JP2003094052A - Method for adsorbing and recovering emulsifier containing fluorine - Google Patents

Method for adsorbing and recovering emulsifier containing fluorine

Info

Publication number
JP2003094052A
JP2003094052A JP2001289217A JP2001289217A JP2003094052A JP 2003094052 A JP2003094052 A JP 2003094052A JP 2001289217 A JP2001289217 A JP 2001289217A JP 2001289217 A JP2001289217 A JP 2001289217A JP 2003094052 A JP2003094052 A JP 2003094052A
Authority
JP
Japan
Prior art keywords
packed
packed tower
aqueous solution
emulsifier
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001289217A
Other languages
Japanese (ja)
Inventor
Chu Funaki
宙 舟木
Eisuke Murotani
英介 室谷
Nobukazu Yanase
亙一 簗瀬
Hiroki Kamiya
浩樹 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001289217A priority Critical patent/JP2003094052A/en
Publication of JP2003094052A publication Critical patent/JP2003094052A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for adsorbing and recovering an emulsifier containing fluorine from an emulsifier aqueous solution (A) containing fluorine in a high recovery yield and a short time. SOLUTION: A method uses (n) packed columns (wherein, (n) is 3 to 10) packed with a weak basic anion-exchange resin, connects (n-1) packed columns among those in series, performs adsorption operation by supplying the first packed column with the aqueous solution (A) and performs desorption operation by utilizing a remaining one packed column. The adsorption and recovery method for the emulsifier containing fluorine comprises introducing discharged water into the remaining one packed column completed desorption operation, supplying the next packed column to the first packed column with the aqueous solution (A), and subjecting desorption operation of the first packed column when the emulsifier containing fluorine is detected in the discharged water from a rear end packed column.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水溶液からの含フ
ッ素乳化剤の吸着・回収方法に関する。
TECHNICAL FIELD The present invention relates to a method for adsorbing and recovering a fluorine-containing emulsifier from an aqueous solution.

【0002】[0002]

【従来の技術】従来から、弱塩基性陰イオン交換樹脂
(以下、IERという。)を用いた、種々の含フッ素乳
化剤水溶液からの含フッ素乳化剤の吸着・回収方法が知
られている。
2. Description of the Related Art Hitherto, there have been known methods for adsorbing and recovering a fluorinated emulsifier from various fluorinated emulsifier aqueous solutions using a weakly basic anion exchange resin (hereinafter referred to as IER).

【0003】特公昭47−51233、US42821
62、DE2044986等には、重合排水中に含まれ
る含フッ素乳化剤であるパーフルオロオクタン酸(以
下、PFOAという。)をIERに吸着させ回収する方
法が記載されている。WO99/62830には、重合
排水にノニオン又はカチオン性界面活性剤を添加する前
処理を実施し、重合排水中のポリテトラフルオロエチレ
ン(以下、PTFEという。)微粒子を安定化し、IE
Rの目詰まりを防止する方法が記載されている。
JP-B-47-51233, US42821
62, DE 2044986 and the like describe a method of adsorbing perfluorooctanoic acid (hereinafter, referred to as PFOA), which is a fluorine-containing emulsifier contained in polymerization wastewater, to an IER and recovering it. In WO99 / 62830, a pretreatment of adding nonionic or cationic surfactant to the polymerization wastewater is carried out to stabilize polytetrafluoroethylene (hereinafter referred to as PTFE) fine particles in the polymerization wastewater, and IE.
A method for preventing clogging of R is described.

【0004】WO99/62858には、予めPTFE
微粒子を分離・除去する前処理を実施した後、IERを
用いてPFOAを吸着し回収する方法が記載されてい
る。特開昭55−120630、US5312935及
びDE2908001には、重合排水を限外濾過法で濃
縮すると共にPTFE製造に用いたPFOAの一部を回
収する前処理を実施した後、IERで該乳化剤を吸脱着
させる方法が記載されている。
WO99 / 62858 describes in advance that PTFE
A method is described in which PFOA is adsorbed and recovered using IER after performing a pretreatment for separating and removing fine particles. In JP-A-55-120630, US5312935 and DE2908001, the polymerization wastewater is concentrated by an ultrafiltration method and a pretreatment for recovering a part of PFOA used for PTFE production is carried out, and then the emulsifier is adsorbed and desorbed by IER. The method of making is described.

【0005】特開昭55−104651、US4282
162及びDE2903981には、IERに吸着した
PFOAを酸と有機溶剤との混合物を用いて脱着する方
法が開示されている。特開平6−025072、US5
312935及びEP0566974には、IERから
脱着されたPFOAの精製方法としては、含水率2%以
下のPFOAを過硫酸アンモニウム、重クロム酸ナトリ
ウム等の酸化剤で前処理した後、蒸留し単離する方法が
開示されている。
JP-A-55-104651, US4282
162 and DE 2903981 disclose a method for desorbing PFOA adsorbed on IER using a mixture of an acid and an organic solvent. JP-A-6-025072, US5
As a method for purifying PFOA desorbed from IER, there is a method of pre-treating PFOA having a water content of 2% or less with an oxidizing agent such as ammonium persulfate and sodium dichromate, and then distilling and isolating the same. It is disclosed.

【0006】特開平7−053465、EP06320
09及びUS5442097には、強酸を添加して水溶
液から分離させたPFOAをアルコールと反応させて得
たエステル化合物を蒸留し単離する方法が開示されてい
る。しかし、一般に、IERを用いてPFOA等の含フ
ッ素乳化剤を回収する場合、IERに対する含フッ素乳
化剤の交換帯が非常に長くなること、共存する塩化物イ
オン、硫酸イオン、硝酸イオン等のアニオンと含フッ素
乳化剤とがIERに競争吸着すること等の原因で、IE
Rの交換容量が充分有効に利用できなかった。
JP-A-7-053465, EP06320
09 and US 5442097 disclose a method for distilling and isolating an ester compound obtained by reacting PFOA separated from an aqueous solution by adding a strong acid with an alcohol. However, in general, when recovering a fluorine-containing emulsifier such as PFOA using the IER, the exchange zone of the fluorine-containing emulsifier with respect to the IER becomes very long, and the coexisting anions such as chloride ion, sulfate ion, and nitrate ion coexist. Due to the fact that it is competitively adsorbed to the IER with the fluorine emulsifier,
The exchange capacity of R could not be used sufficiently effectively.

【0007】例えば、IERの充填塔を1本用いた場合
は、IERの総交換容量に対して50モル%以下の含フ
ッ素乳化剤が吸着された段階でも、IERの充填塔出口
から未吸着の含フッ素乳化剤が流出する。このためIE
Rの単位容積あたりの含フッ素乳化剤の回収率が低いう
え、吸着・脱着操作に長時間を要した。
For example, when one IER packed column is used, even when 50 mol% or less of the fluorine-containing emulsifier with respect to the total exchange capacity of the IER has been adsorbed, the unadsorbed ER emulsifier is not adsorbed from the IER packed column outlet. Fluorine emulsifier flows out. Therefore IE
The recovery rate of the fluorine-containing emulsifier per unit volume of R was low, and the adsorption / desorption operation required a long time.

【0008】[0008]

【発明が解決しようとする課題】本発明は、吸着効率が
高い、IERによる含フッ素乳化剤の吸着・回収方法の
提供を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for adsorption / recovery of a fluorine-containing emulsifier by IER, which has a high adsorption efficiency.

【0009】[0009]

【課題を解決するための手段】本発明は、IERを用い
て、含フッ素乳化剤水溶液(A)から含フッ素乳化剤を
吸着・回収する方法であって、IERを充填したn(こ
こで、nは3〜10の整数である。)本の充填塔を用
い、その中の(n−1)本の充填塔を直列に接続して、
該水溶液(A)を第1の充填塔に供給し吸着操作を行う
とともに、残りの1本の充填塔で脱着操作を行う方法に
おいて、最後尾の充填塔からの流出水中に含フッ素乳化
剤が検出されたら、流出水を前記脱着操作の終了した残
りの1本の充填塔に導き、第1の充填塔の次の充填塔に
該水溶液(A)を供給し、かつ第1の充填塔の脱着操作
を行うことを特徴とする含フッ素乳化剤の吸着・回収方
法を提供する。
The present invention is a method for adsorbing and recovering a fluorinated emulsifier from an aqueous fluorinated emulsifier solution (A) using IER, wherein n filled with IER (where n is It is an integer of 3 to 10), and (n-1) packed columns among them are connected in series,
In the method in which the aqueous solution (A) is supplied to the first packed column for adsorption operation and the remaining one packed column is used for desorption operation, a fluorinated emulsifier is detected in the outflow water from the last packed column. Then, the effluent is led to the remaining one packed tower after the desorption operation, the aqueous solution (A) is supplied to the packed tower next to the first packed tower, and the desorption of the first packed tower is carried out. Provided is a method for adsorbing / recovering a fluorinated emulsifier, which is characterized by performing an operation.

【0010】[0010]

【発明の実施の形態】本発明の吸着・回収方法におい
て、IERを充填したn(ここで、nは3〜10の整数
である。)本の充填塔を用いる。3本より少ないとIE
Rの単位体積あたりの吸着率が十分高くならず、10本
より多いと切り替えバルブの数が非常に多くなり、結果
として操作が煩雑になる。より好ましくは、3〜5本で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION In the adsorption / recovery method of the present invention, n packed columns (where n is an integer of 3 to 10) packed with IER are used. IE less than 3
If the adsorption rate of R per unit volume is not sufficiently high and the number is more than 10, the number of switching valves becomes extremely large, resulting in complicated operation. More preferably, it is 3 to 5.

【0011】本発明の吸着・回収方法において、IER
を充填したn本の充填塔を用い、その中の(n−1)本
の充填塔を直列に接続して、該水溶液(A)を第1の充
填塔に供給し吸着操作を行うとともに、残りの1本の充
填塔で脱着操作を行う方法において、最後尾の充填塔か
らの流出水中に含フッ素乳化剤が検出されたら、流出水
を前記脱着操作の終了した残りの1本の充填塔に導き、
第1の充填塔の次の充填塔に該水溶液(A)を供給し、
かつ第1の充填塔の脱着操作を行う。
In the adsorption / recovery method of the present invention, the IER
While using n packed towers filled with, (n-1) packed towers among them are connected in series, the aqueous solution (A) is supplied to the first packed tower to perform adsorption operation, In the method of performing desorption operation in the remaining one packed tower, when a fluorinated emulsifier is detected in the outflow water from the last packed tower, the outflow water is transferred to the remaining one packed tower after the desorption operation. Guide,
The aqueous solution (A) is supplied to the packed tower next to the first packed tower,
And the desorption operation of the first packed tower is performed.

【0012】本発明の吸着・回収方法において、前記吸
着及び脱着・回収操作が次の(1)〜(8)の操作であ
る請求項1に記載の吸着・回収方法が好ましい。 (1)前記(n−1)本の充填塔を直列に接続し、第1
充填塔に水溶液(A)を供給し、第1塔から第(n−
1)塔までの(n−1)本の充填塔を用いて含フッ素乳
化剤を吸着させる。
In the adsorption / recovery method of the present invention, the adsorption / desorption / recovery method according to claim 1 is preferably the following operations (1) to (8). (1) The (n-1) packed columns are connected in series to
The aqueous solution (A) is supplied to the packed tower, and the first tower (n-
1) Adsorb the fluorinated emulsifier using (n-1) packed columns up to the column.

【0013】(2)最後尾の第(n−1)充填塔からの
流出水中に含フッ素乳化剤が検出された時に、第1充填
塔への水溶液(A)の供給を止め、流出水を第n充填塔
に導く。 (3)水溶液(A)を第2充填塔に供給し、第2充填塔
から第n充填塔までの(n−1)本の充填塔を用いて含
フッ素乳化剤を吸着させる。 (4)第1充填塔にアルカリ水溶液を供給し含フッ素乳
化剤を脱着し回収する。
(2) When a fluorinated emulsifier is detected in the outflow water from the last (n-1) th packed tower, the supply of the aqueous solution (A) to the first packed tower is stopped and n lead to a packed tower. (3) The aqueous solution (A) is supplied to the second packed tower, and the (n-1) packed towers from the second packed tower to the nth packed tower are used to adsorb the fluorinated emulsifier. (4) An alkaline aqueous solution is supplied to the first packed tower to desorb and recover the fluorine-containing emulsifier.

【0014】(5)最後尾の第n充填塔からの流出水中
に含フッ素乳化剤が検出された時に、第2充填塔への水
溶液(A)の供給を止め、流出水を前記脱着の終了した
第1充填塔に導く。 (6)水溶液(A)を第3充填塔に供給し、第3充填塔
から第1充填塔までの(n−1)本の充填塔を用いて含
フッ素乳化剤を吸着させる。 (7)第2充填塔にアルカリ水溶液を供給し含フッ素乳
化剤を脱着し回収する。
(5) When a fluorine-containing emulsifier was detected in the outflow water from the last nth packed tower, the supply of the aqueous solution (A) to the second packed tower was stopped, and the outflow water was desorbed. Lead to the first packed column. (6) The aqueous solution (A) is supplied to the third packed tower, and the (n-1) packed towers from the third packed tower to the first packed tower are used to adsorb the fluorinated emulsifier. (7) An alkaline aqueous solution is supplied to the second packed tower to desorb and recover the fluorine-containing emulsifier.

【0015】(8)以下、(1)〜(7)と同様にし
て、最後尾の充填塔からの流出水中に含フッ素乳化剤が
検出されたら、流出水を脱着操作の終了した充填塔に導
き、それまで水溶液(A)を供給していた充填塔の次の
充填塔に水溶液(A)を供給し、かつ該それまで水溶液
(A)を供給した充填塔の脱着操作を行う。このように
操作を行うことにより、2本以下のIER充填塔を用い
た場合と比較して、少ないIER使用量で、高い回収率
で短時間に含フッ素乳化剤を吸着・回収できる。
(8) In the same manner as in (1) to (7) below, when a fluorine-containing emulsifier is detected in the outflow water from the last packed tower, the outflow water is led to the packed tower after the desorption operation. Then, the aqueous solution (A) is supplied to the packed tower next to the packed tower to which the aqueous solution (A) has been supplied, and the desorption operation of the packed tower to which the aqueous solution (A) has been supplied is performed. By performing the operation as described above, the fluorinated emulsifier can be adsorbed and recovered in a short time with a high recovery rate with a small amount of IER used, as compared with the case where two or less IER packed columns are used.

【0016】本発明における含フッ素乳化剤としては、
炭素数5〜13の、パーフルオロアルカン酸、ω−ヒド
ロパーフルオロアルカン酸、ω−クロロパーフルオロア
ルカン酸、パーフルオロアルカンスルホン酸等が好まし
く、これらは直鎖構造でも分岐構造でもよく、それらの
混合物でも良い。また、分子中にエーテル結合を含有し
てもよい。この炭素数の範囲にあると乳化効果が高い。
As the fluorine-containing emulsifier in the present invention,
Perfluoroalkanoic acid, ω-hydroperfluoroalkanoic acid, ω-chloroperfluoroalkanoic acid, perfluoroalkanesulfonic acid and the like having 5 to 13 carbon atoms are preferable, and these may have a linear structure or a branched structure. It may be a mixture. Moreover, you may contain an ether bond in a molecule. Within this carbon number range, the emulsifying effect is high.

【0017】また、含フッ素乳化剤は、前記酸のリチウ
ム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩や
アンモニウム塩でもよい。塩としては、アンモニウム塩
及びナトリウム塩がより好ましく、アンモニウム塩が最
も好ましい。
Further, the fluorine-containing emulsifier may be an alkali metal salt such as lithium salt, sodium salt or potassium salt or ammonium salt of the above acid. As salts, ammonium salts and sodium salts are more preferable, and ammonium salts are most preferable.

【0018】酸の具体例としては、パーフルオロペンタ
ン酸、パーフルオロヘキサン酸、パーフルオロヘプタン
酸、PFOA、パーフルオロノナン酸、パーフルオロデ
カン酸、パーフルオロドデカン酸、ω−ヒドロパーフル
オロヘプタン酸、ω−ヒドロパーフルオロオクタン酸、
ω−ヒドロパーフルオロノナン酸、ω−クロロパーフル
オロヘプタン酸、ω−クロロパーフルオロオクタン酸、
ω−クロロパーフルオロノナン酸等、CFCFCF
OCF(CF)COOH、CFCFCFOC
F(CF)CFOCF(CF)COOH、CF
CFCFO[CF(CF )CFO]CF(C
)COOH、CFCFCFO[CF(C
)CFO]CF(CF)COOH、CF
CFCFCFOCF(CF)COOH等、
パーフルオロヘキサンスルホン酸、パーフルオロヘプタ
ンスルホン酸、パーフルオロオクタンスルホン酸、パー
フルオロノナンスルホン酸、パーフルオロデカンスルホ
ン酸等、が挙げられる。
Specific examples of the acid include perfluoropenta
Acid, perfluorohexanoic acid, perfluoroheptane
Acid, PFOA, perfluorononanoic acid, perfluorode
Canic acid, perfluorododecanoic acid, ω-hydroperflun
Oroheptanoic acid, ω-hydroperfluorooctanoic acid,
ω-hydroperfluorononanoic acid, ω-chloroperflun
Oroheptanoic acid, ω-chloroperfluorooctanoic acid,
ω-chloroperfluorononanoic acid, CFThreeCFTwoCF
TwoOCF (CFThree) COOH, CFThreeCFTwoCFTwoOC
F (CFThree) CFTwoOCF (CFThree) COOH, CFThree
CFTwoCFTwoO [CF (CF Three) CFTwoO]TwoCF (C
FThree) COOH, CFThreeCFTwoCFTwoO [CF (C
F Three) CFTwoO]ThreeCF (CFThree) COOH, CFThreeC
FTwoCFTwoCFTwoCFTwoOCF (CFThree) COOH, etc.
Perfluorohexanesulfonic acid, perfluorohepta
Sulfonic acid, perfluorooctane sulfonic acid, per
Fluoronane sulfonic acid, perfluorodecane sulfo
Acid, etc. are mentioned.

【0019】アンモニウム塩の具体例としては、パーフ
ルオロペンタン酸アンモニウム、パーフルオロヘキサン
酸アンモニウム、パーフルオロヘプタン酸アンモニウ
ム、パーフルオロオクタン酸アンモニウム、パーフルオ
ロノナン酸アンモニウム、パーフルオロデカン酸アンモ
ニウム、パーフルオロドデカン酸アンモニウム、ω−ヒ
ドロパーフルオロヘプタン酸アンモニウム、ω−ヒドロ
パーフルオロオクタン酸アンモニウム、ω−ヒドロパー
フルオロノナン酸アンモニウム、ω−クロロパーフルオ
ロヘプタン酸アンモニウム、ω−クロロパーフルオロオ
クタン酸アンモニウム、ω−クロロパーフルオロノナン
酸アンモニウム等、CFCFCFOCF(C
)COONH、CFCFCFOCF(CF
)CFOCF(CF)COONH、CFCF
CFO[CF(CF)CFO]CF(C
)COONH、CFCFCFO[CF(C
)CFO]CF(CF)COONH、CF
CFCF CFCFCFCFOCF(CF
)COONH等、パーフルオロヘキサンスルホン酸
アンモニウム、パーフルオロヘプタンスルホン酸アンモ
ニウム、パーフルオロオクタンスルホン酸アンモニウ
ム、パーフルオロノナンスルホン酸アンモニウム、パー
フルオロデカンスルホン酸アンモニウム等、が挙げられ
る。
Specific examples of the ammonium salt include perf.
Ammonium uropentanoate, perfluorohexane
Ammonium acid perfluoroheptanoate
System, ammonium perfluorooctanoate, perfluor
Ammonium rononanoate, Ammo perfluorodecanoate
, Ammonium perfluorododecanoate, ω-hi
Ammonium droper fluoroheptanoate, ω-hydro
Ammonium perfluorooctanoate, ω-hydroper
Ammonium fluorononanoate, ω-chloroperfluor
Ammonium loheptanate, ω-chloroperfluoro
Ammonium citrate, ω-chloroperfluorononane
CF such as ammonium acidateThreeCFTwoCFTwoOCF (C
FThree) COONHFour, CFThreeCFTwoCFTwoOCF (CF
Three) CFTwoOCF (CFThree) COONHFour, CFThreeCF
TwoCFTwoO [CF (CFThree) CFTwoO]TwoCF (C
FThree) COONHFour, CFThreeCFTwoCFTwoO [CF (C
FThree) CFTwoO]ThreeCF (CFThree) COONHFour, CF
ThreeCFTwoCF TwoCFTwoCFTwoCFTwoCFTwoOCF (CF
Three) COONHFourEtc., perfluorohexane sulfonic acid
Ammonium, perfluoroheptane sulfonic acid
Ammonium, perfluorooctane sulfonate
Ammonium, perfluorononane sulfonate ammonium, per
Ammonium fluorodecane sulfonate, etc.
It

【0020】リチウム塩の具体例としては、パーフルオ
ロペンタン酸リチウム、パーフルオロヘキサン酸リチウ
ム、パーフルオロヘプタン酸リチウム、パーフルオロオ
クタン酸リチウム、パーフルオロノナン酸リチウム、パ
ーフルオロデカン酸リチウム、パーフルオロドデカン酸
リチウム、ω−ヒドロパーフルオロヘプタン酸リチウ
ム、ω−ヒドロパーフルオロオクタン酸リチウム、ω−
ヒドロパーフルオロノナン酸リチウム、ω−クロロパー
フルオロヘプタン酸リチウム、ω−クロロパーフルオロ
オクタン酸リチウム、ω−クロロパーフルオロノナン酸
リチウム等、CFCFCFOCF(CF)CO
OLi、CFCFCFOCF(CF)CF
CF(CF)COOLi、CFCFCFO[C
F(CF)CFO]CF(CF)COOLi、
CFCFCFO[CF(CF)CFO]
F(CF)COOLi、CFCFCFCF
CFCFOCF(CF)COOLi等、パー
フルオロヘキサンスルホン酸リチウム、パーフルオロヘ
プタンスルホン酸リチウム、パーフルオロオクタンスル
ホン酸リチウム、パーフルオロノナンスルホン酸リチウ
ム、パーフルオロデカンスルホン酸リチウム等、が挙げ
られる。
Specific examples of the lithium salt include lithium perfluoropentanoate, lithium perfluorohexanoate, lithium perfluoroheptanoate, lithium perfluorooctanoate, lithium perfluorononanoate, lithium perfluorodecanoate and perfluorododecane. Lithium acid, ω-hydroperfluoroheptanoate, ω-hydroperfluorooctanoate, ω-
Lithium hydroperfluorononanoate, lithium ω-chloroperfluoroheptanoate, lithium ω-chloroperfluorooctanoate, lithium ω-chloroperfluorononanoate, etc., CF 3 CF 2 CF 2 OCF (CF 3 ) CO
OLi, CF 3 CF 2 CF 2 OCF (CF 3) CF 2 O
CF (CF 3 ) COOLi, CF 3 CF 2 CF 2 O [C
F (CF 3 ) CF 2 O] 2 CF (CF 3 ) COOLi,
CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 3 C
F (CF 3 ) COOLi, CF 3 CF 2 CF 2 CF 2 C
F 2 CF 2 CF 2 OCF (CF 3 ) COOLi, etc., lithium perfluorohexanesulfonate, lithium perfluoroheptanesulfonate, lithium perfluorooctanesulfonate, lithium perfluorononanesulfonate, lithium perfluorodecanesulfonate, etc. Is mentioned.

【0021】ナトリウム塩の具体例としては、パーフル
オロペンタン酸ナトリウム、パーフルオロヘキサン酸ナ
トリウム、パーフルオロヘプタン酸ナトリウム、パーフ
ルオロオクタン酸ナトリウム、パーフルオロノナン酸ナ
トリウム、パーフルオロデカン酸ナトリウム、パーフル
オロドデカン酸ナトリウム、ω−ヒドロパーフルオロヘ
プタン酸ナトリウム、ω−ヒドロパーフルオロオクタン
酸ナトリウム、ω−ヒドロパーフルオロノナン酸ナトリ
ウム、ω−クロロパーフルオロヘプタン酸ナトリウム、
ω−クロロパーフルオロオクタン酸ナトリウム、ω−ク
ロロパーフルオロノナン酸ナトリウム等、CFCF
CFOCF(CF)COONa、CFCFCF
OCF(CF)CFOCF(CF)COON
a、CFCFCFO[CF(CF)CFO]
CF(CF)COONa、CFCFCF
[CF(CF)CFO]CF(CF)COON
a、CFCFCFCFCFCFCFOC
F(CF)COONa等、パーフルオロヘキサンスル
ホン酸ナトリウム、パーフルオロヘプタンスルホン酸ナ
トリウム、パーフルオロオクタンスルホン酸ナトリウ
ム、パーフルオロノナンスルホン酸ナトリウム、パーフ
ルオロデカンスルホン酸ナトリウム等、が挙げられる。
Specific examples of the sodium salt include sodium perfluoropentanoate, sodium perfluorohexanoate, sodium perfluoroheptanoate, sodium perfluorooctanoate, sodium perfluorononanoate, sodium perfluorodecanoate and perfluorododecane. Sodium acid, sodium ω-hydroperfluoroheptanoate, sodium ω-hydroperfluorooctanoate, sodium ω-hydroperfluorononanoate, sodium ω-chloroperfluoroheptanoate,
Sodium ω-chloroperfluorooctanoate, sodium ω-chloroperfluorononanoate, etc., CF 3 CF 2
CF 2 OCF (CF 3 ) COONa, CF 3 CF 2 CF
2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COON
a, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O]
2 CF (CF 3 ) COONa, CF 3 CF 2 CF 2 O
[CF (CF 3 ) CF 2 O] 3 CF (CF 3 ) COON
a, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 OC
F (CF 3 ) COONa and the like, sodium perfluorohexane sulfonate, sodium perfluoroheptane sulfonate, sodium perfluorooctane sulfonate, sodium perfluorononane sulfonate, sodium perfluorodecane sulfonate and the like can be mentioned.

【0022】カリウム塩の具体例としては、パーフルオ
ロペンタン酸カリウム、パーフルオロヘキサン酸カリウ
ム、パーフルオロヘプタン酸カリウム、パーフルオロオ
クタン酸カリウム、パーフルオロノナン酸カリウム、パ
ーフルオロデカン酸カリウム、パーフルオロドデカン酸
カリウム、ω−ヒドロパーフルオロヘプタン酸カリウ
ム、ω−ヒドロパーフルオロオクタン酸カリウム、ω−
ヒドロパーフルオロノナン酸カリウム、ω−クロロパー
フルオロヘプタン酸カリウム、ω−クロロパーフルオロ
オクタン酸カリウム、ω−クロロパーフルオロノナン酸
カリウム等、CFCFCFOCF(CF)CO
OK、CFCFCFOCF(CF)CFOC
F(CF)COOK、CFCFCFO[CF
(CF )CFO]CF(CF)COOK、CF
CFCFO[CF(CF )CFO]CF
(CF)COOK、CFCFCFCFCF
CFCFOCF(CF)COOK等、パーフルオ
ロヘキサンスルホン酸カリウム、パーフルオロヘプタン
スルホン酸カリウム、パーフルオロオクタンスルホン酸
カリウム、パーフルオロノナンスルホン酸カリウム、パ
ーフルオロデカンスルホン酸カリウム等、が挙げられ
る。
Specific examples of the potassium salt include perfluor.
Potassium lopentate, potassium perfluorohexanoate
System, potassium perfluoroheptanoate, perfluoro
Potassium citrate, potassium perfluorononanoate,
-Potassium fluorodecanoate, perfluorododecanoic acid
Potassium, Ca-ω-hydroperfluoroheptanoate
Ω-potassium hydroperfluorooctanoate, ω-
Potassium hydroperfluorononanoate, ω-chloroper
Potassium fluoroheptanoate, ω-chloroperfluoro
Potassium octanoate, ω-chloroperfluorononanoic acid
CF such as potassiumThreeCFTwoCFTwoOCF (CFThree) CO
OK, CFThreeCFTwoCFTwoOCF (CFThree) CFTwoOC
F (CFThree) COOK, CFThreeCFTwoCFTwoO [CF
(CF Three) CFTwoO]TwoCF (CFThree) COOK, CF
ThreeCFTwoCFTwoO [CF (CF Three) CFTwoO]ThreeCF
(CFThree) COOK, CFThreeCFTwoCFTwoCFTwoCFTwo
CFTwoCFTwoOCF (CFThree) COOK, etc.
Rohexanesulfonate potassium, perfluoroheptane
Potassium sulfonate, perfluorooctane sulfonic acid
Potassium, potassium perfluorononane sulfonate, pa
-Potassium fluorodecane sulfonate, etc.
It

【0023】特に、炭素数6〜12のパーフルオロアル
カン酸が好ましく、パーフルオロヘプタン酸、PFO
A、パーフルオロノナン酸又はパーフルオロデカン酸、
及びそれらのアンモニウム塩がより好ましく、PFOA
及びそのアンモニウム塩が最も好ましい。
Particularly, perfluoroalkanoic acid having 6 to 12 carbon atoms is preferable, and perfluoroheptanoic acid and PFO are preferable.
A, perfluorononanoic acid or perfluorodecanoic acid,
And ammonium salts thereof are more preferred, and PFOA
And their ammonium salts are most preferred.

【0024】本発明におけるIERは、弱塩基性陰イオ
ン交換樹脂である。強塩基性陰イオン交換樹脂では含フ
ッ素乳化剤の吸着効率は高いものの、脱着によって該目
的化合物を回収することが困難で、回収率が低い。本発
明における充填塔の材質は、特に限定されず、酸性及び
アルカリ性の水溶液に耐性のある材質であることが好ま
しい。具体例としては、ステンレス鋼、フッ素樹脂ライ
ニング、ゴムライニング、ガラス、ポリ塩化ビニル樹脂
等が挙げられる。
The IER in the present invention is a weakly basic anion exchange resin. Although the strongly basic anion exchange resin has a high adsorption efficiency of the fluorine-containing emulsifier, it is difficult to recover the target compound by desorption, and the recovery rate is low. The material of the packed tower in the present invention is not particularly limited, and it is preferable that the material has resistance to acidic and alkaline aqueous solutions. Specific examples include stainless steel, fluororesin lining, rubber lining, glass, polyvinyl chloride resin and the like.

【0025】また、充填塔の大きさ及び形状も、特に限
定されないが、円筒形であることが内部の均一性が得ら
れやすいので好ましい。IERの充填量は、充填塔の内
容積の20〜80容積%が好ましい。これより少ない
と、IERの高さと幅の比率が悪いために吸着効率が低
下し、これより多いと吸・脱着中のIERの体積変化に
より充填塔からIERが溢れ出る可能性がある。より好
ましくは40〜60容積%である。
The size and shape of the packed column are not particularly limited, but it is preferable that the packed column is cylindrical because internal uniformity is easily obtained. The filling amount of IER is preferably 20 to 80% by volume of the internal volume of the packed column. If it is less than this, the adsorption efficiency is lowered because the ratio of height and width of IER is poor, and if it is more than this, there is a possibility that the IER overflows from the packed column due to the volume change of IER during adsorption / desorption. More preferably, it is 40 to 60% by volume.

【0026】充填塔内の被吸着液の供給方向は上から下
でも、下から上でも設置場所の形状に応じて適宜選択で
きる。排水の供給速度は、IERの容積に対して、1時
間あたり1〜10倍の容量が好ましい。これより小さい
と非常に長い時間がかかり非効率的であり、これより大
きいとIERへの吸着時間が十分とれず、吸着効率が低
下する。より好ましくは1時間あたり2〜6倍である。
The supply direction of the liquid to be adsorbed in the packed column can be appropriately selected from top to bottom, bottom to top depending on the shape of the installation site. The drainage supply rate is preferably 1 to 10 times the volume of the IER per hour. If it is smaller than this, it takes a very long time and is inefficient. It is more preferably 2 to 6 times per hour.

【0027】本発明における含フッ素乳化剤水溶液
(A)は、含フッ素乳化剤が溶解している水溶液であれ
ば特に限定されないが、有用物を回収・分離した後の排
水が好ましい。特に、含フッ素モノマーの重合体又は含
フッ素モノマーと含フッ素モノマー以外のモノマーとの
共重合体の製造工程からの排水がより好ましい。ここ
で、重合体の製造工程からの排水とは、含フッ素モノマ
ー又は含フッ素モノマーと含フッ素モノマー以外のモノ
マーとを乳化重合又は水性分散重合して得られた含フッ
素ポリマー水分散液から、含フッ素ポリマーを塩析等で
凝集して分離した後の排水をいう。かかる排水には、含
フッ素乳化剤が含有される。
The fluorinated emulsifier aqueous solution (A) in the present invention is not particularly limited as long as it is an aqueous solution in which the fluorinated emulsifier is dissolved, but drainage after collecting and separating useful substances is preferable. In particular, drainage from the step of producing a polymer of a fluorine-containing monomer or a copolymer of a fluorine-containing monomer and a monomer other than the fluorine-containing monomer is more preferable. Here, the wastewater from the production process of the polymer means a fluorine-containing polymer or an aqueous dispersion of a fluoropolymer obtained by emulsion-polymerizing or aqueous-dispersion-polymerizing a fluorine-containing monomer and a monomer other than the fluorine-containing monomer. It means the wastewater after the fluoropolymer is aggregated by salting out and separated. The effluent contains a fluorine-containing emulsifier.

【0028】含フッ素モノマーとしては、テトラフルオ
ロエチレン(以下、TFEという。)、CF=CFC
l、CFH=CF、CFH=CH、CF=CH
などのフルオロエチレン、ヘキサフルオロプロピレン、
CF=CHCFなどのフルオロプロピレン等が挙げ
られる。これらの含フッ素モノマーは、単独で用いても
よいし、2種以上組み合わせて用いてもよい。
As the fluorine-containing monomer, tetrafluoroethylene (hereinafter referred to as TFE), CF 2 ═CFC
l, CFH = CF 2, CFH = CH 2, CF 2 = CH 2
Such as fluoroethylene, hexafluoropropylene,
Examples include fluoropropylene such as CF 2 ═CHCF 3 . These fluorine-containing monomers may be used alone or in combination of two or more.

【0029】また、含フッ素モノマー以外のモノマーと
しては、酢酸ビニルなどのビニルエステル系単量体、エ
チルビニルエーテル、シクロヘキシルビニルエーテル、
ヒドロキシブチルビニルエーテルなどのビニルエーテル
系単量体、ノルボルネン、ノルボナジエンなどの環状構
造を有した単量体、メチルアリルエーテルなどのアリル
エーテル系単量体、また、エチレン、プロピレン、イソ
ブチレンなどのオレフィン系単量体も用いられる。含フ
ッ素モノマーの以外のモノマーは、単独で用いてもよ
く、2種以上を混合して用いてもよい。
As the monomer other than the fluorine-containing monomer, vinyl ester type monomers such as vinyl acetate, ethyl vinyl ether, cyclohexyl vinyl ether,
Vinyl ether monomers such as hydroxybutyl vinyl ether, monomers having a cyclic structure such as norbornene and norbonadiene, allyl ether monomers such as methyl allyl ether, and olefinic monomers such as ethylene, propylene and isobutylene The body is also used. Monomers other than the fluorine-containing monomer may be used alone or in combination of two or more.

【0030】含フッ素ポリマーとしては、ポリテトラフ
ルオロエチレン、TFE/P共重合体、TFE/P/V
dF共重合体等が挙げられる。本発明の含フッ素乳化剤
の吸着・回収方法は、含フッ素乳化剤だけでなく、トリ
フルオロ酢酸、ペンタフルオロプロパン酸等の低分子量
含フッ素カルボン酸及び/又はその塩にも適用できる。
As the fluorine-containing polymer, polytetrafluoroethylene, TFE / P copolymer, TFE / P / V
A dF copolymer etc. are mentioned. The method for adsorbing and recovering a fluorine-containing emulsifier of the present invention can be applied not only to a fluorine-containing emulsifier but also to a low molecular weight fluorine-containing carboxylic acid such as trifluoroacetic acid and pentafluoropropanoic acid and / or a salt thereof.

【0031】[0031]

【実施例】以下の例で本発明を具体的に説明するが、本
発明はこれらに限定されない。例1〜4及び例8が実施
例であり、例5〜7が比較例である。なお、PFOA試
験液の供給速度は空間速度(単位:mL/時)である。
また、流出水中のPFOAの分析には高速液体クロマト
グフィー−マススペクトル法(以下、LC/MSとい
う。)を用いた。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited thereto. Examples 1 to 4 and Example 8 are Examples, and Examples 5 to 7 are Comparative Examples. The supply rate of the PFOA test liquid is a space velocity (unit: mL / hour).
Further, high-performance liquid chromatography-mass spectrometry (hereinafter referred to as LC / MS) was used for the analysis of PFOA in the outflow water.

【0032】[例1]内容積100mLのガラス製充填
塔の3本を用意し、IER(IERWA30、三菱化学
製、以下、IERWA30という)の50mLをそれぞ
れに充填した。この3本の充填塔のうち第1充填塔と第
2充填塔の2本を直列に接続した。PFOAの0.1質
量%水溶液の9000mLに、10%の塩酸90mLを
加えてpHを2に調製して、PFOA試験液の9090
mLを得た。チューブポンプを用いて前記PFOA試験
液を500mL/時で第1充填塔の上部より供給した。
第2充填塔の底部出口からの流出水を、30分毎に採取
しLC/MSで分析した。流出水のpHは約10であっ
た。約24時間後に流出水中にPFOAが検出された。
このとき、流出水のpHが約4に変化した。PFOA試
験液の供給を停止し、第2充填塔の後に第3充填塔を直
列に接続した。ついで、第2充填塔上部よりPFOA試
験液を供給し、吸着操作を継続した。
[Example 1] Three glass packed towers having an internal volume of 100 mL were prepared, and 50 mL of IER (IERWA30, manufactured by Mitsubishi Chemical, hereinafter referred to as IERWA30) was packed in each. Of these three packed towers, two of the first packed tower and the second packed tower were connected in series. 90 mL of 10% hydrochloric acid was added to 9000 mL of a 0.1 mass% aqueous solution of PFOA to adjust the pH to 2, and 9090 of a PFOA test solution was added.
mL was obtained. The PFOA test liquid was supplied at 500 mL / hour from the upper part of the first packed column using a tube pump.
Outflow water from the bottom outlet of the second packed column was collected every 30 minutes and analyzed by LC / MS. The pH of the effluent was about 10. PFOA was detected in the effluent after about 24 hours.
At this time, the pH of the outflow water changed to about 4. The supply of the PFOA test liquid was stopped, and the third packed column was connected in series after the second packed column. Then, the PFOA test liquid was supplied from the upper part of the second packed column, and the adsorption operation was continued.

【0033】第1充填塔には、0.1MのNaOH水溶
液を供給し、PFOAの脱着操作を行った。NaOH水
溶液の供給速度は200mL/時であった。操作終了後
250mLのイオン交換水を500mL/時で通水さ
せ、IERWA30を再生させた。この脱着・再生操作
は約8時間を要した。
A 0.1 M NaOH aqueous solution was supplied to the first packed column, and PFOA was desorbed. The supply rate of the NaOH aqueous solution was 200 mL / hour. After the operation was completed, 250 mL of ion-exchanged water was passed at 500 mL / hour to regenerate IERWA30. This desorption / regeneration operation took about 8 hours.

【0034】前記吸着操作を継続して、第3充填塔の底
部出口からの流出水を、30分毎に採取し分析した。約
12時間後に流出水中にPFOAが検出されたので、P
FOA試験液の供給を止め、第3充填塔の後に脱着操作
を終了した第1充填塔を接続した。ついで、第3充填塔
上部よりPFOA試験液を供給し、吸着操作を継続し
た。第2充填塔は上記と同様にNaOHによる脱着操作
を実施した。
While continuing the adsorption operation, the water flowing out from the bottom outlet of the third packed column was sampled and analyzed every 30 minutes. Approximately 12 hours later, PFOA was detected in the effluent, so P
The supply of the FOA test liquid was stopped, and after the third packed column, the first packed column, which had completed the desorption operation, was connected. Then, the PFOA test liquid was supplied from the upper part of the third packed column, and the adsorption operation was continued. The second packed column was subjected to the desorption operation with NaOH as described above.

【0035】以下、同様の操作を繰り返し、3本の充填
塔のうち常に2本を直列に接続し、吸着操作を継続し、
残り1本で脱着・再生操作を実施した。この方法で、全
てのPFOA試験液を充填塔に通水させた。この間、1
80時間を要した。得られた流出水を全て回収し、PF
OA濃度を分析することにより、PFOAの99.0質
量%が吸着し回収されたことがわかった。
Thereafter, the same operation is repeated, two of the three packed columns are always connected in series, and the adsorption operation is continued,
The remaining one was used for desorption and regeneration. By this method, all the PFOA test liquids were passed through the packed column. During this time, 1
It took 80 hours. Collect all of the resulting runoff water, and
By analyzing the OA concentration, it was found that 99.0 mass% of PFOA was adsorbed and recovered.

【0036】[例2]吸着操作時の通水速度を200m
L/時に変更する以外は例1と同様にしてPFOA試験
液からPFOAを吸着・回収した。所要時間は450時
間で、PFOAの回収率は99.5%であった。[例
3]吸着操作時の通水速度を1000mL/時に変更す
る以外は例1と同様にしてPFOA試験液からPFOA
を吸着・回収した。所要時間は90時間で、PFOAの
回収率は97.0%であった。
[Example 2] The water flow rate during the adsorption operation was 200 m.
PFOA was adsorbed and recovered from the PFOA test solution in the same manner as in Example 1 except that the L / hour was changed. The required time was 450 hours, and the recovery rate of PFOA was 99.5%. [Example 3] From the PFOA test liquid to PFOA in the same manner as in Example 1 except that the water flow rate during the adsorption operation was changed to 1000 mL / hour.
Was adsorbed and collected. The required time was 90 hours, and the recovery rate of PFOA was 97.0%.

【0037】[例4]内容積100mLのガラス製充填
塔の4本を用意し、IERWA30の37.5mLをそ
れぞれの充填塔に充填した。この充填塔のうち3本を直
列に接続した。チューブポンプを用いて、例1と同様に
して得たPFOA試験液を、562.5mL/時間の速
度で第1充填塔の上部より供給した。第3充填塔の底部
出口から排出する流出水を、30分毎に採取し分析し
た。流出水のpHは約10であった。約24時間後に流
出水中にPFOAが検出された。このとき、流出水のp
Hが約4に変化した。PFOA試験液の供給を止め、第
3充填塔の後に第4充填塔を直列に接続した。ついで、
第2充填塔上部よりPFOA試験液を供給し、吸着操作
を継続した。
[Example 4] Four glass packed towers having an internal volume of 100 mL were prepared, and 37.5 mL of IERWA30 was packed in each packed tower. Three of the packed towers were connected in series. Using a tube pump, the PFOA test liquid obtained in the same manner as in Example 1 was supplied from the upper part of the first packed column at a rate of 562.5 mL / hour. Outflow water discharged from the bottom outlet of the third packed column was collected and analyzed every 30 minutes. The pH of the effluent was about 10. PFOA was detected in the effluent after about 24 hours. At this time, p of the outflow water
H changed to about 4. The supply of the PFOA test liquid was stopped, and the fourth packed column was connected in series after the third packed column. Then,
The PFOA test liquid was supplied from the upper part of the second packed column, and the adsorption operation was continued.

【0038】第1充填塔には、0.1MのNaOH水溶
液を供給し、PFOAの脱着操作を行った。NaOH水
溶液の供給速度は225mL/時であった。操作終了後
187.5mLのイオン交換水を562.5mL/時間
で通水させ、IERWA30を再生させた。この脱着・
再生操作は約8時間を要した。
A 0.1 M NaOH aqueous solution was supplied to the first packed column to carry out the desorption operation of PFOA. The supply rate of the NaOH aqueous solution was 225 mL / hour. After the operation was completed, 187.5 mL of ion-exchanged water was passed through at a rate of 562.5 mL / hour to regenerate IERWA30. This desorption
The regenerating operation took about 8 hours.

【0039】前記吸着操作を継続して、第4充填塔の底
部出口からの流出水を、30分毎に採取し分析した。約
8時間後に流出水中にPFOAが検出されたので、PF
OA試験液の供給を止め、第4充填塔の後に脱着操作を
終了した第1充填塔を接続した。ついで、第3充填塔上
部よりPFOA試験液を供給し、吸着操作を継続した。
また、第1充填塔の底部出口からの流出水を、30分毎
に採取し分析した。第2充填塔は上記と同様にNaOH
水溶液による脱着・再生操作を実施した。
While continuing the adsorption operation, the outflow water from the bottom outlet of the fourth packed column was sampled and analyzed every 30 minutes. PFOA was detected in the effluent after about 8 hours.
The supply of the OA test liquid was stopped, and after the fourth packed tower, the first packed tower, which had completed the desorption operation, was connected. Then, the PFOA test liquid was supplied from the upper part of the third packed column, and the adsorption operation was continued.
In addition, the outflow water from the bottom outlet of the first packed tower was sampled and analyzed every 30 minutes. The second packed tower is NaOH as above.
Desorption / regeneration operation was performed with an aqueous solution.

【0040】以下、同様の操作を繰り返し、4本の充填
塔のうち常に3本を直列に接続し、吸着操作を継続し、
残り1本で脱着・再生操作を実施した。この方法で、全
てのPFOA試験液を充填塔に通水させた。この間、1
60時間を要した。得られた流出水の全てを回収し、P
FOA濃度を分析することにより、PFOAの99.2
質量%が吸着・回収されたことがわかった。
Thereafter, the same operation was repeated, and three of the four packed columns were always connected in series to continue the adsorption operation,
The remaining one was used for desorption and regeneration. By this method, all the PFOA test liquids were passed through the packed column. During this time, 1
It took 60 hours. Collect all of the resulting outflow water, P
By analyzing the FOA concentration, 99.2% of PFOA was obtained.
It was found that mass% was adsorbed and recovered.

【0041】[例5(比較例)]内容積300mLのガ
ラス製充填塔の1本を用意し、IERWA30の150
mLを充填した。チューブポンプを用いて例1と同様に
して得たPFOA試験液を、750mL/時で該充填塔
に通水させた。充填塔の底部出口よりの流出水を採取し
分析した。約24時間後にPFOAが検出された。この
時に、PFOA試験液の供給を停止し、0.1MのNa
OH水溶液にて脱着操作を行った。NaOH水溶液の通
水速度は300mL/時であった。脱着操作終了後25
0mLのイオン交換水を450mL/時で通水させ、I
ERWA30を再生させた。この脱着・再生操作に約2
4時間を要した。ついで、充填塔上部よりPFOA試験
液を供給し、充填塔の底部出口よりの流出水を採取し分
析した。約24時間後にPFOAを検出した。PFOA
試験液の供給通水を停止し、上記と同様に脱着・再生操
作を実施した。
[Example 5 (Comparative Example)] One glass packed column having an internal volume of 300 mL was prepared, and 150 pieces of IERWA30 were prepared.
mL was charged. The PFOA test liquid obtained in the same manner as in Example 1 was passed through the packed tower at 750 mL / hour using a tube pump. Outflow water from the bottom outlet of the packed tower was collected and analyzed. PFOA was detected after about 24 hours. At this time, the supply of the PFOA test solution was stopped and 0.1M Na was added.
Desorption operation was performed with an OH aqueous solution. The water flow rate of the aqueous NaOH solution was 300 mL / hour. 25 after completion of desorption operation
0 mL of ion-exchanged water was passed at 450 mL / hour, and I
ERWA30 was regenerated. Approximately 2 for this desorption / regeneration operation
It took 4 hours. Next, the PFOA test liquid was supplied from the upper part of the packed tower, and the outflow water from the bottom outlet of the packed tower was collected and analyzed. PFOA was detected after about 24 hours. PFOA
The water supply of the test liquid was stopped, and the desorption / regeneration operation was carried out in the same manner as above.

【0042】以下、同様の操作を繰り返し、全てのPF
OA試験液を充填塔に通水させた。この間、240時間
を要した。得られた流出水を全て回収しPFOA濃度を
分析したところ、75.0%のPFOAが吸着・回収さ
れたことがわかった。
Thereafter, the same operation is repeated, and all PFs are
The OA test liquid was passed through the packed tower. During this time, 240 hours were required. When all the resulting outflow water was collected and analyzed for PFOA concentration, it was found that 75.0% of PFOA was adsorbed and collected.

【0043】[例6(比較例)]内容積200mLのガ
ラス製充填塔の2本を用意し、IERWA30の75m
Lをそれぞれに充填した。チューブポンプを用いて例1
と同様にして得たPFOA試験液を、第1充填塔上部よ
り375mL/時で供給した。第1充填塔の底部出口よ
りの流出水を採取し分析した。約24時間後にPFOA
が検出された。この時に、PFOA試験液の供給を第1
充填塔から第2充填塔へ切り替え吸着操作を継続した。
第1充填塔については、0.1MのNaOH水溶液にて
脱着操作を行った。NaOH水溶液の通水速度は150
mL/時であった。脱着操作終了後375mLのイオン
交換水を375mL/時で通水させ、IERWA30を
再生させた。脱着・再生操作に約12時間を要した。
[Example 6 (Comparative Example)] Two glass-filled towers having an internal volume of 200 mL were prepared.
L was filled in each. Example 1 using a tube pump
The PFOA test liquid obtained in the same manner as above was supplied from the upper part of the first packed column at 375 mL / hour. Outflow water from the bottom outlet of the first packed tower was collected and analyzed. PFOA after about 24 hours
Was detected. At this time, first supply the PFOA test solution.
The adsorption operation was continued by switching from the packed tower to the second packed tower.
With respect to the first packed column, desorption operation was performed with a 0.1 M NaOH aqueous solution. Water flow rate of NaOH aqueous solution is 150
mL / hour. After completion of the desorption operation, 375 mL of ion-exchanged water was passed at 375 mL / hour to regenerate IERWA30. It took about 12 hours for the desorption / regeneration operation.

【0044】第2充填塔の底部出口より排出された流出
水を採取し分析したところ、約24時間後にPFOAを
検出した。この時に、PFOA試験液の供給を第2充填
塔から脱着操作を終了した第1充填塔へ切り替えた。第
2充填塔については、上記と同様に脱着操作を実施し
た。
When the effluent discharged from the bottom outlet of the second packed column was collected and analyzed, PFOA was detected after about 24 hours. At this time, the supply of the PFOA test liquid was switched from the second packed tower to the first packed tower after the desorption operation was completed. For the second packed column, the desorption operation was carried out in the same manner as above.

【0045】以下、同様の操作を繰り返し、PFOA試
験液を全て通水させ、吸着・脱着操作を実施した。要し
た時間は264時間であった。得られた流出水を全て回
収しPFOA濃度を分析したところ、85.0%のPF
OAが吸着・回収されたことがわかった。
Thereafter, the same operation was repeated, and all the PFOA test liquid was passed through to carry out adsorption / desorption operation. The time required was 264 hours. All of the resulting effluent was collected and analyzed for PFOA concentration.
It was found that OA was adsorbed and collected.

【0046】[例7(比較例)]内容積400mLのガ
ラス製充填塔を1本用意し、IERWA30の200m
Lを充填した。例1と同様にして得たPFOA試験液
を、充填塔上部よりチューブポンプを用いて1000m
L/時で供給した。第1充填塔の底部の底部出口より排
出された流出水を採取し分析した。約24時間後にPF
OAが検出された。このとき、PFOA試験液を停止
し、0.1MのNaOH水溶液にて脱着操作を行った。
NaOH水溶液の通水速度は400mL/時であった。
脱着操作終了後1000mLのイオン交換水を1000
mL/時で通水させ、IERWA30を再生させた。脱
着・再生操作に約24時間を要した。ついで、充填塔上
部よりPFOA試験液を1000mL/時で供給し、充
填塔の底部出口よりの流出水を採取し分析した。約24
時間後にPFOAが検出された。このとき、PFOA試
験液の供給を停止し、上記と同様に脱着操作を実施し
た。
[Example 7 (Comparative Example)] One glass packed column having an internal volume of 400 mL was prepared, and 200 m of IERWA30 was prepared.
L was charged. The PFOA test liquid obtained in the same manner as in Example 1 was treated with a tube pump at 1000 m from the top of the packed column.
Supplied at L / hr. Outflow water discharged from the bottom outlet of the bottom of the first packed column was collected and analyzed. PF in about 24 hours
OA was detected. At this time, the PFOA test solution was stopped, and a desorption operation was performed with a 0.1 M NaOH aqueous solution.
The water flow rate of the aqueous NaOH solution was 400 mL / hour.
After completing the desorption operation, add 1000 mL of ion-exchanged water to 1000
Water was passed at a rate of mL / hour to regenerate IERWA30. It took about 24 hours for the desorption / regeneration operation. Then, the PFOA test liquid was supplied at 1000 mL / hour from the top of the packed tower, and the outflow water from the bottom outlet of the packed tower was collected and analyzed. About 24
PFOA was detected after hours. At this time, the supply of the PFOA test liquid was stopped, and the desorption operation was performed in the same manner as above.

【0047】以下、同様の操作を繰り返し、PFOA試
験液の全て通水させ、吸着・脱着操作を実施した。要し
た時間は180時間であった。得られた流出水を全て回
収しPFOA濃度を分析したところ、85.0%のPF
OAが吸着・回収された。
Thereafter, the same operation was repeated, all the PFOA test liquid was passed through, and adsorption / desorption operations were carried out. The time required was 180 hours. All of the resulting effluent was collected and analyzed for PFOA concentration.
OA was adsorbed and collected.

【0048】以上の結果をまとめて表1に示した。The above results are summarized in Table 1.

【0049】[0049]

【表1】 [Table 1]

【0050】例1と例5(比較例)及び例6(比較例)
を比較するとIERの使用量はいずれも150mLであ
るが、例1はPFOA回収率が高く、回収に要した時間
も約25%少なかった。例1と同等の回収に要した時間
を得るには、例7(比較例)のように例1よりも33.
3%多い200mLのIERが必要であった。そのう
え、実施例では回収率が高かった。例4のようにIER
の充填塔を増やすと、さらに回収率が上がるうえ、回収
時間も短くなることが分かった。
Example 1 and Example 5 (Comparative Example) and Example 6 (Comparative Example)
Comparing each of these, the amount of IER used was 150 mL, but in Example 1, the PFOA recovery rate was high and the time required for recovery was about 25% shorter. In order to obtain the time required for recovery equivalent to that in Example 1, as in Example 7 (comparative example), 33.
3% more 200 mL IER was required. Moreover, the recovery rate was high in the examples. IER as in example 4
It was found that increasing the number of packed towers further increased the recovery rate and shortened the recovery time.

【0051】[例8]PTFEの製造工程からの排水か
らPTFE微粒子を取り除いてPFOAを0.023質
量%含有する水溶液を得た。この水溶液の9000mL
に、10%塩酸水溶液の9mLを加えて得たPFOA試
験液の9009mLを用いる以外は例1と同様にしてP
FOAの吸着・回収を実施した。回収時間は180時間
であり、回収率は96.5%であった。
[Example 8] PTFE fine particles were removed from the wastewater from the manufacturing process of PTFE to obtain an aqueous solution containing 0.023% by mass of PFOA. 9000mL of this aqueous solution
In the same manner as in Example 1 except that 909 mL of a PFOA test solution obtained by adding 9 mL of a 10% aqueous hydrochloric acid solution was used.
Adsorption and recovery of FOA was performed. The recovery time was 180 hours and the recovery rate was 96.5%.

【0052】[0052]

【発明の効果】本発明の吸着・回収方法によれば、含フ
ッ素乳化剤水溶液より含フッ素乳化剤を高い回収率で回
収できる。また、吸着・回収に要する時間の短縮、IE
Rの使用量の削減が可能となる。
According to the adsorption / recovery method of the present invention, the fluorine-containing emulsifier can be recovered at a higher recovery rate than the aqueous solution of the fluorine-containing emulsifier. Also, the time required for adsorption / recovery can be shortened, and IE
It is possible to reduce the amount of R used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神谷 浩樹 千葉県市原市五井海岸10番地 旭硝子株式 会社内 Fターム(参考) 4D024 AA04 AB04 BA17 BC02 DA08 4D025 AA09 AB35 AB38 BA15 BB02 BB09 CA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroki Kamiya             Asahi Glass Co., Ltd. 10 Goi Coast, Ichihara City, Chiba Prefecture             In the company F-term (reference) 4D024 AA04 AB04 BA17 BC02 DA08                 4D025 AA09 AB35 AB38 BA15 BB02                       BB09 CA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】弱塩基性陰イオン交換樹脂を用いて、含フ
ッ素乳化剤水溶液(A)から含フッ素乳化剤を吸着・回
収する方法であって、前記イオン交換樹脂を充填したn
(ここで、nは3〜10の整数である。)本の充填塔を
用い、その中の(n−1)本の充填塔を直列に接続し
て、該水溶液(A)を第1の充填塔に供給し吸着操作を
行うとともに、残りの1本の充填塔で脱着操作を行う方
法において、最後尾の充填塔からの流出水中に含フッ素
乳化剤が検出されたら、流出水を前記脱着操作の終了し
た残りの1本の充填塔に導き、第1の充填塔の次の充填
塔に該水溶液(A)を供給し、かつ第1の充填塔の脱着
操作を行うことを特徴とする含フッ素乳化剤の吸着・回
収方法。
1. A method for adsorbing and recovering a fluorinated emulsifier from an aqueous fluorinated emulsifier solution (A) using a weakly basic anion exchange resin, wherein the ion-exchange resin is filled with n.
(Here, n is an integer of 3 to 10.) A number of packed towers are used, and (n-1) packed towers among them are connected in series to obtain the first aqueous solution (A). In the method of supplying to a packed tower and performing adsorption operation, and desorbing operation in the remaining one packed tower, when a fluorine-containing emulsifier is detected in the outflow water from the last packed tower, the outflow water is desorbed as described above. Is introduced into the remaining one packed tower after completion of the above, the aqueous solution (A) is supplied to the packed tower next to the first packed tower, and the desorption operation of the first packed tower is performed. Fluorine emulsifier adsorption / collection method.
【請求項2】前記吸着及び脱着・回収操作が次の(1)
〜(8)の操作である請求項1に記載の吸着・回収方
法。 (1)前記(n−1)本の充填塔を直列に接続し、第1
充填塔に水溶液(A)を供給し、第1塔から第(n−
1)塔までの(n−1)本の充填塔を用いて含フッ素乳
化剤を吸着させる。 (2)最後尾の第(n−1)充填塔からの流出水中に含
フッ素乳化剤が検出された時に、第1充填塔への水溶液
(A)の供給を止め、流出水を第n充填塔に導く。 (3)水溶液(A)を第2充填塔に供給し、第2充填塔
から第n充填塔までの(n−1)本の充填塔を用いて含
フッ素乳化剤を吸着させる。 (4)第1充填塔にアルカリ水溶液を供給し含フッ素乳
化剤を脱着し回収する。 (5)最後尾の第n充填塔からの流出水中に含フッ素乳
化剤が検出された時に、第2充填塔への水溶液(A)の
供給を止め、流出水を前記脱着の終了した第1充填塔に
導く。 (6)水溶液(A)を第3充填塔に供給し、第3充填塔
から第1充填塔までの(n−1)本の充填塔を用いて含
フッ素乳化剤を吸着させる。 (7)第2充填塔にアルカリ水溶液を供給し含フッ素乳
化剤を脱着し回収する。 (8)以下、(1)〜(7)と同様にして、最後尾の充
填塔からの流出水中に含フッ素乳化剤が検出されたら、
流出水を脱着操作の終了した充填塔に導き、それまで水
溶液(A)を供給していた充填塔の次の充填塔に水溶液
(A)を供給し、かつ該それまで水溶液(A)を供給し
た充填塔の脱着操作を行う。
2. The adsorption and desorption / recovery operations are described in (1) below.
The adsorption / recovery method according to claim 1, which is an operation of (8) to (8). (1) The (n-1) packed columns are connected in series to
The aqueous solution (A) is supplied to the packed tower, and the first tower (n-
1) Adsorb the fluorinated emulsifier using (n-1) packed columns up to the column. (2) When a fluorine-containing emulsifier is detected in the outflow water from the last (n-1) th packed tower, the supply of the aqueous solution (A) to the first packed tower is stopped, and the outflow water is removed from the nth packed tower. Lead to. (3) The aqueous solution (A) is supplied to the second packed tower, and the (n-1) packed towers from the second packed tower to the nth packed tower are used to adsorb the fluorinated emulsifier. (4) An alkaline aqueous solution is supplied to the first packed tower to desorb and recover the fluorine-containing emulsifier. (5) When a fluorine-containing emulsifier is detected in the outflow water from the last nth packed tower, the supply of the aqueous solution (A) to the second packed tower is stopped, and the outflow water is first filled after the desorption. Lead to the tower. (6) The aqueous solution (A) is supplied to the third packed tower, and the (n-1) packed towers from the third packed tower to the first packed tower are used to adsorb the fluorinated emulsifier. (7) An alkaline aqueous solution is supplied to the second packed tower to desorb and recover the fluorine-containing emulsifier. (8) In the same manner as in (1) to (7) below, if a fluorinated emulsifier is detected in the outflow water from the last packed tower,
The effluent is led to the packed tower after the desorption operation, the aqueous solution (A) is supplied to the packed tower next to the packed tower that has been supplied with the aqueous solution (A), and the aqueous solution (A) is supplied until then. Detach the packed tower.
JP2001289217A 2001-09-21 2001-09-21 Method for adsorbing and recovering emulsifier containing fluorine Withdrawn JP2003094052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001289217A JP2003094052A (en) 2001-09-21 2001-09-21 Method for adsorbing and recovering emulsifier containing fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001289217A JP2003094052A (en) 2001-09-21 2001-09-21 Method for adsorbing and recovering emulsifier containing fluorine

Publications (1)

Publication Number Publication Date
JP2003094052A true JP2003094052A (en) 2003-04-02

Family

ID=19111742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001289217A Withdrawn JP2003094052A (en) 2001-09-21 2001-09-21 Method for adsorbing and recovering emulsifier containing fluorine

Country Status (1)

Country Link
JP (1) JP2003094052A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283224A (en) * 2006-04-18 2007-11-01 Asahi Glass Co Ltd Method for recovering fluorine-containing emulsifier
WO2009031562A1 (en) * 2007-09-04 2009-03-12 Daikin Industries, Ltd. Method of adsorbing and method of recovering fluorine-containing compound
JP2010519018A (en) * 2007-02-16 2010-06-03 スリーエム イノベイティブ プロパティズ カンパニー Systems and processes for removing fluorinated chemicals from water
WO2010113720A1 (en) * 2009-03-31 2010-10-07 ダイキン工業株式会社 Method for adsorbing fluorocarboxylic acid having ether bond and method for collecting same
WO2011096448A1 (en) * 2010-02-03 2011-08-11 旭硝子株式会社 Method of recovering anionic fluorinated emulsifiers
JP5163125B2 (en) * 2005-10-14 2013-03-13 旭硝子株式会社 Method for regenerating basic anion exchange resin
WO2015152173A1 (en) * 2014-03-31 2015-10-08 旭硝子株式会社 Recovery method for anionic fluorine-containing emulsifier
CN109052775A (en) * 2018-08-06 2018-12-21 绍兴齐英膜科技有限公司 The processing method of paranitrobenzoic acid production waste water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104651A (en) * 1979-02-02 1980-08-11 Hoechst Ag Method of liquating acid of emulsifying agent fluorinated* which is adsorbed to basic anion exchanger
JPS55120630A (en) * 1979-03-01 1980-09-17 Hoechst Ag Condensed dispersion of fluorinated polymer and its manufacture
JPS5881482A (en) * 1981-11-11 1983-05-16 Mitsubishi Heavy Ind Ltd Purification of boron-contg. water
JP2003505223A (en) * 1999-07-17 2003-02-12 ダイネオン ゲーエムベーハー ウント コンパニー コマンディットゲゼルシャフト Method for recovering fluorinated emulsifier from aqueous phase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104651A (en) * 1979-02-02 1980-08-11 Hoechst Ag Method of liquating acid of emulsifying agent fluorinated* which is adsorbed to basic anion exchanger
JPS55120630A (en) * 1979-03-01 1980-09-17 Hoechst Ag Condensed dispersion of fluorinated polymer and its manufacture
JPS5881482A (en) * 1981-11-11 1983-05-16 Mitsubishi Heavy Ind Ltd Purification of boron-contg. water
JP2003505223A (en) * 1999-07-17 2003-02-12 ダイネオン ゲーエムベーハー ウント コンパニー コマンディットゲゼルシャフト Method for recovering fluorinated emulsifier from aqueous phase

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163125B2 (en) * 2005-10-14 2013-03-13 旭硝子株式会社 Method for regenerating basic anion exchange resin
JP2007283224A (en) * 2006-04-18 2007-11-01 Asahi Glass Co Ltd Method for recovering fluorine-containing emulsifier
JP2010519018A (en) * 2007-02-16 2010-06-03 スリーエム イノベイティブ プロパティズ カンパニー Systems and processes for removing fluorinated chemicals from water
WO2009031562A1 (en) * 2007-09-04 2009-03-12 Daikin Industries, Ltd. Method of adsorbing and method of recovering fluorine-containing compound
JPWO2009031562A1 (en) * 2007-09-04 2010-12-16 ダイキン工業株式会社 Method for adsorption and recovery of fluorine-containing compounds
JP5556177B2 (en) * 2007-09-04 2014-07-23 ダイキン工業株式会社 Adsorption method and recovery method of fluorine-containing compounds
US8642804B2 (en) 2007-09-04 2014-02-04 Daikin Industries, Ltd. Method of adsorbing and method of recovering fluorine-containing compound
US9199862B2 (en) 2009-03-31 2015-12-01 Daikin Industries, Ltd. Method for adsorbing fluorocarboxylic acid having ether bond and method for collecting same
JP5985823B2 (en) * 2009-03-31 2016-09-06 ダイキン工業株式会社 Adsorption method and recovery method of fluorocarboxylic acid having ether bond
CN102378740A (en) * 2009-03-31 2012-03-14 大金工业株式会社 Method for adsorbing fluorocarboxylic acid having ether bond and method for collecting same
JP2015017111A (en) * 2009-03-31 2015-01-29 ダイキン工業株式会社 Method for adsorbing and recovering fluorocarboxylic acid having ether bond
CN102378740B (en) * 2009-03-31 2015-03-25 大金工业株式会社 Method for adsorbing fluorocarboxylic acid having ether bond and method for collecting same
WO2010113720A1 (en) * 2009-03-31 2010-10-07 ダイキン工業株式会社 Method for adsorbing fluorocarboxylic acid having ether bond and method for collecting same
WO2011096448A1 (en) * 2010-02-03 2011-08-11 旭硝子株式会社 Method of recovering anionic fluorinated emulsifiers
JP5720580B2 (en) * 2010-02-03 2015-05-20 旭硝子株式会社 Method for recovering anionic fluorine-containing emulsifier
US8492585B2 (en) 2010-02-03 2013-07-23 Asahi Glass Company, Limited Method for recovering anionic fluorinated emulsifier
WO2015152173A1 (en) * 2014-03-31 2015-10-08 旭硝子株式会社 Recovery method for anionic fluorine-containing emulsifier
CN106132525A (en) * 2014-03-31 2016-11-16 旭硝子株式会社 The recovery method of anionic fluorine-containing emulsifier
US20160376215A1 (en) * 2014-03-31 2016-12-29 Asahi Glass Company, Limited Method for recovering anionic fluorinated emulsifier
JPWO2015152173A1 (en) * 2014-03-31 2017-04-13 旭硝子株式会社 Method for recovering anionic fluorine-containing emulsifier
US9790163B2 (en) 2014-03-31 2017-10-17 Asahi Glass Company, Limited Method for recovering anionic fluorinated emulsifier
CN109052775A (en) * 2018-08-06 2018-12-21 绍兴齐英膜科技有限公司 The processing method of paranitrobenzoic acid production waste water

Similar Documents

Publication Publication Date Title
EP1856165B1 (en) Recovery of fluorinated surfactants from a basic anion exchange resin having quaternary ammonium groups
WO2002014223A1 (en) Method of separating anionic fluorochemical surfactant
JP4122228B2 (en) Suppressor chromatography and salt conversion system
KR101806823B1 (en) METHOD FOR PRODUClNG AQUEOUS SOLUTION OF TETRAALKYL AMMONIUM SALT
JPH08502830A (en) Ion chromatography using frequent regeneration of batch suppressors
CN108975556B (en) Method for purifying and recovering aged phosphoric acid polishing solution
KR101879370B1 (en) Process for producing tetraalkylammonium salt, and process for producing tetraalkylammonium hydroxide using same as raw material
JP2003094052A (en) Method for adsorbing and recovering emulsifier containing fluorine
JP2003220393A (en) Method for adsorptively recovering fluorine-containing emulsifier
WO2011036942A1 (en) Process for production of tetraalkylammonium hydroxide
JP2013542844A (en) Treatment of wastewater from the electroplating industry
JP2007283224A (en) Method for recovering fluorine-containing emulsifier
US8211950B2 (en) Amphoteric ion exchangers
KR101987409B1 (en) Method for producing tetraalkylammonium salt solution
CN105001371B (en) A kind of method that utilization molecular imprinting prepares PFOA sorbing materials
JP4977970B2 (en) Method for producing nonionic surfactant aqueous composition
JP6879966B2 (en) Electrolytic reagent concentrator for ion chromatography
JP2016203053A (en) Method and apparatus for regenerating ion exchange resin
JP2006181416A (en) Method for regenerating adsorbent and method for recovering fluorine-containing surfactant
JP6447628B2 (en) Method for recovering anionic fluorine-containing emulsifier
CN105944772A (en) Regeneration method of anion exchange filled column in efficient liquid chromatograph
EP3816623A1 (en) Longitudinal gradient chromatography columns
JPH07238113A (en) Three-dimensional styrene copolymer and nitrate ion adsorbent
JP2022028413A (en) Fluorine recovery method
Samatya et al. Column mode sorption of fluoride ion on Zr (IV)-immobilized resin prepared by surface template polymerization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100707