electromagnetic drive device, a displacement calculation circuit that receives the signal and calculates the displacement, and an electromagnetic force setting device. A correction circuit is provided which receives the signal from the displacement detection element and corrects the electromagnetic force so that it approaches the signal from the electromagnetic force setting device.

この構成により、各変位量における電磁力のヒ
ステリシスは補正回路により、電磁力設定器の信
号に近づくよう補正されるため、等価的に磁気回
路を構成する部材の磁気ヒステリシスに起因する
電磁力のヒステリシスを解消することができる。
With this configuration, the hysteresis of the electromagnetic force at each displacement amount is corrected by the correction circuit so that it approaches the signal of the electromagnetic force setting device, so that the hysteresis of the electromagnetic force due to the magnetic hysteresis of the members constituting the magnetic circuit is equivalently corrected. can be resolved.

以下、本発明の一実施例を図面を用いて詳しく
説明する。なお、図中第1図と同一部材について
は同一番号を付して説明を省略する。
Hereinafter, one embodiment of the present invention will be described in detail using the drawings. Note that the same members in the figure as in FIG. 1 are designated by the same numbers and their explanations will be omitted.

第5図は本発明の一実施例を示す電磁駆動装置
を用いた圧力制御弁のブロツク図であり、13は
プランジヤ2の上部に設けたプランジヤ変位量検
出素子であり、プランジヤ2と連動する。14は
変位量演算回路であり、前記変位量検出素子13
の信号は変位量検出回路へ送られるとともに、ス
ロープ検出回路により変位量Xが増加している
か、減少しているかを検出する。さらに折返し点
記憶部により、変位量Xの折返し点が記憶され、
その折返し点からの変位量が第1比較器15をへ
て補正回路へ送られ、補正電磁力が演算される。
前記補正回路により演算された補正信号は所定の
補正値以上とならないようにリミツト回路をへて
第2比較器16へ送られる。一方、電磁力設定器
は外部信号により所定の電磁力が得られる信号を
第2比較器16へ送り、補正された信号が電磁コ
イル1に送られる。この様子を第6図を用いて詳
しく説明する。第6図は電磁力設定器からの通電
量i1が一定の時の変位量Xと電磁力Fnの関係を
示す特性図であり、いま、プランジヤ1が下方に
変位しているとすると、FnはXに比例してαに
示すごとく増加して行く、この時αは電磁力設定
器により設定された値であり、補正信号は加えら
れていない。その後A点までXを増加し、逆にX
を減少すると、Fnはβにそつて減少する。この
時スロープ検出回路により、減少方向であること
が検出され、同時にA点の変位量Xnが折返し点
記憶部に記憶され、その変位量Xnを原点とし
て、変位量Δxが検出され、その信号が第1比較
器15をへて補正回路へ送られる。
FIG. 5 is a block diagram of a pressure control valve using an electromagnetic drive device showing an embodiment of the present invention. Reference numeral 13 denotes a plunger displacement detecting element provided on the upper part of the plunger 2, and is interlocked with the plunger 2. 14 is a displacement amount calculation circuit, and the displacement amount detection element 13
The signal is sent to the displacement amount detection circuit, and the slope detection circuit detects whether the displacement amount X is increasing or decreasing. Further, the turning point storage unit stores the turning point of the displacement amount X,
The amount of displacement from the turning point is sent to the correction circuit via the first comparator 15, and a correction electromagnetic force is calculated.
The correction signal calculated by the correction circuit is sent to the second comparator 16 through a limit circuit so that it does not exceed a predetermined correction value. On the other hand, the electromagnetic force setting device sends a signal that allows a predetermined electromagnetic force to be obtained by an external signal to the second comparator 16, and a corrected signal is sent to the electromagnetic coil 1. This situation will be explained in detail using FIG. 6. FIG. 6 is a characteristic diagram showing the relationship between the displacement amount X and the electromagnetic force F n when the amount of current i 1 from the electromagnetic force setting device is constant. Assuming that the plunger 1 is now displaced downward, F n increases in proportion to X as shown by α. At this time, α is the value set by the electromagnetic force setting device, and no correction signal is added. After that, increase X to point A, and conversely
When F n decreases, F n decreases along β. At this time, the slope detection circuit detects that the direction is decreasing, and at the same time, the displacement amount X n of point A is stored in the turning point storage section, and the displacement amount Δx is detected with the displacement amount X n as the origin. The signal is passed through a first comparator 15 to a correction circuit.

ここで電磁力Fnは電気信号量iと変位量Xの
関数であり、補正量ΔFD1=K1・ΔxD1(k:比
例定数)、同様にΔFD2=k2・(ΔxD2−ΔxD1
となり、その信号がリミツト回路をへて第2比較
器16へ補正信号i2として送られる。つまり、電
磁力設定器の信号αに近づくよう電磁力を減少す
る方向の電気信号i3が電磁コイル1に供給され
る。
Here , the electromagnetic force F n is a function of the electrical signal amount i and the displacement amount D1 )
This signal is sent to the second comparator 16 as a correction signal i 2 through the limit circuit. That is, an electric signal i 3 is supplied to the electromagnetic coil 1 in a direction that reduces the electromagnetic force so that it approaches the signal α of the electromagnetic force setting device.

またB点までXを減少し、再度Xを増加した場
合も同様にスロープ検出回路により増加方向であ
ることを検出し、同時にB点の変位量XBを折返
し点記憶部に記憶し、XBを原点として変位量Δ
Uが検出され補正量ΔFU=ko・ΔxUが補正信
号として与えられる。したがつて第7図の変位量
−電磁力特性に示すように、電磁力Fnのヒステ
リシスを解消することができ、また圧力制御弁の
特性とした場合、第8図に示すごとく、ヒステリ
シスのない理想的なコイル電流−二次圧特性が得
られ、空燃比制御等高精度の制御特性を要求され
る場合においても好適な圧力制御弁を実現する。
Also, when X is decreased to point B and then increased again, the slope detection circuit similarly detects that it is in the increasing direction, and at the same time stores the displacement amount X B of point B in the turning point storage section , Displacement Δ with origin as
x U is detected, and the correction amount ΔF U = ko ·Δx U is given as a correction signal. Therefore, as shown in the displacement vs. electromagnetic force characteristic in Figure 7, the hysteresis of the electromagnetic force F n can be eliminated, and when it is taken as the characteristic of a pressure control valve, the hysteresis can be eliminated as shown in Figure 8. It is possible to obtain ideal coil current-secondary pressure characteristics, and realize a pressure control valve suitable even in cases where highly accurate control characteristics such as air-fuel ratio control are required.

なお第7図および第8図におけるコイル電流i1
は補正前、すなわち、外部信号に対応した電流値
を示す。
Note that the coil current i 1 in Figs. 7 and 8
indicates the current value before correction, that is, the current value corresponding to the external signal.

また従来例のごとく、ガバナ特性に2種類の特
性が現われることもなく、変動の少ないガバナ特
性を得ることができるという効果がある。
Moreover, unlike the conventional example, two types of characteristics do not appear in the governor characteristics, and there is an effect that governor characteristics with less fluctuation can be obtained.

以上、詳細に説明したように本発明の電磁駆動
装置はプランジヤ等の変位量を検出する変位量検
出素子と、その信号を受けて変位量を演算する変
位量演算回路と電磁力設定器を設けるとともに、
前記変位量検出素子からの信号により、磁気回路
を構成する部材の磁気ヒステリシスに起因する電
磁力のヒステリシスを演算し、前記電磁力設定器
の信号に近づく方向に電磁力を補正する補正回路
を設けたため、等価的に磁気回路を構成する部材
の磁気ヒステリシスに起因する電磁力のヒステリ
シスを解消でき、従来のような不具合を解消する
ことができる。
As described above in detail, the electromagnetic drive device of the present invention is provided with a displacement detection element that detects the displacement of a plunger, etc., a displacement calculation circuit that receives the signal and calculates the displacement, and an electromagnetic force setting device. With,
A correction circuit is provided which calculates hysteresis of electromagnetic force caused by magnetic hysteresis of members constituting the magnetic circuit based on the signal from the displacement detection element, and corrects the electromagnetic force in a direction closer to the signal of the electromagnetic force setting device. Therefore, the hysteresis of the electromagnetic force caused by the magnetic hysteresis of the members constituting the magnetic circuit can be eliminated, and the conventional problems can be eliminated.

また、電磁力設定器の信号に近づくように補正
信号がきまるため、磁気回路を構成する部材の寸
法的なバラツキおよびプランジヤの摺動抵抗等が
あつても、常に所望の電磁力が得られる。つまり
特性バラツキを小さくできるという効果がある。
Further, since the correction signal is determined so as to approach the signal of the electromagnetic force setting device, the desired electromagnetic force can always be obtained even if there are dimensional variations in the members constituting the magnetic circuit, sliding resistance of the plunger, etc. In other words, it has the effect of reducing variations in characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁駆動装置を用いた圧力制御
弁の断面図、第2図は同変位量と電磁力の関係を
示す特性図、第3図は同コイル電流と二次圧力の
関係を示す特性図、第4図は同ガバナ特性図、第
5図は本発明の一実施例を示す電磁駆動装置を用
いた圧力制御弁のブロツク図、第6図、第7図は
変位量と電磁力の関係を示す特性図、第8図は同
コイル電流と二次圧の関係を示す特性図である。 1……電磁コイル、2……プランジヤ、4……
ヨーク、5……電磁駆動装置、13……変位量検
出素子、14……変位量演算回路、15……第1
比較器。
Figure 1 is a sectional view of a pressure control valve using a conventional electromagnetic drive device, Figure 2 is a characteristic diagram showing the relationship between the displacement amount and electromagnetic force, and Figure 3 is the relationship between the coil current and secondary pressure. FIG. 4 is a characteristic diagram of the same governor, FIG. 5 is a block diagram of a pressure control valve using an electromagnetic drive device showing one embodiment of the present invention, and FIGS. 6 and 7 are graphs of displacement and electromagnetic FIG. 8 is a characteristic diagram showing the relationship between force and FIG. 8 is a characteristic diagram showing the relationship between coil current and secondary pressure. 1... Electromagnetic coil, 2... Plunger, 4...
Yoke, 5... Electromagnetic drive device, 13... Displacement detection element, 14... Displacement calculation circuit, 15... First
Comparator.

Claims (1)

【特許請求の範囲】 1 プランジヤとヨークにより磁気回路を構成
し、前記プランジヤの外周に電磁コイルを設ける
とともに、プランジヤの変位量検出素子を設け、
且つ前記変位量検出素子の信号を受ける変位量演
算回路と、外部信号により必要な電磁力を設定す
る電磁力設定器を設け、前記変位量演算回路の信
号により、電磁力のヒステリシスを演算し、前記
電磁力設定器の信号に近づけるように補正信号を
与える補正回路を設けた電磁駆動装置。 2 変位量演算回路は、変位量検出回路と、変位
の方向を検出するスロープ検出回路と、変位の方
向が変る時点の変位量を記憶する折返し点記憶部
と、前記変位量検出回路と折返し点記憶部の信号
を受けて、折返し点からの変位量を補正回路に与
える第1比較器とからなる特許請求の範囲第1項
記載の電磁駆動装置。 3 補正信号が所定値以上とならないように補正
回路からの信号を制限するリミツト回路を設けた
特許請求の範囲第1項記載の電磁駆動装置。
[Claims] 1. A magnetic circuit is configured by a plunger and a yoke, an electromagnetic coil is provided on the outer periphery of the plunger, and a displacement detection element of the plunger is provided,
and a displacement amount calculation circuit that receives a signal from the displacement amount detection element, and an electromagnetic force setting device that sets a necessary electromagnetic force using an external signal, and calculates hysteresis of the electromagnetic force based on the signal of the displacement amount calculation circuit; An electromagnetic drive device including a correction circuit that provides a correction signal so as to approximate the signal of the electromagnetic force setting device. 2. The displacement amount calculation circuit includes a displacement amount detection circuit, a slope detection circuit that detects the direction of displacement, a turning point storage section that stores the amount of displacement at the time when the direction of displacement changes, and the displacement amount detection circuit and the turning point. 2. The electromagnetic drive device according to claim 1, further comprising a first comparator that receives the signal from the storage section and provides the amount of displacement from the turning point to the correction circuit. 3. The electromagnetic drive device according to claim 1, further comprising a limit circuit that limits the signal from the correction circuit so that the correction signal does not exceed a predetermined value.
JP4430282A 1982-03-18 1982-03-18 Electromagnetic driving apparatus Granted JPS58161305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4430282A JPS58161305A (en) 1982-03-18 1982-03-18 Electromagnetic driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4430282A JPS58161305A (en) 1982-03-18 1982-03-18 Electromagnetic driving apparatus

Publications (2)

Publication Number Publication Date
JPS58161305A JPS58161305A (en) 1983-09-24
JPS624846B2 true JPS624846B2 (en) 1987-02-02

Family

ID=12687700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4430282A Granted JPS58161305A (en) 1982-03-18 1982-03-18 Electromagnetic driving apparatus

Country Status (1)

Country Link
JP (1) JPS58161305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323394U (en) * 1989-07-14 1991-03-11

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284122A (en) * 1986-05-30 1987-12-10 Rinnai Corp Combustion device
FR2702880B1 (en) * 1993-03-17 1995-04-28 Telemecanique Electromagnetic switch device.
DE4430867A1 (en) * 1994-08-31 1996-03-07 Licentia Gmbh Electromagnetic drive for switching Apparatus
SE0200409D0 (en) * 2002-02-13 2002-02-13 Siemens Elema Ab Method of Controlling a Valve Element and Valve Assembly
US7857281B2 (en) 2006-06-26 2010-12-28 Incova Technologies, Inc. Electrohydraulic valve control circuit with magnetic hysteresis compensation
JP4802262B2 (en) * 2009-02-17 2011-10-26 ジヤトコ株式会社 Hydraulic control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323394U (en) * 1989-07-14 1991-03-11

Also Published As

Publication number Publication date
JPS58161305A (en) 1983-09-24

Similar Documents

Publication Publication Date Title
US4481967A (en) Control circuit for current to pressure converter
JP2898081B2 (en) Linear solenoid valve and method of assembling the same
JP2661242B2 (en) Automatic pressure control valve
US3113582A (en) Pressure control system
US3861643A (en) Saturating magnetic control valve
JPS624846B2 (en)
JPS6333001B2 (en)
US5590677A (en) Electropneumatic positioner
JPH0219845Y2 (en)
JP4001915B2 (en) Electromagnetic actuator
EP0360166A2 (en) Electromagnetic force sensor
JP3074701B2 (en) Flow control valve
JPS6321068B2 (en)
JPH0243070B2 (en)
JP2553345B2 (en) Pressure control valve
JP2553342B2 (en) Pressure control valve
US4850384A (en) Electric vacuum regulator
JPH07113432B2 (en) Proportional control valve for gas
JP2525323Y2 (en) Proportional solenoid pressure control valve
JP2553341B2 (en) Pressure control valve
JP3074709B2 (en) Flow control valve
JPS62184510A (en) Mass flow controller
JPS58214083A (en) Proportional pressure control valve
JPH0361828A (en) Pressure sensor and fluid feeder
JPH0618010B2 (en) Automatic pressure regulator