JPS5881482A - Purification of boron-contg. water - Google Patents
Purification of boron-contg. waterInfo
- Publication number
- JPS5881482A JPS5881482A JP17964181A JP17964181A JPS5881482A JP S5881482 A JPS5881482 A JP S5881482A JP 17964181 A JP17964181 A JP 17964181A JP 17964181 A JP17964181 A JP 17964181A JP S5881482 A JPS5881482 A JP S5881482A
- Authority
- JP
- Japan
- Prior art keywords
- boron
- water
- resin
- waste liquid
- fraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
【発明の詳細な説明】
この発明はホウ素選択吸着イオン交換樹脂による石炭焚
ボイラの排脱i水等ホウ素含有排水のホウ素処理方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for boron treatment of boron-containing waste water such as de-ionized water discharged from a coal-fired boiler using an ion exchange resin that selectively adsorbs boron.
ホウ素選択吸着イオン交換樹脂(以下単に樹脂〕は19
57年頃米国にて開発され「共存塩類の多い排水中のホ
ウ素を1■/2以下にまで処理できる唯一のもの」とさ
れながらも、従来はマグネシウムプラインの精製に適用
されている程度で、かんがい用水、焼却炉洗煙排水等々
については実験室的試用の域を出ていない。Boron selective adsorption ion exchange resin (hereinafter simply referred to as resin) is 19
Although it was developed in the United States around 1957 and is said to be "the only product that can treat boron in wastewater containing a large amount of coexisting salts to less than 1/2", it has so far only been used for refining magnesium prine, and has not been used for irrigation. Water, incinerator smoke cleaning wastewater, etc. are still being tested in the laboratory.
また、当該樹脂は原理的に通常のイオン交換法と同様、
いわゆるホウ素の濃縮の作用を持つのみでホウ素が濃縮
された再生廃液を伴う。In addition, the resin can be used in principle in the same way as in normal ion exchange methods.
It only has the effect of concentrating so-called boron, and is accompanied by recycled waste liquid enriched with boron.
ホウ素は植物にとっては必須の元素とされながらも、過
剰の付与はその生育に悪影響を及ぼすことが知られてお
り、国内でも既に1■/2以下あるいは2■/2以下と
いう極めて厳しい排水中許容濃度を制定しているところ
もある。Although boron is considered to be an essential element for plants, it is known that excessive amounts have a negative effect on their growth, and even in Japan, the tolerance in wastewater is already extremely strict, with limits of 1/2 or less or 2/2 or less. Some places have established concentration levels.
一方、エネルギー源としての石炭が見直され、特に電力
業界では重油焚から石炭焚の火力発電プラントへの転換
を指向する気運にあるが、石炭は1kg当り数十〜数百
■のホウ素を含有し、これが排脱排水、灰捨場排水に移
行し溶存するのでその処理が必要である。On the other hand, coal as an energy source is being reconsidered, and there is a trend in the electric power industry in particular to switch from heavy oil-fired to coal-fired thermal power plants, but coal contains several tens to hundreds of cubic meters of boron per kg. This must be treated as it migrates and dissolves in drainage water and ash dump wastewater.
しかし、ホウ素はその特性から、極めて難溶性の物質と
してこれを沈″殿させ水から分離することにより上記排
水規制値をクリアすることは不可能であり、同規制値を
クリアするにはホウ素選択吸着イオン交換樹脂によるイ
オン交換・吸着法が唯一のものであるが、当該樹脂は交
換容量が小さく再生廃液中でのホウ素の濃縮率が低い欠
点があった。本発明はこのような欠点を補なった当該樹
脂による排水中ホウ素の処理方法を提供するものである
。However, due to its characteristics, boron is an extremely poorly soluble substance, and it is impossible to clear the above wastewater regulation values by precipitating it and separating it from water. The ion exchange/adsorption method using an adsorption ion exchange resin is the only one, but this resin has the drawback of a small exchange capacity and a low concentration rate of boron in the recycled waste liquid.The present invention compensates for these drawbacks. The present invention provides a method for treating boron in wastewater using the resin.
上記の如(、本発明者等は石炭焚ボイラの排脱排水中の
、ホウ素を処理する必要に迫られ、種々検討した結果、
特に処理水中のホウ素1rng/矛以下あるいは2 r
q) 7/ l以下という条件では樹脂法による以外、
実用的方法は無いと判断したが、この場合ホウ素が濃縮
された再生廃液の量を可能な限り少なくし、ホウ素を高
濃度の状態で系外に取り出すことが水沫の死命を制する
ものと考えた。As mentioned above, the present inventors were faced with the need to treat boron in the drainage water of coal-fired boilers, and as a result of various studies,
In particular, boron in the treated water should be less than 1rng/rng or 2r
q) Under the condition of 7/l or less, other than the resin method,
It was determined that there was no practical method, but in this case, it was believed that reducing the amount of recycled waste liquid enriched with boron as much as possible and extracting boron from the system in a highly concentrated state would save the lives of the water droplets. Ta.
上記の観点から、排脱排水(模擬水)につきカラム通水
試験を行い、処理水中のホウ素濃度は処理水のPHと特
殊な関係にあることを知ると共に、再生廃液中へのホウ
素の溶離ノくりτンを把握し、所期の目的を具体化し得
ることが明らかとなった。From the above point of view, we conducted a column water flow test on drainage and drainage water (simulated water) and learned that the boron concentration in treated water has a special relationship with the PH of the treated water, and we also learned that the concentration of boron in the treated water has a special relationship with the pH of the treated water. It became clear that it was possible to grasp the concept and materialize the intended purpose.
以下にカラム通水試験の結果を示す。The results of the column water flow test are shown below.
排脱排水を模擬した下記の水質の原水を、ホウ素選択吸
着イオン交換樹脂、アンパライトIRA −743(ロ
ーム及ハース社〕を充填した小型カラムに通水して得た
ホウ素の破過曲線の例を第1図に示す。An example of a boron breakthrough curve obtained by passing raw water with the following quality, which simulates drainage and drainage, through a small column packed with boron selective adsorption ion exchange resin, Amparite IRA-743 (Rohm & Haas). Shown in Figure 1.
第1図より処理水−と漏出ホウ素濃度との間には明確な
相関があることが判る。この図ではPHが約10.5か
ら約7に向って下がり始める変曲点で漏出ホウ素はは、
!1″1■/矛に達し、ついでPHが約7に達するとこ
ろで処理水中のホウ素濃度は原水中のホウ素濃度と同一
レベルとなる。From FIG. 1, it can be seen that there is a clear correlation between the treated water and the leaked boron concentration. In this figure, the leaked boron is at the inflection point where the pH starts to decrease from about 10.5 to about 7.
! The boron concentration in the treated water reaches the same level as the boron concentration in the raw water when the pH reaches 1"1/h and then reaches about 7.
この場合、−の絶対値は問題ではない。したがって、樹
脂塔出口水の−を連続的または定期的に監視すればホウ
素の漏出状況が検知できることになる。In this case, the absolute value of - does not matter. Therefore, if the water at the outlet of the resin tower is monitored continuously or periodically, the leakage of boron can be detected.
実用的には各樹脂塔の出口水の−を連続測定し、上述の
ようなPH設定値を検出し、処理水中ホウ素濃度11n
9/−13以下という条件で自動的にメリーゴーラウン
ドとして塔の切り替えが可能である。In practical terms, the - of the outlet water of each resin tower is continuously measured, the pH setting value as described above is detected, and the boron concentration in the treated water is 11n.
It is possible to automatically switch the tower as a merry-go-round under the condition that it is 9/-13 or less.
この場合、第2図(a)の−塔通水方式よりも第2図(
blのメリーゴーラウンド方式の方が樹脂の利用率が高
く、単位樹脂量当りのホウ素吸着量は約30%多くなる
。図中Wは原水、W′は処理水であり、カラム中の斜線
部は吸着部、無地部は未吸着部であり、Cは再生済のカ
ラムである。In this case, the method shown in Fig. 2 (
The merry-go-round method of BL has a higher resin utilization rate, and the amount of boron adsorbed per unit amount of resin is about 30% higher. In the figure, W is raw water, W' is treated water, the shaded area in the column is the adsorption area, the plain area is the unadsorbed area, and C is the regenerated column.
(blのメリーゴーラウンド方式を更に詳しく説明する
と、二つの樹脂筒を直列に接続して通水処理を行ない、
原水側樹脂筒が破過点に達すればこれを取はず゛し・、
再生済の樹脂筒を処理水側に配鎧し、取外した樹脂筒を
再生し交換に備える方式である。(To explain the BL merry-go-round system in more detail, two resin cylinders are connected in series to perform water flow treatment.
When the resin cylinder on the raw water side reaches the breakthrough point, remove it.
This method places recycled resin cylinders on the treated water side, and regenerates the removed resin cylinders in preparation for replacement.
第2図(b)について説明すると次のようになる。The explanation of FIG. 2(b) is as follows.
一方、再生工程におけるホウ素の溶離パターンの例は第
3図の通りである。この図は、第1図の吸着操作を終え
た後の再生工程で溶離してきたホウ素の全量に対する各
フラクションの溶離ホウ素量の比(チ)で表わしである
。On the other hand, an example of the elution pattern of boron in the regeneration step is shown in FIG. This figure is expressed as the ratio (h) of the amount of eluted boron in each fraction to the total amount of boron eluted in the regeneration step after the adsorption operation in FIG. 1 is completed.
この第6図のデータから、系外へ取り出すフラクション
と、そのホウ素の平均濃度、平均濃度と原水中濃度10
71114;l/4との比で表わした濃縮倍率、さらに
再生工程での全溶離ホウ素量に対するフラクション中の
溶離ホウ素の比を仮に排除率として整理すると次のよう
になる。From the data in Figure 6, we can determine the fraction taken out of the system, the average concentration of boron, the average concentration and the concentration in the raw water 10
71114; If the concentration ratio expressed as a ratio to 1/4 and the ratio of eluted boron in the fraction to the total eluted boron amount in the regeneration step are summarized as an exclusion rate, the following is obtained.
1 0〜21時間 713 6.7 100
2 2〜14 1235 11.5 993
2〜9 2003 18,7 93.64 4
〜8 3288 30.7 87.8ケース1
では排除率は100%であるが、濃縮倍率は6.7に過
ぎない。一方、ケース4では排除率は約88%に低下す
るものの、濃縮倍率は30.7に達し、−続の操作であ
る再生廃液の処理は格段に経済的に有利となることが明
らかである。端的に表現すれば、□100 m3の排水
を処理したとき、ケース1では約15m3の再生廃液の
処理が必要であるがケース4では僅か3m3このように
して選定したフラクションF、の分取は第4図のように
行なわれ、工業的規模においても極(一般のタイマーと
弁の組み合せにより容易に実施することができる。なお
、残りのフラクションF2は原排水と併せて循環処理を
行う。1 0-21 hours 713 6.7 100
2 2~14 1235 11.5 993
2-9 2003 18,7 93.64 4
~8 3288 30.7 87.8 Case 1
In this case, the exclusion rate is 100%, but the concentration factor is only 6.7. On the other hand, in case 4, although the rejection rate decreases to about 88%, the concentration ratio reaches 30.7, and it is clear that the subsequent operation, the treatment of the recycled waste liquid, becomes much more economically advantageous. To put it simply, when treating □100 m3 of wastewater, in Case 1 it is necessary to treat approximately 15 m3 of recycled waste liquid, but in Case 4, it is only 3 m3. The process is carried out as shown in Fig. 4, and can be easily carried out on an industrial scale using a combination of a general timer and a valve.The remaining fraction F2 is circulated together with the raw wastewater.
本発明は上記試験結果に基く、ホウ素含有排水の脱ホウ
素処理法に関するものであり、次の点を特徴とするもの
である。The present invention is based on the above test results and relates to a method for deboronizing boron-containing wastewater, and is characterized by the following points.
1)メリーゴーラウンド方式の採用により樹脂の交換容
量をフルに活用する。1) Fully utilize resin exchange capacity by adopting a merry-go-round system.
2)処理水へのホウ素の漏出を樹脂塔出口水のPHで監
視する。2) Monitor the leakage of boron into the treated water by checking the pH of the resin column outlet water.
3)再生廃液の全てを系外に取り出すことなく、ホウ素
が高濃度を示すフラクションのみを系外に取り出し、残
りの再生廃液は原水側に返送し循環処理・する。3) Without taking all of the regenerated waste liquid out of the system, only the fraction showing a high concentration of boron is taken out of the system, and the remaining regenerated waste liquid is returned to the raw water side for circulation treatment.
4)系外に取り出した再生廃液は蒸発乾燥等による減容
イヒあるいはセメント固化などの処理を施こし処分する
。4) The recycled waste liquid taken out of the system is treated by volume reduction by evaporation drying or cement solidification, and then disposed of.
・なお、本発明におけるホウ素選択吸着イオン交換樹脂
としては、弱塩基性陰イオン交換樹脂が用いられる。- In addition, a weakly basic anion exchange resin is used as the boron selective adsorption ion exchange resin in the present invention.
本発明方法を三基式で行なった場合を、第5図を用いて
具体的に説明する。A case in which the method of the present invention is carried out in a three-unit system will be specifically explained using FIG.
所定量のホウ素選択吸着イオン交換樹脂1(アンバーラ
イトIRA −7,4!l )を少くとも二つの樹脂塔
2,3に充填し、各々別個に、例えば10優硫酸、4チ
水酸化ナトリウム水溶液で再生した後、樹脂塔2,3を
直列に接続し、排脱排水等ホウ素含有排水Wを規定の流
量で通水する。At least two resin towers 2 and 3 are filled with a predetermined amount of boron selective adsorption ion exchange resin 1 (Amberlite IRA-7, 4!L), and each is separately filled with an aqueous solution of, for example, 10% superior sulfuric acid and 4% sodium hydroxide. After regeneration, the resin towers 2 and 3 are connected in series, and boron-containing waste water W such as discharged water is passed through at a specified flow rate.
この場合、第1塔2が破過に達してもさらに通水を続は
漏出するホウ素は第2塔3で吸着させる。図中、斜線部
は吸着部を、無地部は未吸着部を示す。この方式では第
1塔目の樹脂は実質的に平衡容量に近い状態まで吸着し
樹脂が有効に利用されることになり、単位樹脂量当りの
吸着ホウ素量は多くなる。なお、通水中の各塔内の樹脂
のホウ氷吸着状況、すなわち、流出水W′または処理水
W′中のホウ素の漏出状況は各塔出口水のPHを一検出
器4により連続または定期的に監視することにより検知
できる。In this case, even if the first column 2 reaches breakthrough, water continues to flow and the leaked boron is adsorbed in the second column 3. In the figure, hatched areas indicate adsorbed areas, and plain areas indicate non-adsorbed areas. In this system, the resin in the first column adsorbs to a state substantially close to the equilibrium capacity, and the resin is effectively utilized, so that the amount of boron adsorbed per unit amount of resin increases. In addition, the boro-ice adsorption status of the resin in each tower during water flow, that is, the leakage status of boron in the effluent water W' or the treated water W', can be determined by monitoring the pH of the water at the outlet of each tower continuously or periodically using a detector 4. It can be detected by monitoring.
再生工程では全工程の廃液を系外に排出せずにホウ素濃
度の高いフラクション、例えば、硫酸通液後の押出し水
またはその一部のみを系外に排出し、残りの各廃液は原
水側に返送する。In the regeneration process, the waste liquid from all processes is not discharged outside the system, but only a fraction with a high boron concentration, such as extruded water after passing sulfuric acid, or a part of it, is discharged outside the system, and the remaining waste liquid is discharged to the raw water side. Send it back.
この場合フラクションの選択はタイマーコントロールま
たは再生廃液の、Hの検知により自由にできる。In this case, the fraction can be freely selected by timer control or by detecting H in the regenerated waste liquid.
系外に取り出した再生廃液は蒸発乾燥し減容化するか、
あるいはセメント固化等の処理を施した後、廃棄処分す
る。図中、5は再生筒の吸着塔を示す。The recycled waste liquid taken out of the system is evaporated to dryness to reduce its volume, or
Alternatively, it can be disposed of after undergoing treatment such as cement solidification. In the figure, 5 indicates the adsorption tower of the regeneration column.
本発明方法は石炭焚ボイラの排脱排水、石炭焚ボイラの
灰捨場排水、ごみ焼却炉洗煙排水、ごみ埋立地浸出水等
ホウ素含有水の処理装置に適用することができる。The method of the present invention can be applied to equipment for treating boron-containing water such as drainage and drainage from coal-fired boilers, ash dumping water from coal-fired boilers, wastewater from garbage incinerators, and leachate from garbage landfills.
第1図は本発明におけるホウ素破過曲線で処理水中ホウ
素濃度と処理水−の関係を示すグラフであり、第2図は
通水方式による吸着状況を比較した図であり、第3図は
再生工程におけるホウ素溶離状況を示すグラフであり、
第4図は処理水の一部を廃液処理工程へ、他の一部は原
水側へ戻す状況を示す図であり、第5図は本発明方法の
一実施態様を示す図である。
復代理人 内 1) 明
復代理人 萩 原 亮 −
Hd采裔話慢−
442−
¥2図(α)
(b)
馬5図Figure 1 is a boron breakthrough curve in the present invention, which is a graph showing the relationship between boron concentration in treated water and treated water, Figure 2 is a diagram comparing the adsorption status by water flow method, and Figure 3 is a graph showing the relationship between boron concentration in treated water and treated water. It is a graph showing the boron elution situation in the process,
FIG. 4 is a diagram showing a situation in which a part of the treated water is returned to the waste liquid treatment process and the other part is returned to the raw water side, and FIG. 5 is a diagram showing one embodiment of the method of the present invention. Sub-agent 1) Meikoku agent Ryo Hagiwara - Hd descendant talkative - 442- ¥2 figure (α) (b) Horse 5 figure
Claims (1)
処理法において、メリーゴーラウンド方式で吸着操作を
行なうと共に、通水時の樹脂のホウ素吸着状況を樹脂塔
出口水の−の監視により検知して樹脂筒の切り換えを行
ない、再生工程で生じる廃液のうち、ホウ素濃度の高い
一部のフラクションのみを系外に取り出し1.他のフラ
クションは原水側に返送することを特徴とする、ホウ素
含有水の処理方法。In a method for treating boron-containing water using an ion exchange resin that selectively adsorbs boron, the adsorption operation is carried out in a merry-go-round manner, and the boron adsorption status of the resin during water flow is detected by monitoring the outlet water of the resin column. Among the waste liquid generated in the regeneration process, only a fraction with a high boron concentration is taken out of the system.1. A method for treating boron-containing water, characterized in that other fractions are returned to the raw water side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17964181A JPH0232952B2 (en) | 1981-11-11 | 1981-11-11 | HOSOGANJUSUINOSHORIHOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17964181A JPH0232952B2 (en) | 1981-11-11 | 1981-11-11 | HOSOGANJUSUINOSHORIHOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5881482A true JPS5881482A (en) | 1983-05-16 |
JPH0232952B2 JPH0232952B2 (en) | 1990-07-24 |
Family
ID=16069313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17964181A Expired - Lifetime JPH0232952B2 (en) | 1981-11-11 | 1981-11-11 | HOSOGANJUSUINOSHORIHOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0232952B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003094052A (en) * | 2001-09-21 | 2003-04-02 | Asahi Glass Co Ltd | Method for adsorbing and recovering emulsifier containing fluorine |
JP2003160533A (en) * | 2001-11-28 | 2003-06-03 | Mitsubishi Rayon Co Ltd | Reaction vessel and method for producing ester |
JPWO2014064754A1 (en) * | 2012-10-22 | 2016-09-05 | オルガノ株式会社 | Desalination method for boron-containing solution |
JP2017148729A (en) * | 2016-02-24 | 2017-08-31 | 三菱重工メカトロシステムズ株式会社 | Waste water treatment method and waste water treatment equipment |
JP2020012153A (en) * | 2018-07-18 | 2020-01-23 | 住友金属鉱山株式会社 | Adsorption method of lithium |
-
1981
- 1981-11-11 JP JP17964181A patent/JPH0232952B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003094052A (en) * | 2001-09-21 | 2003-04-02 | Asahi Glass Co Ltd | Method for adsorbing and recovering emulsifier containing fluorine |
JP2003160533A (en) * | 2001-11-28 | 2003-06-03 | Mitsubishi Rayon Co Ltd | Reaction vessel and method for producing ester |
JPWO2014064754A1 (en) * | 2012-10-22 | 2016-09-05 | オルガノ株式会社 | Desalination method for boron-containing solution |
JP2017148729A (en) * | 2016-02-24 | 2017-08-31 | 三菱重工メカトロシステムズ株式会社 | Waste water treatment method and waste water treatment equipment |
JP2020012153A (en) * | 2018-07-18 | 2020-01-23 | 住友金属鉱山株式会社 | Adsorption method of lithium |
Also Published As
Publication number | Publication date |
---|---|
JPH0232952B2 (en) | 1990-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3436344A (en) | Process for removing impurities from a fluid stream | |
JPS61209087A (en) | Percolation type water desalting system and method | |
US5955510A (en) | Process for the regeneration of ion exchange resins in a fixed double-bed type apparatus | |
JPS5881482A (en) | Purification of boron-contg. water | |
JPH11352283A (en) | Condensate processing method and condensate demineralization device | |
US3580842A (en) | Downflow ion exchange | |
US3386914A (en) | Process of removing a component from a fluid | |
US3627705A (en) | Countercurrent ion exchange regeneration with sulfuric acid | |
Erskine et al. | Activated carbon processes for liquids | |
US3655587A (en) | Methods and devices for the regeneration of ion exchangers | |
KR200211618Y1 (en) | Unit capable of adsorbing, desorbing and recovering toxic ions using ion exchangers | |
Jusoh et al. | Model studies on granular activated carbon adsorption in fixed bed filtration | |
JPS5815016B2 (en) | How to clean ion exchange resin | |
Kaleta et al. | Using ion exchange process in removal of selected organic pollution from aqueous solutions | |
JP2000279954A (en) | Water softening device and control method thereof | |
JP2576155B2 (en) | Multi-layer ion exchanger | |
JP2000189815A (en) | Regeneration method for ion exchange device | |
JP3250933B2 (en) | Method for decolorizing and purifying sugar liquid and apparatus for decolorizing and purifying sugar liquid | |
Unit | Application: ION Exchange | |
JP2000189957A (en) | Regenerating method of water softening device | |
SU668693A1 (en) | Water purifying method | |
JPH0335997B2 (en) | ||
JPS5665637A (en) | Method of regenerating multilayer bed type ion-exchange column | |
SU710570A1 (en) | Method of regenerating ionites | |
JPH09122638A (en) | Method and apparatus for treating water containing ammonium ion |