JPS5880888A - Integrated semiconductor laser - Google Patents

Integrated semiconductor laser

Info

Publication number
JPS5880888A
JPS5880888A JP17930481A JP17930481A JPS5880888A JP S5880888 A JPS5880888 A JP S5880888A JP 17930481 A JP17930481 A JP 17930481A JP 17930481 A JP17930481 A JP 17930481A JP S5880888 A JPS5880888 A JP S5880888A
Authority
JP
Japan
Prior art keywords
layer
region
active
output
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17930481A
Other languages
Japanese (ja)
Inventor
Kenichi Kobayashi
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17930481A priority Critical patent/JPS5880888A/en
Publication of JPS5880888A publication Critical patent/JPS5880888A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region

Abstract

PURPOSE:To obtain an integrated semiconductor laser which can be operated with a low threshold current and which can be readily manufactured by slowly forming a tapered shape in the thickness of a layer of a laser waveguide. CONSTITUTION:An active layer 1 and an output waveguide layer 2 having refractive index smaller than that of the layer 1 and larger than those of the first and second clad layers 3, 4 has a laser waveguide structure which is interposed between the first and second layers 3 and 4, and further has the first and second output regions 6, 7 removed with the layer 1 and the active region 5 which has the remaining layer 1. The thickness of the layer 2 in the region 4 is not uniform, but is the thinnest at the center, and increases in the thickness gradually toward the regions 6, 7, and increases larger in the thickness than the active layer in the vicinity of the boundary between the region 5 and the regions 6, 7. The light power distributions 8, 9, 10 increases in the distribution rate toward the layer 1, the power distribution of the boundary between the regions 5 and 7 is displaced to the side of the layer 2, approaches in shape to the power distribution in the region 7, the light coupling amount of the region 5 and the regions 6, 7 can be increased, thereby remarkably reducing the oscillating threshold current.

Description

【発明の詳細な説明】 本発明は製造が容易で光集積回路の一1l!素となる半
導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is one of the first optical integrated circuits that is easy to manufacture! Regarding the semiconductor laser that is the element.

従来、光−光集積回路用の中導体し−ずに紘、代表的な
奄のとして、LOC(ラージ、オプティカル、キャビテ
ィ)IIと集積二重導波路観等のものがある。上記の2
種のレーザともレーザ導波路は活性層と出力用等波路の
2層からな〕、さらに活性層を一部エッチングで除去し
た出力領域と活性層を残した活性領域の2領域を有する
。活性層と出力、用等波路層の層厚は全体で一様である
。この事によn、Loc@の半導体レーザでは活性領域
と出力領域の光の結合量が大自な構造にするには活性層
厚を出力用導波路層厚に比較して十分薄くしなければな
らない些そうすると、活性領域での電界の活性層中−門
る割合(分配率)が小−さくなp1発振しiI/%値電
流が高くなる。逆に。
Conventionally, there are LOC (Large, Optical, Cavity) II and integrated dual waveguide models as typical examples of medium conductors for optical-optical integrated circuits. 2 above
In both types of lasers, the laser waveguide consists of two layers: an active layer and an equal wave path for output], and further has two regions: an output region where part of the active layer is removed by etching, and an active region where the active layer is left. The layer thicknesses of the active layer and the output and wave path layers are uniform throughout. For this reason, in order to create a structure in which the amount of light coupling between the active region and the output region is reasonable in n,Loc@ semiconductor lasers, the active layer thickness must be made sufficiently thinner than the output waveguide layer thickness. If this is done, the ratio (distribution ratio) of the electric field to the active layer in the active region will be small, resulting in p1 oscillation, and the iI/% value current will increase. vice versa.

活性領域での電界の活性層への分配率を大歯くする構造
で紘、活性層厚は出力用導波路層厚に比較して同じ程度
かそれ以上にしなければならない。
The structure greatly increases the distribution ratio of the electric field to the active layer in the active region, and the active layer thickness must be approximately the same or greater than the output waveguide layer thickness.

この事紘先に述べ九活性領域と出力領域の光?結合量を
小さくシ、発振し龜い籠電流を高くする。
Is this the light of the nine active areas and output area mentioned earlier? The amount of coupling is reduced, oscillation is made, and the strong cage current is increased.

詳細は活性層と出力用導波路の屈折率を考慮した電磁界
分布によらなければならないが、端的に言えば、電界の
活性層への分配率と活性領域と出力領域間の結合を同時
に高くできないという事がLOC構造の大急な欠点であ
った。一方、集積二重導波路レーザは活性層と出力用導
波路層が結合導波路を構成するように作製しなければな
らないため、結晶成長に高度の制御性が螢求される。
The details must be based on the electromagnetic field distribution taking into account the refractive index of the active layer and the output waveguide, but to put it simply, it is necessary to simultaneously increase the distribution ratio of the electric field to the active layer and the coupling between the active region and the output region. The inability to do so was a major drawback of the LOC structure. On the other hand, since integrated dual waveguide lasers must be manufactured so that the active layer and the output waveguide layer form a coupling waveguide, a high degree of controllability is required in crystal growth.

本発明の目的は、低しきい線電流動作し、かつ製作容易
な集積中導体レーザを提供する事にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated conductor laser that operates at a low threshold current and is easy to manufacture.

本発明によれば、活性層と活性層よ支屈折率が小さい出
力用導波路層をさらに屈折率が小さいクラッド層によシ
はさみ込んだ導波路構造を有しその中に活性層の除去さ
れた出力領域と活性層が残された活性領域の2領域含み
、活性領域で出力導波路層が出力領域と活性領域の境界
から活性領域のほぼ中央向って数10ンクpンから数1
00 建クロンの長さで除々に薄くなる構造を有してい
る集積半導体レーザが得られる。
According to the present invention, the waveguide structure has a waveguide structure in which an active layer and an output waveguide layer having a smaller refractive index than the active layer are further sandwiched between cladding layers having a smaller refractive index, and the active layer is removed therein. In the active region, the output waveguide layer extends from several tens of nanometers to several tens of nanometers from the boundary between the output region and the active region toward the center of the active region.
An integrated semiconductor laser having a structure that becomes gradually thinner over a length of 0.00 cm is obtained.

本発明の集積半導体レーザでは活性領域での電界の活性
層への光の分配率を高くシ、かつ出方領域と活性領域の
近傍で紘活性層厚に比べ出力用導波路層厚を大きくシ、
電界の出力用導波路層中に占める割合を大きくさせるこ
とができる。このことによ〕、低しきい線電流動作させ
ることができる。さらに活性層と出力用導波路層社隣接
しているので、集積二重導波路の場合のような結晶成長
の高度な制御性を要求しないので製作は容易にできる。
In the integrated semiconductor laser of the present invention, the electric field in the active region is made to have a high distribution ratio of light to the active layer, and the output waveguide layer thickness is made larger than the active layer thickness in the output region and in the vicinity of the active region. ,
The proportion of the electric field in the output waveguide layer can be increased. This allows low threshold current operation. Furthermore, since the active layer and the output waveguide layer are adjacent to each other, fabrication is easy because high controllability of crystal growth is not required as in the case of an integrated double waveguide.

以下図面を用いて1本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は1本発明の一実施列のレーザ共振器方向の断面
図を表わす、この実施的は、活性層lと活性層lよシ屈
折率が小さく、第1.第2のクラッド層3.4より屈折
率が大きい出方用−波路層2の2層が第1.第2のクラ
ッド層3,4にはさまれ九レーザ導波路構造を有し、か
っ出力用導波路層2と近接する活性層lが除去された第
1゜si!2の出力領域6,7と活性層1が残され九活
性領域51″有する。活性領域5での出力用導波路層2
の層厚は一様でなく、中央部で最も薄く、第1゜第2の
出力領域6.7に向って除々に厚くシ、活性領域5と第
1.第20出力領域6.7の境界近と比較して大きくな
る構造とする。活性領域5の中央部で出力用導波路層が
部分的に一様である場合も含む。9.10.11a[中
の各々の位置における光のパワー分布であ〕、9のパワ
ー分布では活性層1への分配率が高く、10の活性領域
5と出力領域7の境界のパワー分布は出力導波路層2−
に寄り、出力領域7でのパワー分布に形状が近くなり、
活性領域5と第1.第2の出力領域6゜7の光の結合量
も大きくすることができ、その緒JIIf、発振し色い
線電流を大輪に低減する事ができえ。
FIG. 1 shows a cross-sectional view in the laser resonator direction of one embodiment of the present invention. In this embodiment, the active layer l has a smaller refractive index than the active layer l, and The two layers of the output-wave path layer 2 having a higher refractive index than the second cladding layer 3.4 are the first cladding layer 3.4. It has a nine laser waveguide structure sandwiched between the second cladding layers 3 and 4, and the active layer l adjacent to the output waveguide layer 2 has been removed. 2 output regions 6, 7 and the active layer 1 are left with nine active regions 51''.The output waveguide layer 2 in the active region 5
The layer thickness is not uniform, being thinnest in the center and gradually thickening toward the first and second output regions 6, 7, and the active region 5 and the first and second output regions 6, 7. It has a structure that is larger than near the boundary of the 20th output region 6.7. This also includes a case where the output waveguide layer is partially uniform in the center of the active region 5. 9.10.11a [The power distribution of light at each position in] In the power distribution of 9, the distribution ratio to the active layer 1 is high, and the power distribution of the boundary between the active region 5 and the output region 7 of 10 is as follows. Output waveguide layer 2-
, the shape becomes close to the power distribution in output region 7,
The active region 5 and the first. The amount of light coupled to the second output region 6°7 can also be increased, and the oscillating colored line current can be reduced to a large extent.

第2図は@1図に示す半導体レーずの製造V&を説明す
るための断面図である。第2図−)に示すように(10
G)laP基板20上に通常の液相成長によ如、活性層
の組成よりバンドギャップの大色くInP  よ〕も小
さいGaInAsPからなるfllLlの4元層21t
O,5〜1.0μm平坦に成長させる。その得られたウ
ェファを第2図(b)K示すように活性領域の長さが2
00μm”−400j1mKなるようにエツチングマス
ク30をかけプツズ彎イオンエツチングあるいは逆スパ
ツタ等によりエツチングを行なう。この際、エツチング
形状がゆるやかなチー /<−状にあるようにマスクと
ウェファ間には適当な空間をもうける。上記の工程によ
〕得られたテーパー状にエツチングされたクエンチをエ
ツチングの際に導入された真面欠陥をブロムメタノール
によりエツチングで落し2回目の液相成長によシ出力用
等波路層2x<mlの4元層に相当)と同じ組成のGa
InムsP4元層を0.1μm程度その上に積層させ、
さちに連続して活性層22、InPクラッド層23を成
長させ第2図(C)に示す半導体レーザ構造を作製する
。さらに第2図(d)のようにケ(カルエツチングによ
p出力用導波路層21の層厚が継大になりでいる部分の
活性層22を含めその上部を除去し、表面に絶@824
を作製し通常の電極形成方法によ)電極を形成する。以
上のようにして作製された半導体し=ザはレーザ導波−
〇−厚が一様でなく、ゆるやかなテーパー形状である事
によ)散乱損失は小さく、かつ電流が注入される活性領
域への活4&領域の電界強度と出力領域における出力用
導波路への光の結合をともに大きくすることができるの
で低しきい値電流が可能なものである。さらに活性層と
出力用導波路層とは隣接したLOCfi構造であるので
活性層、導波路層の形成には高い制御性紘必要なく製作
は容易であった。
FIG. 2 is a sectional view for explaining the manufacturing process V& of the semiconductor laser shown in FIG. As shown in Figure 2-), (10
G) A quaternary layer 21t of fllLl made of GaInAsP, which has a band gap larger than that of the active layer composition and smaller than InP, is formed on the laP substrate 20 by normal liquid phase growth.
O, 5-1.0 μm flat growth. The length of the active region is 2 as shown in FIG. 2(b)K.
Etching is carried out by ion etching or reverse sputtering using an etching mask 30 so that the etching thickness is 00 μm" - 400 mK. At this time, an appropriate space is placed between the mask and the wafer so that the etching shape is a gentle chi/<- shape. Create a space.The tapered quench obtained by the above process is etched to remove the serious defects introduced during etching with bromine methanol, and then the second liquid phase growth process is used for output, etc. Ga with the same composition as the wave layer (corresponding to a quaternary layer with 2x < ml)
An InMusP quaternary layer of about 0.1 μm is laminated thereon,
Immediately, an active layer 22 and an InP cladding layer 23 are successively grown to produce the semiconductor laser structure shown in FIG. 2(C). Furthermore, as shown in FIG. 2(d), the upper part of the p-output waveguide layer 21, including the active layer 22, where the layer thickness has increased due to cul-etching, is removed, leaving no trace on the surface. 824
and form an electrode using a normal electrode forming method). The semiconductor fabricated as described above is a laser waveguide.
〇-The thickness is not uniform and the shape is gently tapered) The scattering loss is small, and the electric field strength of the active region to the active region where the current is injected and the electric field strength to the output waveguide in the output region are small. Since the coupling of light can be increased, a low threshold current is possible. Furthermore, since the active layer and the output waveguide layer are adjacent to each other in the LOCfi structure, the formation of the active layer and the waveguide layer does not require high controllability and is easy to manufacture.

本発明は上記の望ましい実施例の他に種々の変形が可能
である。半導体材料線InGaAs1’  系に限るこ
とはな(GaAJLAs系等他の材料でも良い。
The present invention can be modified in various ways in addition to the preferred embodiments described above. The semiconductor material line is not limited to InGaAs1' series (other materials such as GaAJLAs series may also be used).

また、出力領域の出力用導波路上に周期的な凹凸を形成
して、いわゆる分布帰ll臘レーザを形成することも可
能である。また、出力領域は1つでもよい。
It is also possible to form a so-called distributed feedback laser by forming periodic irregularities on the output waveguide in the output region. Further, the number of output areas may be one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体レーザの一実施岡を示す#if
fi1mであり第2図(a)〜(d)は第1図に示した
半導体レーザの製造方法を示す工程断面図である。 l、22・・・・・・活性層、2,21・・・・・・出
力用導波路111,3.4・・・・・・第1.第2のク
ラッド層、5・・・・・・活性領域、6.7・・・・・
・出力領域、8,9.10・・・・・・図中釜々の位置
における光のパワー分布%20・・・・・・InP基板
、23・・・・・・InPクラッド層、24・・・・・
・絶縁膜、30・・・・・・エツチングマスクである。 へ   リ 手続補正書(自発) 昭和  V“紀 日 1、事件の表示   昭和66年砦 許 願第1グeg
o番号2、m1llの名称  集積半導体レーず3、補
正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 4、代理人 明細書Or発明の詳#I*WRIIJの欄。 6 補正の内容
FIG. 1 shows an implementation of the semiconductor laser of the present invention #if
fi1m, and FIGS. 2(a) to 2(d) are process cross-sectional views showing a method of manufacturing the semiconductor laser shown in FIG. 1. l, 22... Active layer, 2, 21... Output waveguide 111, 3.4... 1st. Second cladding layer, 5...Active region, 6.7...
・Output region, 8, 9.10... Light power distribution % at the position of the pot in the figure 20... InP substrate, 23... InP cladding layer, 24.・・・・・・
- Insulating film, 30... Etching mask. Procedural amendment (voluntary) Showa V “Ki Day 1, Indication of the incident 1986 Fortress permission application No. 1 eg
o number 2, name of m1ll integrated semiconductor laser 3, person making the amendment Relationship with the case Applicant 5-33-1-4 Shiba, Minato-ku, Tokyo, attorney's specification or invention details #I*WRIIJ Column. 6 Contents of amendment

Claims (1)

【特許請求の範囲】[Claims] 活性層と前記活性層に隣接した前記活性層よ〕屈折率の
小さい出力用導波路層とその2層の両側をはさみ込んだ
その2層よりさらに屈折率の小さなりラッド層を含む導
波路構造を有し、かつ、前記活性層を除去した出力領域
と前記活性層を残した活性領域の2領域を有する半導体
レーザにおいて、前記活性領域内で前記出力用導波路層
厚が前記活性領域のほぼ中央へ向って徐々に減少してい
ることを特徴とする集積半導体レーザ。
an active layer and the active layer adjacent to the active layer; a waveguide structure including an output waveguide layer with a small refractive index and a rad layer with a refractive index even smaller than the two layers sandwiching both sides of the two layers; and has two regions, an output region from which the active layer is removed and an active region from which the active layer remains, in which the output waveguide layer thickness within the active region is approximately equal to that of the active region. An integrated semiconductor laser characterized by a gradual decrease toward the center.
JP17930481A 1981-11-09 1981-11-09 Integrated semiconductor laser Pending JPS5880888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17930481A JPS5880888A (en) 1981-11-09 1981-11-09 Integrated semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17930481A JPS5880888A (en) 1981-11-09 1981-11-09 Integrated semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5880888A true JPS5880888A (en) 1983-05-16

Family

ID=16063481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17930481A Pending JPS5880888A (en) 1981-11-09 1981-11-09 Integrated semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5880888A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244192A (en) * 1975-10-06 1977-04-06 Hitachi Ltd Optical integrated circuit
JPS562693A (en) * 1979-06-20 1981-01-12 Agency Of Ind Science & Technol Semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244192A (en) * 1975-10-06 1977-04-06 Hitachi Ltd Optical integrated circuit
JPS562693A (en) * 1979-06-20 1981-01-12 Agency Of Ind Science & Technol Semiconductor laser device

Similar Documents

Publication Publication Date Title
JP3325825B2 (en) Three-dimensional periodic structure, method for producing the same, and method for producing film
US4589117A (en) Butt-jointed built-in semiconductor laser
US3806830A (en) Composite semiconductor laser device
JPS5880888A (en) Integrated semiconductor laser
KR930010131B1 (en) Tapered semiconductor waveguides and method of making same
JPH04218003A (en) Method for adjusting operating characteristic of integrated optical device
JPS5857770A (en) Semiconductor laser element
JPH04159513A (en) Mode selecting optical element
JPS61234585A (en) Optical integrated circuit and manufacture thereof
JPS5911690A (en) Semiconductor laser device
JPH01201979A (en) Semiconductor laser
JPH02298923A (en) Semiconductor optical switch
JPH0228389A (en) Semiconductor laser element
JPS61182027A (en) Non-linear optical waveguide element
JPS6442884A (en) Semiconductor laser element
JPS62293686A (en) Semiconductor laser
JPS6396638A (en) Waveguide type optical switch
JPH0466906A (en) Optical waveguide element and its manufacture
JPH01175792A (en) Buried-type semiconductor laser and manufacture of the same
JPS6044835B2 (en) semiconductor light emitting device
JPS6370471A (en) Semiconductor laser
JPS60222819A (en) Optical integrated circuit and its production
JPS5967680A (en) Photo bi-stable element
JPS62136625A (en) Manufacture of optical switch
JPS603173A (en) Semiconductor laser device