JPS587894A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS587894A
JPS587894A JP10589081A JP10589081A JPS587894A JP S587894 A JPS587894 A JP S587894A JP 10589081 A JP10589081 A JP 10589081A JP 10589081 A JP10589081 A JP 10589081A JP S587894 A JPS587894 A JP S587894A
Authority
JP
Japan
Prior art keywords
layer
active region
groove
semiconductor laser
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10589081A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueno
上野 眞資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10589081A priority Critical patent/JPS587894A/en
Publication of JPS587894A publication Critical patent/JPS587894A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To oscillate a semiconductor laser in a stable fundamental lateral mode by forming a V-shaped groove on a multilayer semiconductor layer and forming an active region therein, thereby preventing the leakage current. CONSTITUTION:Three clad layers, i.e., an n type buffer layer 11, a P type block layer 12 and a current reducing n type clad layer 13 are sequentially grown on an n type InP substrate 10. Thereafter, a V-shaped groove is formed in the clad layers formed of the three layers. The depth of the groove is formed to the degree to produce only the fundamental lateral mode in the length (the width of the active region 15) of the bottom side of an inverted triangular active region 15 formed on the bottom of the groove to coincide with the surface of the layer 12, i.e., the boundary between the layers 12 and 13 to the surface. Subsequently, a P type clad layer 16 and a cap layer 17 are continuously grown, a Cd diffused region 18 is formed, thereby obtaining the desired semiconductor laser.

Description

【発明の詳細な説明】 本発明は半導体レーザに関するものである。[Detailed description of the invention] The present invention relates to a semiconductor laser.

111P/InGaAsP等の結晶材料を用いた長波長
生4俸レーザは光ファイバの伝送損失の低し)光源とし
て注目され、その実用化が進められている。実用化に際
しては広い動作電流にわたって安定した単−横モード発
振をし、更に緩和振動の抑圧されたすぐれた動特性を示
す半導体レーザが必要となる。これらの要求を満たすた
めに各種のストライプ構造が提案され試作されている。
Long-wavelength lasers using crystal materials such as 111P/InGaAsP are attracting attention as light sources for optical fibers (with low transmission loss), and their practical use is progressing. For practical use, a semiconductor laser is required that exhibits stable single-transverse mode oscillation over a wide range of operating currents and exhibits excellent dynamic characteristics with suppressed relaxation oscillations. In order to meet these requirements, various striped structures have been proposed and prototyped.

中でもヒラオ等によってジェルナル、オブ、アプライド
、フィジックス(J ournal of Appl 
ied Ph−ysics )誌51巻4539頁〜4
540頁に報告されているInP/InGaAsP B
H半導体レーザは活性領域であるInGaAsP (λ
=1.3μm)層を屈折率が低くかつクラッド層となる
InPで囲んだ構造をもち、活性領域に隣接したクラッ
ド領域の一部に′1流注入領域を設け、その両端は反対
の電気的特性を有するクラ、ド層で埋込んだものである
0該BH牛導体レーザは活性領域の垂直方向のみならず
水平方向もクラッド層を有しているため、屈折率差に基
づく矩形状の屈折率分布を持ち安定な憤モード発振を維
持し続けるばかりでなく、活性領域と電流閉込め領域と
が一致しており、@値’giが小さくかつ緩和振動の抑
圧された動特性を示すなどすぐれた特性を期待する事が
できる。
Among them, Hirao et al.
ied Physics), Vol. 51, pp. 4539-4
InP/InGaAsP B reported on page 540
The active region of the H semiconductor laser is InGaAsP (λ
= 1.3 μm) layer is surrounded by InP which has a low refractive index and serves as a cladding layer, and a '1 current injection region is provided in a part of the cladding region adjacent to the active region, and both ends of the cladding region are Since the BH conductor laser has cladding layers not only in the vertical direction of the active region but also in the horizontal direction, rectangular refraction based on the difference in refractive index occurs. Not only does it continue to maintain stable induration mode oscillation with a constant rate distribution, but the active region and current confinement region coincide, the @ value 'gi is small, and it exhibits dynamic characteristics with suppressed relaxation oscillations. You can expect the same characteristics.

しかし活性領域をクラッド層内に埋込んだままの状態で
は活性領域に隣接し電流注入領域となるクラッド層から
その両端に隣接したクラッド層に電流が漏れ流れるため
、活性領域へ有効に電流が注入されず閾値電流が上昇し
、温度特性がわるくなるなどの欠点を有していた。この
欠点をおぎなうため通常は漏れ′WttILに対して電
流注入領域と同一の電気的特性を有するクラッド1@を
活性領域両端に設はブロック層として用いている。しか
しブロック層が厚くなり電流注入領域となるクラッド層
と接した場合には電流注入領域から同一の電気的特性を
有するブロック層へ電流が流れ漏れ電流は急激に増大す
る。又、一方ブロック層が薄い湯表面が活性領域の表面
と一致するよう(こブロック層を成長する必要があり、
この成長の制御はきわめて困難であり再現性よく作る事
は不aJ能であった。頁にBH牛導体レーザでは基本横
モード発振を得るにはエツチングにより幅2μm以下の
活性領域をつくる必要があり、その上ブリック層及び埋
込みクラッド層等の成長をやりやすくする為、エツチン
グの深さ及び形状を制御する必要がありきわめて複雑な
工aを有していた。更に上記ブロック層の厚さは活性領
域厚と同等で〜0.2μm前後であり、漏れ電流を完全
に阻止する事はできな力)った。
However, if the active region remains embedded in the cladding layer, current leaks from the cladding layer adjacent to the active region and serves as a current injection region to the cladding layers adjacent to both ends of the cladding layer, which effectively injects current into the active region. However, it has disadvantages such as an increase in threshold current and poor temperature characteristics. To overcome this drawback, a clad 1@ having the same electrical characteristics as the current injection region for leakage WttIL is usually provided at both ends of the active region and used as a blocking layer. However, when the block layer becomes thick and comes into contact with the cladding layer serving as the current injection region, current flows from the current injection region to the block layer having the same electrical characteristics, and the leakage current increases rapidly. Also, on the other hand, it is necessary to grow the block layer so that the surface of the hot water with a thin block layer coincides with the surface of the active region.
Controlling this growth is extremely difficult, and it has been impossible to produce it with good reproducibility. In order to obtain fundamental transverse mode oscillation in BH conductor lasers, it is necessary to create an active region with a width of 2 μm or less by etching, and in order to facilitate the growth of brick layers, buried cladding layers, etc., the etching depth must be increased. It was necessary to control the shape and shape, and the process was extremely complicated. Furthermore, the thickness of the blocking layer is approximately 0.2 μm, which is equivalent to the thickness of the active region, and thus it is impossible to completely block leakage current.

本発明の目的は上記欠点を除去し漏れ電流を完全に阻止
し活性領域水平横方向に電流閉じ込め領域を有し閾値電
流が低いのみならず活性領域全体を垂直方向及び水平横
方向を屈折率の小さい物質で埋込みきわめて安定な基本
横モード発振をする本発明の半導体レーザは少なくとも
ブロック層と、このブロック層に隣接した電流狭窄用ク
ラッド層とを備えた多層構造の半導体層に、前記電流狭
窄用クラッド層側からv#lを形成し、このV溝中(こ
成長面が前記ブロックM表面(すなわちブロック層と1
4流狭窄用クラッド層との界面)に一致するようにして
活性領域を形成し、この活性領域及び電流狭窄用クラッ
ド層に隣接し1層又は多層から成る半導体層を形成した
構造を有している。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, completely block leakage current, have a current confinement region in the horizontal and horizontal directions of the active region, and not only have a low threshold current but also reduce the refractive index of the entire active region in the vertical and horizontal directions. The semiconductor laser of the present invention, which is embedded with a small material and emits extremely stable fundamental transverse mode oscillation, has a semiconductor layer with a multilayer structure including at least a blocking layer and a current confining cladding layer adjacent to the blocking layer. V #l is formed from the cladding layer side, and in this V groove (the growth surface is on the surface of the block M (i.e., the block layer and one layer).
It has a structure in which an active region is formed so as to coincide with the interface with the cladding layer for four current confinement, and a semiconductor layer consisting of one layer or multiple layers is formed adjacent to the active region and the cladding layer for current confinement. There is.

本発明の原理は工、チングによる溝の形成と溝内部への
結晶成長技術を応用したものである0本発明によれば三
層のクラッド層すなわちバッファ層、ブロック層電流狭
窄用クラッド層と順次成長させる。このときブロック層
の電導型は他の二層とは反対にする。この後、上記三層
力)ら構成されたクラッド層内に■#Iを形成する。■
溝の深さは、ブロック層表面、すなわちブロック層と′
電流狭窄用クラッド層との界面に表面が一致するように
して溝底部に形成される逆三角形活性領域の底辺の長さ
く活性領域の幅)が、基本横モードのみが生じる程度と
なるようにする。この場合電導型は異なっているが三層
は共に同一組成の層であるので制御よ(エツチングする
事ができ、形成され6IIlの形状は一定で中心対称と
なるV溝とする事ができ6゜ 例えばInGaAsP/InP系を例にとるとzl−I
nP基板(100)面上にn−InP層、p−jnP層
、n−InP層と順次成長した場合(Oll)方向に溝
を形成すると(111)面のエツチング速度が速くV溝
が形成される。このとき二つの(111)面で形成され
るV溝のV字型の角度は半導体材料と工、チンダ液が決
まれば常に一定になるのでV隣の形状はV溝の一番幅広
部分の長さで一義的に定まる。従って■溝の形状はV@
工、チング用マスクにあけたストライプ幅によって定ま
る事になり、このストライプ幅を選択すれば任意の深さ
の■婢を形成する事ができる。しかも一端V溝が形成さ
れると更なる工、チングを行なってもエツチングはそn
以上進まず形状は一定に保たnる。従ってエツチングむ
らなくウェハー全面に同一形状の■溝を再現性よく形成
する事が可能である。
The principle of the present invention is to apply the technology of forming grooves by etching and etching and growing crystals inside the grooves.According to the present invention, three cladding layers, namely a buffer layer, a blocking layer and a cladding layer for current confinement, are sequentially formed. Make it grow. At this time, the conductivity type of the block layer is opposite to that of the other two layers. After this, #I is formed in the cladding layer composed of the above three layers. ■
The depth of the groove is determined by the block layer surface, that is, the block layer and
The length of the base of the inverted triangular active region formed at the bottom of the trench so that the surface coincides with the interface with the current confining cladding layer (the width of the active region) is such that only the fundamental transverse mode occurs. . In this case, although the conductivity types are different, the three layers have the same composition, so they can be controlled (etching can be performed, and the shape of the formed 6IIl is constant and can be made into a centrally symmetrical V-groove. For example, taking the InGaAsP/InP system as an example, zl-I
When an n-InP layer, a p-jnP layer, and an n-InP layer are grown sequentially on the (100) plane of an nP substrate, if a groove is formed in the (Oll) direction, the etching rate of the (111) plane is faster and a V-groove is formed. Ru. At this time, the angle of the V-shape of the V-groove formed by the two (111) planes will always be constant once the semiconductor material, process, and tinda liquid are determined, so the shape next to the V is the length of the widest part of the V-groove. It is uniquely determined by Therefore, the shape of the groove is V@
This is determined by the stripe width formed in the mask for etching and etching, and by selecting this stripe width, it is possible to form a hole of any depth. Moreover, once a V-groove is formed at one end, even if further machining or etching is performed, the etching will not occur.
It does not progress any further and the shape remains constant. Therefore, it is possible to form grooves of the same shape on the entire surface of the wafer with good reproducibility without uneven etching.

形成されるv4が同一形状であるので次に行なう■溝内
での結晶成長の制御も容易になる。更にv1#内での結
晶成長は次の如き利点をもつ。すなわち液相成長の場合
■溝内での成長速屍はその外ml(100)平面への成
長にくらべて約4倍sl寂速いのでV溝内に主に活性領
域を形成する事が可能である。このとき外部平面上に成
長する活性層はきわめてうす<、シかもキャップ層から
の電流の流れを規定しV溝内に電fltを集中する事が
できるのでレーザ特性上何ら支障をきたさない。
Since the formed v4s have the same shape, it becomes easy to control the crystal growth within the groove (1) to be performed next. Furthermore, crystal growth within v1# has the following advantages. In other words, in the case of liquid phase growth, the growth rate within the groove is about 4 times faster than the growth on the ml (100) plane outside, so it is possible to form active regions mainly within the V groove. be. At this time, the active layer grown on the external plane may be extremely thin, but the current flow from the cap layer can be regulated and the electric current flt can be concentrated in the V-groove, so that it does not cause any problem in terms of laser characteristics.

又■溝内の液相成長をおこなう場合、メルト量が少い状
態でかつクーリング速度をゆっくり過飽和度の割合を小
さくして成長すれば成長速度はおそくなるので成長厚を
制御よ(形成する事ができる◎従って前記した如く■溝
の形状が中心対称である効果も作用して、ブロック層の
厚さまで制御よく活性領域を形成することができる。
Also, when performing liquid phase growth in the groove, the growth rate will be slow if the melt amount is small and the cooling rate is slow and the supersaturation ratio is small, so the growth thickness should be controlled (formation ◎ Therefore, as described above, ◎ the effect that the shape of the groove is centrally symmetrical also works, and the active region can be formed with good control up to the thickness of the block layer.

活性領域は、その表面がプロ、り層表面、すなわちブロ
ック層とブロック層上に形成された電流狭窄用クラッド
層との界rkJCご一致するようにV@底部に形成する
。v#l底部に活性領域を形成するのであるから、活性
領域の幅を狭くすることは答易である。すなわち、活性
領域の幅はV溝の深さを制御することで容易に変えるこ
とができ製作が簡単であるが中心対称である効果も作用
してグロック層の厚さまで制御よく活性領域を成長する
事ができる。
The active region is formed at the bottom of the active region so that its surface coincides with the layer surface, that is, the boundary between the block layer and the current confinement cladding layer formed on the block layer. Since the active region is formed at the bottom of v#l, it is easy to narrow the width of the active region. That is, the width of the active region can be easily changed by controlling the depth of the V-groove, and manufacturing is simple, but the center-symmetrical effect also works to allow the active region to grow in a well-controlled manner up to the thickness of the Glock layer. I can do things.

次に活性領域及び電流狭窄用クラッド層に隣接させ電流
狭窄用クラッド層と反対の電導型クラッド層(最上層の
クラッド層)で■溝と電流狭窄用クラッド層とをうめつ
くし更にキャップ層を形成し半導体レーザを得る。特に
このときキャップ層の電導性を隣接した最上層のクラッ
ド層と反対に−し、拡散などで電流注入口をV@上に位
置するように形成すれば、注入IIC流のクラッド層内
での横広がりは少ないので有効にvTs内にのみvLf
L集申させる事ができる。
Next, fill the groove and the current confinement cladding layer with a conductive type cladding layer (top cladding layer) adjacent to the active region and the current confinement cladding layer and opposite to the current confinement cladding layer, and then form a cap layer. and obtain a semiconductor laser. In particular, if the conductivity of the cap layer is opposite to that of the adjacent top cladding layer and the current injection port is formed above V@ by diffusion, etc., the injection IIC flow in the cladding layer can be improved. Since the lateral spread is small, it is effective to apply vLf only within vTs.
L can be compiled.

特に従来構造ではエツチングによって形成するストライ
プ状領域は左右非対称になりゃすいばかりでなくウェハ
ー全面に一学なストライプ状領域を形成する事はきわめ
て困難であり、ブロック層が活性層上部に隣接したクラ
ッド層とつながりゃすく漏れ電流が増大するば力)って
なく歩留りがきわめて悪く再現性もなかった。
In particular, in conventional structures, the striped regions formed by etching tend to be asymmetrical, and it is extremely difficult to form uniform striped regions over the entire wafer. There was no connection (which would increase the leakage current), and the yield was extremely poor and the reproducibility was poor.

一方、本発明の構造ではクラッド層内に形成するV溝の
形状が固定されており、かつ成長ウェハー全面にわたっ
て同一形状で一様に形成する事ができるため、活性層の
成長制御が容易でかつブロック層に隣接して形成する事
ができ、歩留り再現性共にきわめてすぐれている。更に
基本横モード発振を維持するには活性領域幅を約2μm
以下にする必要がある為従来構造ではストライプ状領域
の活性層の幅を2μm11度以下にエツチングで副活性
領域の成長厚を制御するだけで容易に2μm以下の活性
層厚をもつ活性領域を形成する事ができる。
On the other hand, in the structure of the present invention, the shape of the V-groove formed in the cladding layer is fixed and can be formed uniformly over the entire surface of the growth wafer, making it easy to control the growth of the active layer. It can be formed adjacent to the block layer and has excellent yield and reproducibility. Furthermore, to maintain fundamental transverse mode oscillation, the active region width should be approximately 2 μm.
In the conventional structure, the width of the active layer in the striped region is 2 μm or less at 11° or less, and by simply controlling the growth thickness of the sub-active region, an active region with an active layer thickness of 2 μm or less can be easily formed. I can do that.

又、本発明ではブロック層を厚(する事ができ、その上
活性領域に隣接して電流狭窄領域を形成しているので漏
n、1を流もなくきわめて低い閾値電流で発振可能であ
る0特に、V@内にガイド層を形成して、ガイド層及び
ブロック層に隣接して活性層を形成する場合(この場合
、活性領域はガイド層と活性層とから構成されている。
In addition, in the present invention, the blocking layer can be made thicker, and since the current confinement region is formed adjacent to the active region, oscillation is possible with no leakage and an extremely low threshold current. In particular, when a guide layer is formed in V@ and an active layer is formed adjacent to the guide layer and the block layer (in this case, the active region is composed of the guide layer and the active layer).

)には活性領域幅を広くしても基本横モード発振を維持
できるのでブロック層を任意に厚くする事ができ、より
効果的である。
), the fundamental transverse mode oscillation can be maintained even if the width of the active region is widened, so the block layer can be made thicker as desired, which is more effective.

本発明によって形成された半導体レーザの活性領域の断
面は三角形になっておりかつ活性領域のまわりがそれよ
り屈折率の低いクラッド層でかこまれている為、屈折率
ガイディング機構をもち等心円的な点光源を得る事がで
き、ファイバーとの結合率を上昇させる拳ができる。
The cross section of the active region of the semiconductor laser formed according to the present invention is triangular, and the active region is surrounded by a cladding layer with a lower refractive index, so it has a refractive index guiding mechanism and has a concentric circle. It is possible to obtain a point light source that increases the coupling rate with the fiber.

又、活性層に隣接してガイド層を設けた場合にもガイド
層へ光がしみ出し活性領域水平及び垂直方向の光の広が
り角は同程度になり等心円的な点光源を得る事ができる
Furthermore, even when a guide layer is provided adjacent to the active layer, light seeps into the guide layer, and the spread angles of light in the horizontal and vertical directions of the active region are approximately the same, making it possible to obtain a concentric point light source. can.

すなわち本発明による半導体レーザは次の如き効果を有
する。■本発明はV溝を形成しその内部に活性領域を形
成した構造であるが、同一形状のV溝を再現性よくかつ
高歩留りで形成できしかも幅の狭い活性領域を容易に制
御よく成長する事ができ製作が容易で再現性にすぐれて
いる。■ブロツク層は厚くしかも活性領域両端に隣接し
ているため漏れ電流を阻止できるばかりでなく活性領域
に隣接して電流狭窄機構が形成されているのできわめて
低い閾値電流で発振する事ができる。■活性領域は屈折
率の低い層でかこまれているので屈折率ガイディング機
構を持ち安定な基本横モード発振を維持する事ができる
。■活性領域垂直、水平両方向の光の広がり角を同1!
[1こする事ができ等心円に近い点光源にファイバーと
の結合効率を上昇させる事ができる。
That is, the semiconductor laser according to the present invention has the following effects. ■The present invention has a structure in which a V-groove is formed and an active region is formed inside it. V-grooves of the same shape can be formed with good reproducibility and high yield, and narrow active regions can be easily grown with good control. It is easy to manufacture and has excellent reproducibility. (2) Since the blocking layer is thick and adjacent to both ends of the active region, it can not only block leakage current, but also has a current confinement mechanism formed adjacent to the active region, allowing oscillation with an extremely low threshold current. ■Since the active region is surrounded by layers with a low refractive index, it has a refractive index guiding mechanism and can maintain stable fundamental transverse mode oscillation. ■Active area The spread angle of light in both vertical and horizontal directions is the same!
[1] It is possible to increase the coupling efficiency with the fiber to a point light source close to equicentric circles.

以下図面を用いて本発明の一実施例について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の半導体レーザの製造工程途中の断面図
を示している。まず、(100)面n−InP基板10
上に液相成長でn−InPバクファ層1層管1 fi 
ms p−I nP 9ラッド層12を1μm、 n−
Inpit#:、狭窒用クラッド層13を1.5μm連
続して成長させる口その後クラッド層13上に8i0z
 @ 14をつけフォトレジスト法で(011)に4μ
mのストライプをぬきBrメタノールエツチング浴赦で
エツチングしていく。(111)面がエツチングされV
溝100が形成される。ここまでの工程で得られる構造
が第1図である。このときV溝は中心線に対し左右対称
となりV溝の片面と中心線とのなす角は常に35度16
分である事が本発明者等によって明らかになった。従っ
て上記各層の厚さ及び工、チング用マスク幅の場合■溝
の深さは2.8μmとなりn−InPバッファ層1層内
1内溝の先端;1・01が0.3μmの深さに達する。
FIG. 1 shows a cross-sectional view of the semiconductor laser of the present invention during the manufacturing process. First, (100) plane n-InP substrate 10
1 fi layer of n-InP buffer layer on top by liquid phase growth
ms p-I nP 9 rad layer 12 is 1 μm, n-
Inpit #: 8i0z on the cladding layer 13 after which the cladding layer 13 for narrow nitrogen is continuously grown to a thickness of 1.5 μm.
@ Attach 14 and add 4μ to (011) using photoresist method.
Remove the M stripe and etch it using a Br methanol etching bath. (111) plane is etched and V
A groove 100 is formed. The structure obtained through the steps up to this point is shown in FIG. At this time, the V groove is symmetrical with respect to the center line, and the angle between one side of the V groove and the center line is always 35 degrees 16
The present inventors have found that the Therefore, in the case of the thickness of each layer and the width of the etching mask shown above, the depth of the groove is 2.8 μm, and the tip of the inner groove in layer 1 of the n-InP buffer layer; 1.01 has a depth of 0.3 μm. reach

−担■溝が形成されるとそれ以上エツチングは進まない
事も本発明者等によって明らかになった。こうして一定
形状の■溝がウェハー上に再現性よく形成される(第1
図)。次に5iQz膜を除去し■溝内にアンドープJn
QaAsP (λ= 1.3pm)活性層15(この活
性層が活性領域となる)を深さ1.3μm、p−InP
 71116をn−InP電流狭窄用クラッドN113
上に厚さ2.5μmになるようにV溝内を埋込んで成長
し、さらにn−InGaAsP (2m1.1.c<m
)キヤ、プ層1’7を連続して液相成長させる。こうし
て活性領域成長面はブロック層12の成長面と一致し、
又、活性領域の成長面の幅は1.8μmになり基本横モ
ード発振を維持す6事が可能となる。キャブ層17成長
面上に8i02膜をっけフォトレジスト法で■溝上に位
置する幅3μmのストライプ状の窓をあけCdzPsの
拡散ソースとともに真空の石英容器中に封入する。これ
を566℃で1時間加熱するとCdが拡散されその拡散
先端102はp−InpH16中深さQ、2μm程度に
達する(Cd拡散領域1B)。次に8i0z膜を除去し
p形オーミックコンタクト19を基板@tこはn形オー
ミ、クコンタクト20をそnぞれつけ、第2図に示した
構造の半導体レーザが得られる。こうして得られた半導
体レーザは活性領域両端が1μm厚のブロック層でかこ
まれているため漏れ’を流もなく、又注入電流はCd拡
散領域を通って有効に■溝内へ注入され更にプロ、り層
上の電流狭窄用クラ、ド層の効果が相乗されてきわめて
低い閾値11LfI!、で発振口■能となるり 第3図は別の実施例でInP基板10上にp−InPブ
ロック層12、n−InPg流狭9川クラ用ド層13を
連続して成長した後V溝を基板内まで形成する。次に■
溝内にn −InGaAsP (λ= 、1.1 pm
 )ガイド層21.活性層15を連続して成長する。こ
の場合活性領域は活性層とガイド層とで構成されたもの
となる。このとき活性層成長面がブロック層の成長面と
一致するように制御する。更に連続してp−InPクラ
ッド層16及びキャップ/fi17を液相成長して前記
実施例と同様にしてCd拡散及びオーミックコンタクト
を形成して半導体レーザを得る。
- The inventors of the present invention have also discovered that once the supporting grooves are formed, etching does not proceed any further. In this way, grooves of a constant shape are formed on the wafer with good reproducibility (the first
figure). Next, remove the 5iQz film and undope Jn in the groove.
QaAsP (λ = 1.3 pm) active layer 15 (this active layer becomes the active region) is 1.3 μm deep, p-InP
71116 with n-InP current confinement cladding N113
The V-groove is grown to a thickness of 2.5 μm on top, and n-InGaAsP (2m1.1.c<m
) The layers 1' and 7 are continuously grown in a liquid phase. Thus, the active region growth plane coincides with the growth plane of the block layer 12,
Furthermore, the width of the growth surface of the active region is 1.8 μm, making it possible to maintain fundamental transverse mode oscillation. An 8i02 film is deposited on the growth surface of the cab layer 17, a striped window with a width of 3 μm is opened above the groove using a photoresist method, and the film is sealed together with a CdzPs diffusion source in a vacuum quartz container. When this is heated at 566° C. for 1 hour, Cd is diffused and the diffusion tip 102 reaches a depth Q of about 2 μm in the p-InpH 16 (Cd diffusion region 1B). Next, the 8i0z film is removed and a p-type ohmic contact 19 is attached to the substrate, an n-type ohmic contact 20 is attached to the substrate, and a semiconductor laser having the structure shown in FIG. 2 is obtained. In the thus obtained semiconductor laser, both ends of the active region are surrounded by a 1 μm thick blocking layer, so there is no leakage, and the injected current is effectively injected into the trench through the Cd diffusion region. The effects of the current confining layers on the upper layer are combined to produce an extremely low threshold value of 11LfI! Figure 3 shows another example in which a p-InP block layer 12 and an n-InPg cladding layer 13 are successively grown on an InP substrate 10. A groove is formed deep into the substrate. Next ■
n-InGaAsP (λ= , 1.1 pm
) Guide layer 21. The active layer 15 is grown continuously. In this case, the active region is composed of an active layer and a guide layer. At this time, the growth surface of the active layer is controlled so as to coincide with the growth surface of the block layer. Further, a p-InP cladding layer 16 and a cap/fi 17 are successively grown by liquid phase growth, and Cd diffusion and ohmic contact are formed in the same manner as in the previous embodiment to obtain a semiconductor laser.

上記いずれの実施例においても、キャップ層を省略しI
nP基板10上に直接電極を形成しても本発明の目的は
達成できる。し力)シ、この場合前述の実施例より7特
性が少し劣る。
In any of the above embodiments, the cap layer is omitted and I
The object of the present invention can also be achieved by forming electrodes directly on the nP substrate 10. In this case, the characteristics are slightly inferior to those of the previous example.

上記実施例においてp形、n形を反奸テてもよく又各層
厚InGaAsPの組成拡散材料などは上記に力)ぎら
ない。父上記実施例はInP−InGaAsPダブヘテ
ロ接合結晶材料について説明したが他の材料′例えばG
aAs8b−AI GaAsSb等数多くQJlti&
材Rに適用することができる。
In the above embodiments, p-type and n-type may be repelled, and composition diffusion materials such as InGaAsP in each layer thickness are not limited to those mentioned above. Although the above embodiment describes an InP-InGaAsP dove heterojunction crystal material, other materials such as G
aAs8b-AI GaAsSb etc.QJlti&
It can be applied to material R.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体レーザの製造途中の
構造を示す図、すなわち、 InP基板上にパ、ファ層
、プロ、り層、111tII1.狭窄用クラッド層を連
続して成長した後■溝を形成した状態の断面図、第2図
は本発明によって形成された半導体レーザの一実施例の
断面図、第3図は本発明の別の実施例の一例で活性層に
隣接してガイド層を形成(この場合、活性領域=活性層
+ガイド層とな6)された半導体レーザの断面図。 図において 10・・・・・・n形InP基板、  11・・・・・
・n形InPバッファ層。 12−−−− p形InPブOy 9 Ml 。 13・−−−−−El形InPクラッP層。 14・・・・・・5iQz膜。 15・−−−−−アンドープInGaAsP (λ=1
.3μm)活性鎖環。 16・・・・・・p形InPクラッド層。 17−−−−−・n形InGaAsP (λ= 1.1
 μm )キ’ryプ層。 18・・・・・・Cd拡散領域。 19・・−・・・p形オーミックコンタクト。 20・・・・・・n形オーミックコンタクト。 21 ・・−n形1nQaAsP (2−1,1ttm
 )ガイド層。 100・・・・・・V溝、      101・・・・
・・v#1の先端。 102−・・・・Cd拡散の先端。 をそれぞれ示す。 第 1 図 +00 01 第2図 第3図
FIG. 1 is a diagram showing the structure of a semiconductor laser according to an embodiment of the present invention, which is in the process of being manufactured. That is, an InP substrate is coated with a P layer, a P layer, a P layer, a P layer, a P layer, a P layer, a P layer, a P layer, a P layer, a P layer, a 111 T II 1. 2 is a cross-sectional view of one embodiment of the semiconductor laser formed according to the present invention, and FIG. 3 is a cross-sectional view of another embodiment of the semiconductor laser formed according to the present invention. FIG. 2 is a cross-sectional view of a semiconductor laser in which a guide layer is formed adjacent to an active layer (in this case, active region=active layer+guide layer) in one example of the embodiment. In the figure, 10... n-type InP substrate, 11...
・N-type InP buffer layer. 12--- p-type InP Oy 9 Ml. 13・----El type InP crack P layer. 14...5iQz film. 15・----Undoped InGaAsP (λ=1
.. 3 μm) active chain ring. 16...p-type InP cladding layer. 17-----n-type InGaAsP (λ= 1.1
μm) Cap layer. 18...Cd diffusion region. 19...P-type ohmic contact. 20...N-type ohmic contact. 21...-n type 1nQaAsP (2-1, 1ttm
) Guide layer. 100... V groove, 101...
...The tip of v#1. 102-... Tip of Cd diffusion. are shown respectively. Figure 1 +00 01 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] ブロック層とこのブロック層に隣接した電流狭窄用クラ
ッド層とを少なくとも備えた多層構造の半導体層に、前
記電流lI!−Q用クラッ用層ラッド層側ック層側にか
けて断面がV字状の溝を形成し、このV字状溝中に成長
面が前記ブロック層成長表面に一致するようにして活性
領域を形成し、この活性領域及び電流狡辛用クラッド層
に隣接して1層又は多層から成る半導体層を形成した構
造を有することを特徴とする半導体レーザ。
The current lI! - A groove with a V-shaped cross section is formed from the rad layer side to the back layer side of the Q cracking layer, and an active region is formed in this V-shaped groove so that the growth surface coincides with the growth surface of the block layer. A semiconductor laser characterized in that it has a structure in which a single or multi-layer semiconductor layer is formed adjacent to the active region and the current cladding layer.
JP10589081A 1981-07-07 1981-07-07 Semiconductor laser Pending JPS587894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10589081A JPS587894A (en) 1981-07-07 1981-07-07 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10589081A JPS587894A (en) 1981-07-07 1981-07-07 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS587894A true JPS587894A (en) 1983-01-17

Family

ID=14419507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10589081A Pending JPS587894A (en) 1981-07-07 1981-07-07 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS587894A (en)

Similar Documents

Publication Publication Date Title
JPS6318877B2 (en)
JPS587894A (en) Semiconductor laser
JPS5940317B2 (en) Rib guide stripe type semiconductor multilayer thin film optical waveguide and its manufacturing method
JPS6249758B2 (en)
JPS5832794B2 (en) semiconductor laser
JPS5897888A (en) Semiconductor laser
JPH03227086A (en) Semiconductor laser element and manufacture thereof
JPS6342871B2 (en)
JPH0350252B2 (en)
JPS5858783A (en) Semiconductor laser
JPS6364915B2 (en)
JPS61242091A (en) Semiconductor light-emitting element
JPS5857770A (en) Semiconductor laser element
JPS63169093A (en) Semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPS58219772A (en) Laser type light emission device and method of producing same
JPS5812389A (en) Semiconductor laser
JPS6334293Y2 (en)
JPS6361793B2 (en)
JPS5818990A (en) Semiconductor laser
JPS589385A (en) Manufacture of semiconductor laser
JPS5832482A (en) Semiconductor laser
JPS63169092A (en) Semiconductor laser
JPH0228389A (en) Semiconductor laser element
JPS6355231B2 (en)