JPS5812389A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5812389A
JPS5812389A JP11140981A JP11140981A JPS5812389A JP S5812389 A JPS5812389 A JP S5812389A JP 11140981 A JP11140981 A JP 11140981A JP 11140981 A JP11140981 A JP 11140981A JP S5812389 A JPS5812389 A JP S5812389A
Authority
JP
Japan
Prior art keywords
layer
face
region
grow
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11140981A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueno
上野 眞資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11140981A priority Critical patent/JPS5812389A/en
Publication of JPS5812389A publication Critical patent/JPS5812389A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser whereof the threshold current is low, the whole of the active region is buried with a matter having a small refractive index, and the device has the characteristic to perform extremely stable fundamental mode oscillation, and at the same time, the device is enabled to be manufactured having favorable reproducibility easily by one time liquid phase growth. CONSTITUTION:An SiO2 film 11 is adhered on the (100) face of an InP insulating substrate 10doped with Fe, an opening is formed as to be formed perpendicularly to the (01-1) face, and the half of the SiO2 film is removed. Then the SiO2 film 11 is removed, a P type InP clad layer 12 is made to grow as to have thickness along the A face to 0.5mum, and then an undoped InGaAsP active layer (lambda=1.3mum)13 is made to grow as to have thickness along the A face to 0.2mum. Then liquid phase growth is performed continuously as to bury the whole with an N type Inp clad layer 14, and as to make the upper part of the upper row part of stair to have 2mum thickness, and the respective layers are made to grow at the same time. When the wafer is put in a vacuum quartz ampoule together with a diffusion source Cd2P3 and is heated, Cd is diffused up to 2.4mum depth, and the diffusion front 16 reaches in the P type InP clad layer 12 (Cd diffusion region 17). Then a P type electrode 18 and an N type electrode 19 are formed.

Description

【発明の詳細な説明】 本発明は半導体レーザに関するものである0InP/ 
I nGaAsP等の結晶材料を用いた長波長半導体レ
ーザは光ファイバの伝送損失の低い光源として注目され
、その実用化が進められている。実用化に際しては広い
動作電流にわたって安定な早−横モード発振をし、更に
緩浮l振動が抑圧さ2またすぐれ、た動特性を示す半導
体レーザが必要となΦつこれらの要求を満たすために各
棟のストライプ構造が提案され試作されCいる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser.
Long-wavelength semiconductor lasers using crystal materials such as InGaAsP are attracting attention as light sources with low transmission loss in optical fibers, and their practical use is progressing. In order to meet these requirements, a semiconductor laser that exhibits stable fast-transverse mode oscillation over a wide range of operating currents, suppresses slow floating oscillations, and exhibits excellent dynamic characteristics is required for practical use. A striped structure for each building was proposed and prototyped.

中でもヒライ等によってジュルナル、オブ、アプライド
、フィジックス(Journal of Appl i
ed Ph−ysics )誌51巻4539負〜45
40頁に報告されて&N ルInP/InGaAsP 
B H半導体レーザは活性−域でめるInGaAsP 
(λ−L3μm)層を屈折率が低くかつクラッド層とな
るInPで囲んだ構造をもち、活性値域に@接したクラ
ッド領域の一部に電流注入領域を設けたものである。@
BH半導体レーザは活性領域の垂直方向のみならず水平
方向にもクラッド層を有しているため、屈折率差に基づ
く矩形状の屈折率分布を持ち安定な横モード発振fr維
持し続けるばかりで1ぼく活性領域と鴫流閉込め領域と
が一致してあり、−億電流が小さくかっ緩和振動の抑圧
さnた動特性を示すなど、すぐれた特性を期待する事が
できる。しかし活性領域をクラッド層内に埋込んだまま
の状態では、活性領域に隣接して1を流此入領域となる
クラッド層からその両端に隣接したクラッド1−に電流
が漏れ流れるため、活性領域・\有効に1を流が注入さ
れず、閾値電流が上昇し隠匿%注が悪くな6などの欠点
を有していた。この欠点をおぎなうため通常は漏れ電流
に対して電流注入領域と同一の電気的特性をMすΦクラ
ッド層を活性領域両端iこ設はブロック層として用いて
いる。しかしブロック層が厚くなり、′11tflIL
注入領域となるクラッド層と接した場合に(ゴ゛4流注
入慎域から同一の電気的特性を有するブロック層へ電流
が流れ、漏れ電流は急激に増大する。
Among them, Hirai et al. published the Journal of Applied Physics (Journal of Appli
ed Physics) Magazine Volume 51 4539 Negative ~ 45
Reported on page 40 &N le InP/InGaAsP
B H semiconductor laser is made of InGaAsP in the active region.
It has a structure in which a (λ-L 3 μm) layer is surrounded by InP which has a low refractive index and serves as a cladding layer, and a current injection region is provided in a part of the cladding region in contact with the active value range. @
Since the BH semiconductor laser has a cladding layer not only in the vertical direction of the active region but also in the horizontal direction, it has a rectangular refractive index distribution based on the refractive index difference and maintains stable transverse mode oscillation fr. The active region and the flow confinement region coincide, and excellent characteristics can be expected, such as a small current and suppressed relaxation oscillations. However, if the active region remains embedded in the cladding layer, current leaks from the cladding layer adjacent to the active region, which serves as the injecting region, to the cladding 1- adjacent to both ends of the cladding layer.・\The current was not effectively injected, the threshold current increased, and the concealment percentage was poor (6). To overcome this drawback, a Φ cladding layer having the same electrical characteristics as the current injection region with respect to leakage current is usually used as a blocking layer at both ends of the active region. However, the block layer becomes thicker and '11tflIL
When it comes into contact with the cladding layer serving as the injection region, current flows from the injection protection region to the block layer having the same electrical characteristics, and the leakage current increases rapidly.

一方、ブロック層が薄い場合には、電流はブロック層を
のりこえて流れ、ブロッキング幼果がなかった。従って
プロッ牛ング幼来を有効に鯖かせる局には活性領域と同
一の厚さでかつ活性領域の両端番こあわせてブロック層
を成長する必要があり、この成長の制御はきわめて困−
であり丹曵性よく作る事は不可能であった。更にBH半
尋体し・−ザでは基本横モード発振る得6ζこはエツチ
ング(こより幅21以下の活性領域をつくる必要があり
、その上ブロツク層及び埋込みクラッド層等の成長をや
りやすくする為、エツチングの深さ及び形状を制御する
必要がありきイ〕めで複雑な工@ヲ有し°C(また。
On the other hand, when the block layer was thin, the current flowed over the block layer, and there were no blocking young fruits. Therefore, in order to effectively control the programming process, it is necessary to grow the block layer to the same thickness as the active region and to match both ends of the active region, and it is extremely difficult to control this growth.
Therefore, it was impossible to make it with good quality. Furthermore, in the case of BH semicircular bodies, fundamental transverse mode oscillation occurs, so it is necessary to create an active region with a width of 21 mm or less, and to facilitate the growth of block layers, buried cladding layers, etc. However, it is necessary to control the depth and shape of the etching, so it is necessary to control the etching depth and shape.

こJ’Lに対して1迫方法が比較的容易でか一つ一度の
液相成長で形成でき6 B H半41+レーサーこ類1
以した構造をもつI nGaA s P/I nPテラ
スドサフストレイト (TerraccHd 5ubs
trate (T S ) )半導体レーザがモリアキ
等によってジャパニーズ、ジュルナル、オブ、アプライ
ド、フィジックス(J apaneseJournal
 of Applied Physics )誌19巻
2191貞〜2196頁に@告されている。上記TS午
4犀レーザは階段状に形成したn−InP基根上にn−
1nP95yド層、InGaAs)’活性層、p−In
Pクラッド増と埴次連続成艮して装作したものである。
For this J'L, the one-shot method is relatively easy and can be formed by one liquid phase growth. 6 B H half 41 + racer 1
I nGaAs P/I nP terraced safstrait (TerraccHd 5ubs) with the following structure
trate (T S ) semiconductor laser was developed by Moriaki et al.
of Applied Physics), Volume 19, pages 2191-2196. The above-mentioned TS April laser has an n-InP base formed in a step-like manner.
1nP95y layer, InGaAs)' active layer, p-In
This was created by adding P cladding and continuously adding Haniji.

このとき、液相成長では階段の上段及び下段の平坦部分
にくらべてi!段状での横方向の成長速度かはPいので
階段状に沿って形成されたIn(JaAsP活性層の層
厚は平坦部分にくらべて厚くなり活性層はし上記T8半
導体レーサの活性層は階段に沿って上下の平坦部分まで
続いているため電流は必ずしも発振頭載に集中せず無効
[流が多いばかりで7まく階段上下の広範囲にわたる平
坦部分では漏れ電流が生じやすく閾値電流が上昇する欠
点を肩しており、該BH半導体レーザにくらべて閾値1
を流が2倍以上となる。
At this time, in liquid phase growth, i! Since the lateral growth rate in the step shape is P, the layer thickness of the In(JaAsP active layer formed along the step shape is thicker than that in the flat part, and the active layer of the above T8 semiconductor laser is Since the current continues along the stairs to the flat areas above and below, the current is not necessarily concentrated at the oscillation head and is ineffective. The threshold value is 1 compared to the BH semiconductor laser.
The current is more than doubled.

本発明の目的は上記欠点を除去し無効電流、漏れ電流共
に完全に阻止して閾値電流を低減するのみならず、活性
領域全体を屈折率の小さい物質で捕込み、きわめて女定
な基本横モード発掘をする等すぐれた特性を持゛つと同
時に、一度の液相成長で容易再現性良く作製できる構造
の千4体レーザを提供する事にある。
The purpose of the present invention is not only to eliminate the above-mentioned drawbacks and completely block both reactive current and leakage current to reduce the threshold current, but also to trap the entire active region with a material with a small refractive index, thereby reducing the extremely feminine fundamental transverse mode. The object of the present invention is to provide a 1,4-body laser that has excellent properties such as excavation, and at the same time has a structure that can be easily manufactured with good reproducibility by one-time liquid phase growth.

本発明の半導体レープは、表面が階段状の形状を有する
絶縁性基板上に、少なくとも第1導it型第1クラッド
1−一活性l−−−第2導延型@2・クラッド1mから
成る3層構造を備え、少なくとも第1クラッド1−と活
性層はその表面がrtiJ記階段状の形状を保持し、さ
らに階段状段差部力)らはず1tた平坦な領域に第1導
′#IL型を示す不純物導入領域を第2クラッド層表面
から第1クラッド層に達する深さまで形成し、この不純
物導入領域表面と階段状段差部上方に該当する第2クラ
ッド層表面饋械に電極を形成した構造となっている。
The semiconductor leopard of the present invention consists of at least a first conductive type first cladding 1--an active l---second conductive type@2 cladding 1m on an insulating substrate having a step-like surface. It has a three-layer structure, and the surfaces of at least the first cladding 1- and the active layer maintain a step-like shape, and the first conductive layer is formed in a flat region with a step-like step force). An impurity-introduced region indicating a mold was formed from the surface of the second cladding layer to a depth reaching the first cladding layer, and an electrode was formed on the surface of the second cladding layer corresponding to the surface of this impurity-introduced region and above the stepped portion. It has a structure.

このような構造は面方位による結晶成長運凝υす違いを
利用すると容易に実現できる。絶縁基板として■−■族
化甘吻せ辱体を用いた場合の例Eこついて以下述べる。
Such a structure can be easily realized by utilizing the difference in crystal growth luck υ due to plane orientation. Example E will be described below, in which the ■-■ family member is used as an insulating substrate.

川−V族の絶縁性基板(100)面上において(011
)面に垂直になるようにA(111)面を斜辺として有
する階段を形成するとA(111)面となる(111)
面及び(111)面は(100)面に対し54表44分
の角度をもつ。この構造において液相成長するとA11
iilは平坦@(100)面にくらべて成長速度か約3
倍速いため)!!続成長す6第1のクラッド層及び活性
層はA面方向に王に成長するのに対し階段の上段F段に
なる平坦な(100)面での成長速度はおそく成長層厚
はきわめてうすく更には成長させない事も口」能である
On the (100) surface of the Kawa-V group insulating substrate, (011
) When a staircase is formed with the A(111) plane as the hypotenuse so as to be perpendicular to the A(111) plane, it becomes the A(111) plane.
The plane and the (111) plane have an angle of 54 and 44 with respect to the (100) plane. When liquid phase growth is performed in this structure, A11
iil is a growth rate of about 3 compared to a flat (100) plane.
(because it's twice as fast)! ! While the first cladding layer and active layer grow steadily in the direction of the A plane, the growth rate on the flat (100) plane, which is the upper step F of the staircase, is slow and the growth layer thickness is extremely thin. It is also a matter of not letting it grow.

そのト千m部からA面へ成長する際に活性ノーはうすい
ためエツジの部分で成長l−はとぎれやすくなる。活性
層成長にひき伏いて第2のクラ、ドI−で2坏を埋込め
ばA面に沿って成長した活性I−はクツラドj−で囲ま
れた箔性洟城となり該BH千尋体レーザに類似した構造
になる。特に1nGaAsP/ lnP長波長波長体4
体レーザ合にはInP絶縁基板がクラッド層となり上h
ピ構造を容易に形成できる。
When growing from the 1,000 m part to the A side, the active no is thin, so the growth l- tends to be interrupted at the edge part. If the active layer grows and embeds a second layer with a second layer, the active I- grown along the A plane will become a foil surrounded by the cutulad j-, forming the BH chihiro body laser. It has a structure similar to . Especially 1nGaAsP/lnP long wavelength wavelength body 4
In the case of laser beams, the InP insulating substrate becomes the cladding layer.
Pi structure can be easily formed.

史に上6己惧造においてaglのクラッド層と同一の導
電型不純物を第lクフッド層内に拡散して電流圧入口を
設け、第1のクラッド層と第2のタララドl−との間に
電圧をかけ/)構造とする。従って本構造で1.LiI
E米の゛1’S″P導体レーサとは異なり注入−流は第
lクフッド層力)らM幼に瞬接した活性線域内に注入さ
れ平J!16μ分の活性層へ注入される無効1を随は無
視できる。史に平坦部分では絶縁性基研に隣接しく−い
るため活性1−からの<M f−1μ();・はなく、
又平坦部分での活性―及び第1クラ、ト1曽の層厚はき
わめて薄い為横方向へ加itう岨流壷こ対し′C夷効的
に高抵抗になり横方向へ拡散さイ16無効電流もきわめ
て少く、これらの相乗幼果り)fこy)従来のTS半4
体レーザにくらべて子分以下のは閾値で発振可1ヒとな
る。
Historically, in six previous designs, impurities of the same conductivity type as the cladding layer of the agl were diffused into the lth cladding layer to provide a current pressure inlet, and between the first cladding layer and the second talarad l- Apply a voltage / ) structure. Therefore, in this structure, 1. LiI
Unlike the ``1'S'' P conductor laser in E, the injection current is injected into the active layer that momentarily contacts the M layer from the 1st Hood layer force, and is injected into the active layer by 16 μm. 1 can be ignored.In the flat part of the history, since it is adjacent to the insulating base, there is no <M f-1μ();・ from the active 1-,
In addition, since the active layer in the flat area and the layer thickness of the first layer and layer are extremely thin, the resistance increases in the horizontal direction. The reactive current is also extremely small, and these synergistic results)
Compared to body lasers, lasers below the henchmen can only oscillate at a threshold value.

上記した重置明嘔こよる構造では率に杷林1土丞板を用
いただけではなく従来の構造とは巣なり電流注入領域を
限に制御し無効I4L流を減少する番が”(。
The above-mentioned superimposed structure does not only use the Hyorin 1 Dojo board, but is also different from the conventional structure.It is necessary to limit the current injection area and reduce the ineffective I4L flow.

きるのに対して、従来のT8+4造では一流制岬は困難
で閾値電流の減少は不gf能でめった。しかも本発明に
よ691t造も一役の液相成長で製作でき例えばInP
絶縁性基板を例にとればエツチング倦欧としてBrメタ
ノールを用いれば容易にA面方位が得られ再現性よ<#
ft段状の形状が形成され成長も容易で活性層厚も自由
に制御でき再現性に冨んでいる。
On the other hand, with the conventional T8+4 construction, it was difficult to achieve first-class control, and the reduction of the threshold current was rare due to the inability to reduce the threshold current. Moreover, according to the present invention, a 691-t structure can also be manufactured using liquid phase growth, for example, InP.
Taking an insulating substrate as an example, if Br methanol is used as the etching agent, the A-plane orientation can be easily obtained and the reproducibility can be improved.
ft step-like shape is formed, growth is easy, active layer thickness can be freely controlled, and reproducibility is high.

本発明によって形成された半導体レーザの活性領域は上
記した如くクラッド層でかこまれており例えばInGa
AsP/InP半導体レーサの場合活性領域し成長厚を
0.2〜0.4μm(100)面lこ平行な横方向の長
さを2μm〜3μm以下にす21.ば安定な基本横モー
ド発振を維持し続ける事ができる。更に従来のT8構造
では階段状部分ばかりではな(平坦部分も一部発光する
傾向があったが本発明による構造では活性領域のみ発振
ししかもまわりのクラッド層領域内に水平垂直方向共に
光のしみ出しが生じ等心円状の点光源になり元ファイバ
との結合効率を上げる事ができる。
The active region of the semiconductor laser formed according to the present invention is surrounded by a cladding layer as described above, and is made of, for example, InGa.
In the case of AsP/InP semiconductor lasers, the growth thickness of the active region is 0.2 to 0.4 μm, and the length in the lateral direction parallel to the (100) plane is 2 μm to 3 μm or less21. If this is the case, stable fundamental transverse mode oscillation can be maintained. Furthermore, in the conventional T8 structure, not only the stepped portions (some flat portions also tended to emit light), but in the structure according to the present invention, only the active region oscillates, and there is no light stain in both the horizontal and vertical directions within the surrounding cladding layer region. It becomes a concentric point light source, which increases the coupling efficiency with the original fiber.

すなわち本発明は以下の如き幼果を有する。That is, the present invention has the following young fruits.

■本発明による半導体レーザは有効に活性憤域内に電流
を注入させ6事ができる為無効電流漏れ電流共に少なく
低閾値で発振させる事ができる。
(2) Since the semiconductor laser according to the present invention can effectively inject current into the active region, it can oscillate at a low threshold value with less reactive current and leakage current.

■階段状に形成した絶縁性基板上に一度の液相成長で形
成する事ができ再現性の点で比類なくすぐれている0■
活性領域全体がクラッド層でかこまれているため屈折率
ガイディングが支配的でありきわめて安定な基本横モー
ド発振を広範な電流線域で維持すΦ事ができる。■等心
日に近い光源にできファイバーとの結合効率を上昇させ
る事ができる。
■It can be formed by one-time liquid phase growth on an insulating substrate formed in a step-like manner, and has unparalleled excellent reproducibility.0■
Since the entire active region is surrounded by a cladding layer, refractive index guiding is dominant, and extremely stable fundamental transverse mode oscillation can be maintained over a wide current line range. ■The light source can be placed close to the equicentric sun and the coupling efficiency with the fiber can be increased.

以下本発明の一実施例について図面を用いて説明する。An embodiment of the present invention will be described below with reference to the drawings.

Feドープの1nP絶縁性基板10の(H川)面上1こ
S iOz膜11をつけ(011)面に垂直になるよう
にフォトレジスト法により窓をあけS山2膜を半分泳去
する。次に13rメタノール#液を用いてエツテングす
ると(111)A面を斜面にする階ヰが形成される(図
1)。このときl’i*段の上段とF段との深さを1μ
mlこする。
One SiOz film 11 is applied on the (H-river) plane of the Fe-doped 1nP insulating substrate 10, a window is opened using a photoresist method so as to be perpendicular to the (011) plane, and half of the S-mount 2 film is smeared off. Next, by etching using 13r methanol solution #111, a step with the A side as a slope is formed (FIG. 1). At this time, the depth between the upper stage of l'i* stage and stage F is 1μ.
Rub ml.

次に5i02i11を1云し、p−InPクラ、ド層1
2/:に−A面に沿った厚さが0.5μmになるようI
こ成長させ、久いでアンドープの1n(JaAsP活性
層(λ=x、aμm)13をA面に沿った厚さが6.2
 /J Inになるように成長させる。この場合A面方
向の成長速度は平坦部100)面にくらべて約3倍速い
為、平坦部(100)面上には(れぞれ0,2μmO)
 p−InP%0.07μmのInGaAsP L 7
0zJ&艮しIJい。
Next, add 5i02i11 and add p-InP layer 1.
2/: I so that the thickness along the -A plane is 0.5 μm
After a while, the undoped 1N (JaAsP active layer (λ=x, aμm) 13 was grown to a thickness of 6.2 mm along the A plane.
/J In to grow. In this case, the growth rate in the A-plane direction is about three times faster than that on the flat (100) plane, so the growth rate on the flat (100) plane is (0.2 μmO, respectively).
p-InP% 0.07 μm InGaAsP L 7
0zJ & costume IJ.

その上平坦部から(111)A面へ成長す6上ツシの部
分はくびれで成長ノーかとぎれる0又、A囲は階眩の上
段(100,1面となす角は54度44分であるのでp
−InPクラッド層12の(100)面に平行な方向の
長さは1.08μm11nGaAsP活性層13の(Z
oo)面に平行な方向の長さは0.8μm程度になる。
Moreover, the part of the 6 upper ridge that grows from the flat part to the (111) A plane is cut off by the constriction. So p
- The length of the InP cladding layer 12 in the direction parallel to the (100) plane is 1.08 μm.
The length in the direction parallel to the oo) plane is approximately 0.8 μm.

次いて゛’n−1nPクラッド層14で全体を埋め込む
様に階段上段部上が2μmになるように液相成長を連続
して行ない各層を一目で成黄する(図2)。
Next, liquid phase growth is continuously performed so that the entire layer is buried with the n-1nP cladding layer 14 so that the top part of the stairs has a thickness of 2 .mu.m, and each layer is yellowed at a glance (FIG. 2).

次に成長表面上に5i02膜15を形成した仮フォトレ
ジスト法で階段の上段と91fi+面とのエッヂ近傍を
含む様に窓をあける。次にウェハーを真空石英rンプル
中に拡散ソースCdgPaと共に入れ、565℃で4時
間加熱するとCdは深さ2.4μm拡散されて拡散フロ
ント16はp−InPクラ ド層12中に達す6(Cd
拡散領域17)。Cd拡散表面にAuZnを蒸着し43
0℃でアロイしてp形電極18を形成する0次にIn(
jaAsP活性執域13の上に位置する部分の8102
膜15にフォトレジスト法で窓をあけAU−ミーNiを
蒸着し350℃でアロイしてn形−他19を形成する。
Next, a window is opened using a temporary photoresist method in which a 5i02 film 15 is formed on the growth surface so as to include the upper step of the stairs and the vicinity of the edge of the 91fi+ plane. Next, the wafer is placed in a vacuum quartz sample chamber with a diffusion source CdgPa and heated at 565°C for 4 hours. Cd is diffused to a depth of 2.4 μm, and the diffusion front 16 reaches the p-InP cladding layer 12.
Diffusion region 17). AuZn was deposited on the Cd diffused surface43
Zero-order In(
8102 of the part located above the jaAsP active area 13
A window is opened in the film 15 using a photoresist method, and AU-Me Ni is vapor deposited and alloyed at 350° C. to form an n-type film 19.

この状悪lこおいてCd拡散領域とその外部のn−In
Pクラッド層間に電圧がかかるがその区間は深さ方回約
2μmで短くかつバンドギャップの大きなInPのpn
n会合できているので′kL流はp−InPクラッド層
から活性領域内に有効に仕入される。
In this situation, the Cd diffusion region and the n-In outside it are
A voltage is applied between the P cladding layers, but the section is short, approximately 2 μm in depth, and has a large bandgap.
Because of the n association, the 'kL flow is effectively introduced into the active region from the p-InP cladding layer.

向上記聞は1nP/InLjaAsPについて述へたが
他の材料たとえば(JaAs/AI GaAs等の牛寺
体し−サについても適用できる。
Although the improvement article has been described with respect to 1nP/InLjaAsP, it can also be applied to other materials such as JaAs/AI GaAs.

によって得らnた半尋体レーザの断面図。1 is a cross-sectional view of a semicircular laser obtained by

図において 10・・・・・・InP絶縁性基板、  11・・・・
・・8i0−膜。
In the figure, 10... InP insulating substrate, 11...
...8i0-membrane.

12・・・・・・p−InPクラッド層、  13・・
曲アンドープ1nGaAsP(15性%@、   14
”−n−1nPクフyド1m 。
12... p-InP cladding layer, 13...
Undoped 1nGaAsP (15% @, 14
”-n-1nP Kufud 1m.

15・・・・・・8i0zk、  16・・・・・・C
dz赦フロント。
15...8i0zk, 16...C
dz forgiveness front.

17・・・・・−Cd拡散領域、  18・・・・・・
p形電極。
17...-Cd diffusion region, 18...
p-type electrode.

19・・・・・・n形’wL&をそれぞれ示す〇9  
           !   色−臂 の〜O
19・・・・・・〇9 Indicates n-type 'wL&
! Color-Arm ~O

Claims (1)

【特許請求の範囲】[Claims] 表面が階段状の形状を有する絶縁性基板上に、少なくと
も@l導電型の第1クラッド層と活性層と第2導電型の
第2クラツ、ド層を順仄形成した3層構造を備え、少な
くとも第1クラッド層と活性層は、その表面が前記階段
状の形状を保持し、さらに階段状段差部からはずれた平
坦な領域に@1導電Wを示す不純物を添加した領域を前
記第2クラッド層の表面からIgtr記第1クラッド層
に遅す6深さまで形成し、この不純物添加領域表面と、
階段状膜差部上方に該当する@2クラ、ド層表層部に電
極を備えたことを%黴とする半導体レーザ〇
A three-layer structure in which at least a first cladding layer and an active layer of @l conductivity type and a second cladding layer and a second cladding layer of a second conductivity type are sequentially formed on an insulating substrate whose surface has a step-like shape, At least the first cladding layer and the active layer have surfaces that maintain the step-like shape, and further include a region doped with an impurity exhibiting @1 conductivity in a flat region away from the step-like step portion. The impurity doped region is formed to a depth of 6 from the surface of the Igtr layer to the first cladding layer, and the surface of this impurity doped region and
Semiconductor laser with an electrode on the surface layer of the @2 layer corresponding to the upper part of the stepped film difference part〇
JP11140981A 1981-07-16 1981-07-16 Semiconductor laser Pending JPS5812389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11140981A JPS5812389A (en) 1981-07-16 1981-07-16 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11140981A JPS5812389A (en) 1981-07-16 1981-07-16 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5812389A true JPS5812389A (en) 1983-01-24

Family

ID=14560424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11140981A Pending JPS5812389A (en) 1981-07-16 1981-07-16 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5812389A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003358A (en) * 1987-08-05 1991-03-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device disposed in an insulating substrate
US5194399A (en) * 1987-08-05 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5275968A (en) * 1987-08-05 1994-01-04 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003358A (en) * 1987-08-05 1991-03-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device disposed in an insulating substrate
US5100833A (en) * 1987-08-05 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5194399A (en) * 1987-08-05 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5275968A (en) * 1987-08-05 1994-01-04 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate

Similar Documents

Publication Publication Date Title
EP0000412B1 (en) Semiconductor injection laser or intensifier
JPH11330605A (en) Semiconductor laser
CN101316027A (en) Production method of quantum well edge-emission semiconductor laser
US4296387A (en) Semiconductor laser
JP2553731B2 (en) Semiconductor optical device
JPS5812389A (en) Semiconductor laser
JPS6140082A (en) Semiconductor device
JPS61285781A (en) Semiconductor laser
JPS62214687A (en) Structure of semiconductor laser
JPH01205494A (en) Semiconductor laser
JPS6342871B2 (en)
JPS5832482A (en) Semiconductor laser
JPS5943839B2 (en) semiconductor laser
JPS61104687A (en) Manufacture of buried semiconductor laser
JPS596588A (en) Semiconductor laser
JPS5857770A (en) Semiconductor laser element
JPS5834988A (en) Manufacture of semiconductor laser
JPH0350885A (en) Buried semiconductor optical element
JPH01166592A (en) Semiconductor laser element
JPH04120788A (en) Semiconductor laser
JPH02237190A (en) Semiconductor laser
JPS5818990A (en) Semiconductor laser
JPS5857771A (en) Semiconductor laser
JPH0553316B2 (en)
JPH0233993A (en) Semiconductor laser