JPS6249758B2 - - Google Patents
Info
- Publication number
- JPS6249758B2 JPS6249758B2 JP15571281A JP15571281A JPS6249758B2 JP S6249758 B2 JPS6249758 B2 JP S6249758B2 JP 15571281 A JP15571281 A JP 15571281A JP 15571281 A JP15571281 A JP 15571281A JP S6249758 B2 JPS6249758 B2 JP S6249758B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- groove
- cladding layer
- active layer
- cladding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005253 cladding Methods 0.000 claims description 41
- 239000004065 semiconductor Substances 0.000 claims description 26
- 230000000903 blocking effect Effects 0.000 claims description 17
- 230000010355 oscillation Effects 0.000 description 18
- 239000000758 substrate Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2237—Buried stripe structure with a non-planar active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
- H01S5/2275—Buried mesa structure ; Striped active layer mesa created by etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/24—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 本発明は半導体レーザに関するものである。[Detailed description of the invention] The present invention relates to a semiconductor laser.
InP/InGaAsP等の結晶材料を用いた長波長半
導体レーザは光フアイバの伝送損失の低い光源と
して注目され、その実用化が進められている。実
用化に際しては広い動作電流にわたつて安定した
単一横モード発振をし、更に緩和振動の抑圧され
たすぐれた動特性を示す半導体レーザが必要とな
る。これらの要求を満たすために各種のストライ
プ構造が提案され試作されている。 Long-wavelength semiconductor lasers using crystalline materials such as InP/InGaAsP are attracting attention as light sources with low optical fiber transmission loss, and their practical use is progressing. For practical use, a semiconductor laser is required that exhibits stable single transverse mode oscillation over a wide operating current and also exhibits excellent dynamic characteristics with suppressed relaxation oscillations. In order to meet these requirements, various striped structures have been proposed and prototyped.
中でもヒラオ等によつてジユルナル・オブ・ア
プライド・フイシツクス(Journal of Applied
Physics)誌51巻4539頁〜4540頁に報告されてい
るInP/InGaAsP BH半導体レーザは活性領域と
なるInGaAsP(λ=1.3μm)層を屈折率が低く
かつクラツド層となるInPで囲んだ構造をもち、
活性層に隣接したクラツド領域の一部に電流注入
領域を設け、その両端は反対の導電型のクラツド
層で埋込んだものである。 Among them, the Journal of Applied Physics (Journal of Applied Physics) by Hirao et al.
The InP/InGaAsP BH semiconductor laser reported in Physics), Vol. 51, pp. 4539-4540 has a structure in which an InGaAsP (λ = 1.3 μm) layer, which serves as the active region, is surrounded by InP, which has a low refractive index and serves as a cladding layer. rice cake,
A current injection region is provided in a part of the cladding region adjacent to the active layer, and both ends of the region are buried with cladding layers of opposite conductivity type.
該BH半導体レーザは活性領域の垂直方向のみ
ならず水平方向もクラツド層を有しているため、
屈折率差にもとづく矩形状の屈折率分布を持ち安
定な横モード発振を維持し続けるばかりでなく活
性領域と電流閉込め領域とが一致しており閾値電
流が小さくかつ緩和振動の抑圧された動特性を示
すなどすぐれた特性を期待する事ができる。 Since the BH semiconductor laser has a cladding layer not only in the vertical direction of the active region but also in the horizontal direction,
It has a rectangular refractive index distribution based on the refractive index difference, and not only does it continue to maintain stable transverse mode oscillation, but also the active region and current confinement region coincide, resulting in a small threshold current and suppressed relaxation oscillation. You can expect excellent properties such as:
しかし活性領域をクラツド層内に埋込んだまま
の状態では活性領域に隣接し電流注入領域となる
クラツド層からその両端に隣接したクラツド層に
電流が漏れ流れるため活性領域へ有効に電流が注
入されず閾値電流が上昇し温度特性がわるくなる
などの欠点を有していた。この欠点をおぎなうた
め通常は漏れ電流に対して電流注入領域と同じ導
電型のクラツド層を活性領域両側に設けブロツク
層として用いている。しかしブロツク層が厚くな
り電流注入領域となるクラツド層と接した場合に
は電流注入領域から同じ導電型のブロツク層へ電
流が流れ漏れ電流は急激に増大し、又一方ブロツ
ク層が薄い場合には電流はブロツク層をのりこえ
て流れブロツキング効果がなかつた。従つてブロ
ツキング効果を有効に働かせる為には活性領域と
同一の厚さでかつ活性層の両端にあわせてブロツ
ク層を成長する必要があり、この成長の制御はき
わめて困難であり再現性よく作る事は不可能であ
つた。 However, if the active region is buried in the cladding layer, current leaks from the cladding layer adjacent to the active region and serves as a current injection region to the cladding layers adjacent to both ends, so that current cannot be effectively injected into the active region. However, it has disadvantages such as an increase in threshold current and poor temperature characteristics. To overcome this drawback, cladding layers of the same conductivity type as the current injection region are usually provided on both sides of the active region and used as blocking layers against leakage current. However, when the block layer becomes thick and comes into contact with the cladding layer that serves as the current injection region, current flows from the current injection region to the block layer of the same conductivity type, and the leakage current increases rapidly.On the other hand, when the block layer is thin, The current flowed over the blocking layer and there was no blocking effect. Therefore, in order to make the blocking effect work effectively, it is necessary to grow a blocking layer with the same thickness as the active region and along both ends of the active layer, and it is extremely difficult to control this growth and it is difficult to make it with good reproducibility. was impossible.
更にBH半導体レーザでは基本横モード発振を
得るにはエツチングにより幅2μm以下の活性領
域をつくる必要があり、その上ブロツク層及び埋
込みクラツド層等の成長をやりやすくする為、エ
ツチングの深さ及び形状を制御する必要がありき
わめて複雑な工程を有していた。又上記ブロツク
層の厚さは活性領域厚と同等で〜0.2μm前後で
あり漏れ電流を完全に阻止する事はできなかつ
た。 Furthermore, in order to obtain fundamental transverse mode oscillation in a BH semiconductor laser, it is necessary to create an active region with a width of 2 μm or less by etching, and in order to facilitate the growth of the block layer, buried cladding layer, etc., the depth and shape of the etching must be adjusted. It was an extremely complicated process that needed to be controlled. Furthermore, the thickness of the blocking layer was approximately 0.2 .mu.m, which is equivalent to the thickness of the active region, and leakage current could not be completely blocked.
上記BH半導体レーザの欠点を除き製法が比較
的容易で再現性のある埋込み型半導体レーザとし
て電子通信学会技術研究報告光・量子エレクトロ
ニクスOEQ81−14 79頁〜84頁に今井他によつて
V溝基板内埋込み型(VSB)レーザが提案されて
いる。これはn−InP基板上にブロツキング層と
してp−InP層を成長した後V字型溝を形成しこ
のV字型溝内部にn−InPクラツド層、活性層、
更にp−InPクラツド層を連続成長したものであ
る。こうしてV字型溝内部に成長した活性層は
InP層に囲まれた状態になり埋込み型半導体レー
ザが作製される。しかしこのVSBレーザではV溝
内での成長の際V溝壁面での成長速度が速い為n
−InPクラツド層の成長表面がV溝中央部で凹面
状に湾曲しその結果このn−InPクラツド層に隣
接して成長する活性層は中央が厚くかつ湾曲した
形状になると共にV溝両端にあるブロツク層には
点状に近い形でしか成長しない。従つて活性層中
央部分の屈折率が高くなり容易に一次横モード発
振が生じるばかりでなくブロツク層と活性層に隣
接して成長したp−InPクラツド層とがつながつ
てしまい電流が漏れやすくその為温度特性が悪い
などの欠点を有していた。 A V-groove substrate is proposed by Imai et al. in IEICE technical research report Optical and Quantum Electronics OEQ81-14, pp. 79-84, as a buried type semiconductor laser which is relatively easy to manufacture and has reproducibility, except for the drawbacks of the BH semiconductor laser mentioned above. Internally implanted (VSB) lasers have been proposed. This involves growing a p-InP layer as a blocking layer on an n-InP substrate, forming a V-shaped groove, and forming an n-InP cladding layer, an active layer, and an active layer inside the V-shaped groove.
Furthermore, a p-InP cladding layer is continuously grown. The active layer grown inside the V-shaped groove in this way is
A buried semiconductor laser is fabricated in a state where it is surrounded by an InP layer. However, with this VSB laser, the growth rate on the V-groove wall surface is fast when growing inside the V-groove, so n
-The growth surface of the InP cladding layer is concavely curved at the center of the V-groove, and as a result, the active layer grown adjacent to this n-InP cladding layer has a thick and curved shape at the center and is located at both ends of the V-groove. It grows only in the form of dots in the block layer. Therefore, the refractive index of the central part of the active layer is high, and not only does first-order transverse mode oscillation easily occur, but the blocking layer and the p-InP cladding layer grown adjacent to the active layer are connected, making it easy for current to leak. It had drawbacks such as poor temperature characteristics.
本発明の目的は上記欠点を除去し基本横モード
発振を広汎な注入電流範囲で維持できるばかりで
なく漏れ電流も少なく低閾値で発振しかつ等心円
的な発振をし光フアイバーとの結合効率のよい半
導体レーザを提供する事にある。 The purpose of the present invention is to eliminate the above-mentioned drawbacks, to maintain fundamental transverse mode oscillation over a wide range of injection current, to oscillate at a low threshold with low leakage current, to perform concentric oscillation, and to improve coupling efficiency with optical fibers. Our goal is to provide high-quality semiconductor lasers.
本発明の半導体レーザは第1のクラツド層とこ
の第1クラツド層に隣接したブロツク層、更にブ
ロツク層に隣接した電流狭窄用クラツド層とを備
えた多層構造の半導体層に前記電流狭窄用クラツ
ド層側からブロツク層側にかけて断面が台形の溝
を形成し溝の先端が第1クラツド層に達する構造
において、第1クラツド層は溝の先端中央に凸部
を有し、該第1クラツド層及びブロツク層に隣接
して溝内部にクラツド層よりも屈折率が高いガイ
ド層更に隣接して成長面が前記ブロツク層成長面
に一致するように活性領域を形成し、この活性領
域及び電流狭窄用クラツド層に隣接して一層又は
多層から成る半導体層を形成した構造を有してい
る。 The semiconductor laser of the present invention has a semiconductor layer having a multilayer structure including a first cladding layer, a blocking layer adjacent to the first cladding layer, and a current confining cladding layer adjacent to the blocking layer, and a current confining cladding layer. In a structure in which a groove having a trapezoidal cross section is formed from the side to the block layer side and the tip of the groove reaches the first clad layer, the first clad layer has a convex portion at the center of the tip of the groove, and the first clad layer and the block layer have a convex portion at the center of the tip of the groove. A guide layer having a refractive index higher than that of the cladding layer is formed in the groove adjacent to the layer, and an active region is formed adjacent to the guide layer so that its growth surface coincides with the growth surface of the blocking layer, and this active region and the current confinement cladding layer It has a structure in which a single or multilayer semiconductor layer is formed adjacent to the semiconductor layer.
本発明の原理はガイド層への光のしみ出しの相
違によつて活性層水平横方向に形成される実効的
な屈折率差とリーキーモードの原理を応用したも
のである。 The principle of the present invention is to apply the effective refractive index difference formed in the horizontal and lateral directions of the active layer due to the difference in the seepage of light into the guide layer and the principle of leaky mode.
本発明の如く第1クラツド層に隣接しかつ第1
クラツド層の凸部を有する底面をもつ溝内にガイ
ド層を成長させると凸部の両わきの凹部には厚く
凸部にはうすくガイド層は成長する。 Adjacent to the first cladding layer and the first cladding layer as in the present invention.
When a guide layer is grown in a groove having a bottom surface having a convex portion of the cladding layer, the guide layer grows thickly in the concave portions on both sides of the convex portion and thinly in the convex portion.
すなわち凹部の側面は溝の側面と凸部の側面と
からなつているためその部分の成長速度は平担部
にくらべて比較的速い。従つて凸部の高さを調整
する事によりガイド層の成長面を平坦にする事が
できる。本発明者等の実験によれば凸部の高さを
0.2μmにしておけば凹部底面から0.5μm程度成
長すれば成長平面は平坦になる。この状態でガイ
ド層に隣接して活性層を成長すれば平坦な活性層
が得られる。その上活性層の厚さは0.2μm〜0.3
μm前後以下でよいので活性層成長の際特に溝測
面が厚く成長する恐れはなく従つて活性層成長面
の位置も再現性よく定まりブロツク層成長面と一
致させる事ができる。 That is, since the side surfaces of the concave portion are composed of the side surfaces of the groove and the side surfaces of the convex portion, the growth rate of that portion is relatively faster than that of the flat portion. Therefore, by adjusting the height of the convex portion, the growth surface of the guide layer can be made flat. According to experiments conducted by the inventors, the height of the convex portion
If the thickness is set to 0.2 μm, the growth plane will become flat if it grows by about 0.5 μm from the bottom of the recess. If an active layer is grown adjacent to the guide layer in this state, a flat active layer can be obtained. Moreover, the thickness of the active layer is 0.2 μm ~ 0.3
Since the thickness may be around .mu.m or less, there is no risk that the groove surface will grow particularly thick during active layer growth, and the position of the active layer growth surface can be determined with good reproducibility and can be made to coincide with the block layer growth surface.
上記の如く平坦な活性層が得られるゆえに前記
VSBレーザのように湾曲して中心部分が厚くなり
容易に一次横モードを許容する事はない上にブロ
ツク成長面と活性層成長面とを一致させる事も容
易なので漏れ電流を阻止でき低閾値で発振可能と
なる。 Since a flat active layer can be obtained as described above,
Unlike VSB lasers, which are curved and thick at the center, they do not easily allow primary transverse modes, and it is also easy to align the block growth surface with the active layer growth surface, which prevents leakage current and has a low threshold. Oscillation becomes possible.
一方本構造では活性層の光はクラツド層よりも
屈折率が高く活性層よりも屈折率が低いガイド層
へとしみ出す。このときガイド層は溝底面凸部の
部分はうすくその両端の凹部は厚いので活性層か
らしみ出す光も凸部は少なく凹部は多くなる。従
つて活性層には凸部の上にあたる活性層中央部分
の屈折率が小さくその両端の屈折率が高い実効的
な屈折率分布が生じ活性層内部ではリーキーガイ
ド機構になる。しかし活性層両端にくらべて活性
層全体ははるかに大きい屈折率を有するので活性
層内の光は屈折率ガイデイング機構によつてガイ
ドされ安定な横モード発振をする。本発明の一実
施によつて形成される屈折率分布を図−3に示
す。更に上記のように活性層内部ではリーキーガ
イド機構をそなえている為光は活性層全体に広が
る傾向をもちその結果活性層幅が3〜4μm程度
広くても基本横モード発振を維持する事ができ
る。しかも流入電流を増加しても光は活性層幅全
域にわたつて一様に発振するのでキヤリア分布の
空間的なホールバーニングもおこりにくく安定な
基本横モード発振を維持し続ける事ができる。又
発振領域が広いので外部微分量子効率もよくかつ
大光出力発振が可能となる。 On the other hand, in this structure, light from the active layer leaks out to the guide layer, which has a higher refractive index than the cladding layer and a lower refractive index than the active layer. At this time, the guide layer is thin at the convex portion of the groove bottom surface and thick at the concave portions at both ends thereof, so that the light seeping out from the active layer also has fewer convex portions and more concave portions. Therefore, the active layer has an effective refractive index distribution in which the central portion of the active layer above the convex portion has a low refractive index and the opposite ends thereof have high refractive indexes, resulting in a leaky guide mechanism inside the active layer. However, since the entire active layer has a much larger refractive index than both ends of the active layer, light within the active layer is guided by the refractive index guiding mechanism and produces stable transverse mode oscillation. FIG. 3 shows a refractive index distribution formed by one implementation of the present invention. Furthermore, as mentioned above, since the active layer has a leaky guide mechanism, light tends to spread throughout the active layer, and as a result, fundamental transverse mode oscillation can be maintained even if the active layer width is about 3 to 4 μm wide. . Moreover, even if the inflow current is increased, the light oscillates uniformly over the entire width of the active layer, so spatial hole burning in the carrier distribution is less likely to occur, and stable fundamental transverse mode oscillation can be maintained. Furthermore, since the oscillation region is wide, the external differential quantum efficiency is good and high optical output oscillation is possible.
更にガイド層への光のもれにより活性層水平横
方向と垂直方向との光の放射角を近づける事がで
きる。従つて等心円に近い点光源となり光フアイ
バーとのカツプリング効率を上昇させる事ができ
る。 Furthermore, the radiation angles of light in the horizontal direction and the vertical direction of the active layer can be made closer to each other due to the light leakage to the guide layer. Therefore, it becomes a point light source close to a concentric circle, and the coupling efficiency with the optical fiber can be increased.
又一般にV字型の溝を埋め込むように成長する
と溝側面での成長速度が速い為V溝中央に成長時
のストレスが生じこれが原因ですべり転位などが
生じレーザ素子の寿命を縮め信頼性をおとすおそ
れがあつた。これに対し本構造ではそのようなお
それは全くなく半導体レーザの信頼性を向上させ
る事ができる。 In addition, in general, when the V-shaped groove is grown to fill it, the growth rate on the sides of the groove is fast, which causes stress in the center of the V-groove during growth, which causes slip dislocations and shortens the life of the laser element, reducing its reliability. I was afraid. On the other hand, with this structure, there is no such fear and the reliability of the semiconductor laser can be improved.
以上説明したように本発明による半導体レーザ
は次の如き効果を有する。本発明による構造で
は活性層内水平横方向にリーキーなガイド機構を
そなえておりモードの広がり要素をもつているた
めキヤリア分布の空間的なホールバーニングがお
こりにくいばかりでなく活性層両端は屈折率の低
いブロツク層でかこまれているため屈折率ガイデ
イング機構を持ちきわめて安定な基本横モード発
振を広汎な電流注入領域で維持する事ができる。
本発明の構造では活性層が平坦になり活性層成
長表面とブロツク層成長表面とを一致させる事が
比較的容易でもれ電流なく低閾値で発振可能とな
る。又活性層を数μm程度と広くしても基本横モ
ード発振ができる事も製法の許容度を大きくして
いる。活性層水平垂直両方向の光の広がり角を
同程度にする事ができ等心円に近い点光源になり
光フアイバーとの結合効率を上昇させる事ができ
る。活性層内部がリーキーガイドになりモード
が広がり又隣接してガイド層を有しているため発
振領域が広くなり外部微分量子効率が高くかつ大
光出力発振が可能である。本構造では従来のV
溝埋込み構造に見られるストレスが生じる事がな
く半導体レーザの信頼性を向上させる事ができ
る。 As explained above, the semiconductor laser according to the present invention has the following effects. The structure according to the present invention has a leaky guide mechanism in the horizontal direction within the active layer and has a mode broadening element, so that not only is spatial hole burning of the carrier distribution less likely to occur, but both ends of the active layer have a low refractive index. Since it is surrounded by low blocking layers, it has a refractive index guiding mechanism and can maintain extremely stable fundamental transverse mode oscillation over a wide current injection region.
In the structure of the present invention, the active layer is flat and it is relatively easy to align the active layer growth surface with the block layer growth surface, making it possible to oscillate at a low threshold without leakage current. Furthermore, the fact that fundamental transverse mode oscillation can be achieved even if the active layer is made as wide as several micrometers increases the tolerance of the manufacturing method. The spread angle of light in both the horizontal and vertical directions of the active layer can be made to be approximately the same, resulting in a point light source close to equicentric circles, and the coupling efficiency with the optical fiber can be increased. The inside of the active layer becomes a leaky guide, which spreads the mode, and since the active layer has an adjacent guide layer, the oscillation region is widened, the external differential quantum efficiency is high, and large optical output oscillation is possible. In this structure, the conventional V
The reliability of the semiconductor laser can be improved because the stress seen in trench-buried structures does not occur.
以下図面を用いて本発明の一実施例について説
明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明の半導体レーザの製造工程途中
の断面図を示している。まず(100)面n−InP
基板10上にp−InPブロツク層11を0.5μm、
n−InP電流狭窄用クラツド層12を0.5μm連続
して成長させる。クラツド層12上にSiO2膜1
3をつけフオトレジスト法で(011)面に垂直に
幅2μmのストライプを間隔3μmあけて平行に
二本ぬき4HBr:1H3PO4の混合溶液で深さ0.2μ
mエツチングする。次にストライプ中央のSiO2
膜を除去しn−InP基板までエツチングしていき
n−InP基板に凸面ができるまでエツチングす
る。(111)面がエツチングされエツチング先端に
凸面をもつ台形状の断面をもつ溝100が形成され
る。これまでの工程で得られる構造が第1図であ
る。次にSiO2膜を除去し溝内にn−InGaAsP
(λ=1.1μm)ガイド層14を溝底の凹部から
0.5μmになるまで成長しアンドープInGaAsP
(λ=1.3μm)活性層15を0.2μm成長する。
このときガイド層成長面は平坦になり活性層成長
面とブロツク層成長面とが一致する。次いでp−
InPクラツド層16を溝全体を埋込んで成長し更
にn−InGaAsP(λ=1.1μm)キヤツプ層17
を厚さ0.5μm連続して液相成長させる。一般に
(111)面を有する溝内部の成長速度は平坦部にく
らべて約3倍はやいのでガイド層14及び活性層
15はそれぞれ〜0.2μm〜0.1μm程度電流狭窄
用クラツド層12上に成長しこれも電流狭窄の役
割をはたす。p−InPクラツド層16はこの電流
狭窄用層上厚さ2μmになるようにする。キヤツ
プ層17成長面上にSiO2膜をつけフオトレジス
ト法で溝上に位置するように幅3μmのストライ
プ状の窓をあけCdを拡散しp−InPクラツド層1
6中深さ0.2μm程度になるように制御する(Cd
拡散領域18)。次にSiO2膜を除去しp形オーミ
ツクコンタクト19を基板側にはn形オーミツク
コンタクト20をそれぞれつけて第2図に示した
構造の半導体レーザが得られる。 FIG. 1 shows a cross-sectional view of the semiconductor laser of the present invention during the manufacturing process. First, (100) plane n-InP
A p-InP block layer 11 with a thickness of 0.5 μm is placed on the substrate 10.
An n-InP current confinement cladding layer 12 is continuously grown to a thickness of 0.5 μm. SiO 2 film 1 on cladding layer 12
3 and cut out two stripes with a width of 2 μm perpendicular to the (011) plane in parallel with an interval of 3 μm using the photoresist method to a depth of 0.2 μm with a mixed solution of 4HBr:1H 3 PO 4 .
m etching. Next, SiO 2 in the center of the stripe
The film is removed and the n-InP substrate is etched until a convex surface is formed on the n-InP substrate. The (111) plane is etched to form a groove 100 having a trapezoidal cross section with a convex surface at the etched tip. The structure obtained through the steps up to now is shown in FIG. Next, the SiO 2 film is removed and n-InGaAsP is placed inside the trench.
(λ=1.1μm) Guide layer 14 is inserted from the groove bottom recess.
Undoped InGaAsP grown to 0.5μm
(λ=1.3 μm) The active layer 15 is grown to a thickness of 0.2 μm.
At this time, the guide layer growth surface becomes flat, and the active layer growth surface and the block layer growth surface coincide. Then p-
An InP clad layer 16 is grown to fill the entire trench, and an n-InGaAsP (λ=1.1 μm) cap layer 17 is grown.
is continuously grown in liquid phase to a thickness of 0.5 μm. In general, the growth rate inside a groove having a (111) plane is about three times faster than in a flat area, so the guide layer 14 and active layer 15 grow on the current confining cladding layer 12 to a thickness of about 0.2 μm to 0.1 μm, respectively. Also plays the role of current confinement. The p-InP cladding layer 16 is made to have a thickness of 2 μm on this current confinement layer. A SiO 2 film is deposited on the growth surface of the cap layer 17, and a striped window with a width of 3 μm is opened on the groove using the photoresist method, and Cd is diffused to form the p-InP cladding layer 1.
6. Control so that the depth is about 0.2 μm (Cd
Diffusion region 18). Next, the SiO 2 film is removed and a p-type ohmic contact 19 and an n-type ohmic contact 20 are attached to the substrate side to obtain a semiconductor laser having the structure shown in FIG. 2.
こうして得られた半導体レーザでは活性層内の
光がガイド層へもれ活性層内部には中央凹部の実
効的な屈折率差が生じる。これに対し活性層両端
は屈折率の小さいブロツク層ではさまれているた
め活性層全体は屈折率ガイデイング機構をもつ。
本構造より得られる実効的な屈折率差を第3図に
示す。 In the semiconductor laser thus obtained, light in the active layer leaks to the guide layer, creating an effective refractive index difference in the central recess inside the active layer. On the other hand, since both ends of the active layer are sandwiched between block layers having a small refractive index, the entire active layer has a refractive index guiding mechanism.
FIG. 3 shows the effective refractive index difference obtained by this structure.
上記実施例においてp形、n形を反対してもよ
く又各層厚InGaAsPの組成、拡散材料などは上
記にかぎらない。又上記実施例はInP−InGaAsP
ダブルヘテロ結合結晶材料について説明したが他
の材料例えばGaAsSb−AlGaAsSb等数多くの結
晶材料に適用する事ができる。 In the above embodiments, the p-type and n-type may be reversed, and the composition of each layer thickness, InGaAsP, diffusion material, etc. are not limited to the above. In addition, the above embodiment is InP-InGaAsP
Although the double heterojunction crystal material has been described, it can be applied to many other crystal materials such as GaAsSb-AlGaAsSb.
第1図は本発明の一実施例の半導体レーザの製
造途中の構造を示す図、すなわちInP基板上にブ
ロツク層、電流狭窄用クラツド層を連続成長した
後溝を形成した状態の断面図、第2図は本発明に
よつて形成された半導体レーザの一実施例の断面
図、第3図は本発明によつて形成された上記半導
体レーザに形成される実効的な屈折率を示す図で
ある。
図において、10……n形InP基板、11……
p形InPブロツク層、12……n形InPクラツド
層、13……SiO2膜、14……n形InGaAsP
(λ=1.1μm)ガイド層、15……アンドープ
InGaAsP(λ=1.3μm)活性層、16……p形
InPクラツド層、17……n形InGaAsP(λ=1.1
μm)キヤツプ層、18……Cd拡散領域、19
……p形オーミツクコンタクト、20……n形オ
ーミツクコンタクト、100……溝を示す。
FIG. 1 is a cross-sectional view showing the structure of a semiconductor laser according to an embodiment of the present invention in the process of being manufactured, that is, a groove is formed after successively growing a blocking layer and a cladding layer for current confinement on an InP substrate; FIG. 2 is a cross-sectional view of one embodiment of a semiconductor laser formed according to the present invention, and FIG. 3 is a diagram showing an effective refractive index formed in the semiconductor laser formed according to the present invention. . In the figure, 10... n-type InP substrate, 11...
p-type InP block layer, 12... n-type InP cladding layer, 13... SiO 2 film, 14... n-type InGaAsP
(λ=1.1μm) Guide layer, 15...undoped
InGaAsP (λ=1.3μm) active layer, 16...p type
InP cladding layer, 17... n-type InGaAsP (λ=1.1
μm) Cap layer, 18...Cd diffusion region, 19
. . . p-type ohmic contact, 20 . . . n-type ohmic contact, 100 . . . groove.
Claims (1)
接したブロツク層、更にブロツク層に隣接した電
流狭窄用クラツド層とを備えた多層構造の半導体
層に前記電流狭窄用クラツド層側からブロツク層
側にかけて断面が台形の溝を形成し溝の先端が第
1クラツド層に達する構造において、第1クラツ
ド層は溝の先端中央に凸部を有し、該第1クラツ
ド層及びブロツク層に隣接して溝内部にクラツド
層よりも屈折率が高いガイド層更に隣接して成長
面が前記ブロツク層成長面に一致するように活性
領域を形成しこの活性領域及び電流狭窄用クラツ
ド層に隣接して一層又は多層から成る半導体層を
有する事を特徴とする半導体レーザ。1. A semiconductor layer having a multilayer structure comprising a first cladding layer, a blocking layer adjacent to the first cladding layer, and a current confining cladding layer adjacent to the blocking layer, from the current confining cladding layer side to the blocking layer side. In a structure in which a groove having a trapezoidal cross section is formed and the tip of the groove reaches the first cladding layer, the first cladding layer has a convex portion at the center of the tip of the groove, and the first cladding layer has a convex portion adjacent to the first cladding layer and the block layer. Inside the groove, an active region is formed adjacent to a guide layer having a refractive index higher than that of the clad layer so that its growth surface coincides with the growth surface of the blocking layer, and a layer or a guide layer is formed adjacent to the active region and the current confining clad layer. A semiconductor laser characterized by having a multilayer semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15571281A JPS5857771A (en) | 1981-09-30 | 1981-09-30 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15571281A JPS5857771A (en) | 1981-09-30 | 1981-09-30 | Semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5857771A JPS5857771A (en) | 1983-04-06 |
JPS6249758B2 true JPS6249758B2 (en) | 1987-10-21 |
Family
ID=15611845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15571281A Granted JPS5857771A (en) | 1981-09-30 | 1981-09-30 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5857771A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0147417A4 (en) * | 1983-06-17 | 1987-07-29 | Rca Corp | Phase-locked semiconductor laser array and a method of making same. |
JP4613304B2 (en) * | 2004-09-07 | 2011-01-19 | 独立行政法人産業技術総合研究所 | Quantum nanostructured semiconductor laser |
-
1981
- 1981-09-30 JP JP15571281A patent/JPS5857771A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5857771A (en) | 1983-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5319661A (en) | Semiconductor double heterostructure laser device with InP current blocking layer | |
KR100582114B1 (en) | A method of fabricating a semiconductor device and a semiconductor optical device | |
US4618959A (en) | Double heterostructure semiconductor laser with periodic structure formed in guide layer | |
KR20080052233A (en) | Spot size converter integrated laser device | |
JPS6249758B2 (en) | ||
JPS6328520B2 (en) | ||
JPS5832794B2 (en) | semiconductor laser | |
JPS5897888A (en) | Semiconductor laser | |
JPS61102086A (en) | Semiconductor laser | |
JPS5858783A (en) | Semiconductor laser | |
JPS6342871B2 (en) | ||
JPS6362292A (en) | Semiconductor laser device and manufacture thereof | |
JPH03227086A (en) | Semiconductor laser element and manufacture thereof | |
JPS6066490A (en) | Uniaxial mode semiconductor laser | |
JPS61242091A (en) | Semiconductor light-emitting element | |
JPS587894A (en) | Semiconductor laser | |
JPS5864085A (en) | Semiconductor laser and manufacture thereof | |
JPS5992588A (en) | Mono-axial mode semiconductor laser | |
JPH01179487A (en) | Distributed feedback-type semiconductor laser | |
JPS6364915B2 (en) | ||
JPS6334293Y2 (en) | ||
JPS6342869B2 (en) | ||
JP2763781B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPS59127864A (en) | Semiconductor light-emitting element | |
JPS5972787A (en) | Semiconductor laser |