JPS5878464A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5878464A
JPS5878464A JP17690881A JP17690881A JPS5878464A JP S5878464 A JPS5878464 A JP S5878464A JP 17690881 A JP17690881 A JP 17690881A JP 17690881 A JP17690881 A JP 17690881A JP S5878464 A JPS5878464 A JP S5878464A
Authority
JP
Japan
Prior art keywords
region
oxide film
gate
type
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17690881A
Other languages
Japanese (ja)
Inventor
Norio Endo
遠藤 憲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP17690881A priority Critical patent/JPS5878464A/en
Publication of JPS5878464A publication Critical patent/JPS5878464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To obtain the insulated gate type semicoductor device having a high voltage resisting silicon gate structure without major change in general manufacturing processes of the silicon gate structure. CONSTITUTION:On the main surface of a p type silicon substrate 11, active regions (source, drain, and gate regions), which are separated by a field oxide film 12, are formed. Then, an n<-> type region 15, which is a drain region required for high voltage resistance, is formed. Then a polycrystal silicon pattern 16 is formed. With the pattern 16 as a mask, a thermal oxide film 13 is etched away. A gate oxide film 17 having a thickness of about 1,000Angstrom is formed on the exposed surface of the active region, and a thick silicon oxide film 18 is formed. Then the patterning of a gate electrode 19 is performed. With the electrode 19 as a mask, the gate oxide film 17 is etched away. Then with the electrode 19 as a mask, an n<+> type source region 20 and an n<+> type region 21 of a drain region 22 are formed in a self-aligning mode with respect to the gate electrode 19.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特にシリコンゲ
ート構造を有する絶縁ゲート型電界効果半導体値壷の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing an insulated gate field effect semiconductor value pot having a silicon gate structure.

絶縁ゲート型電界効果半導体@t(以下MISll半導
体装置という)の電源電圧はますます低下する傾向KT
oるが、他方では依然として高電圧動作が必要とされる
ものもMIa型半導体装置の一分針を形成している。そ
して、高電圧−t’l1作ス、6M18m!半導体装置
ではドレイン耐圧が問題となろ、このドレイン耐圧を高
めるために、アルミニウムゲート構造のMIa型半塙体
鋳置装なかでもゲート絶縁膜としてシリコン酸化膜を用
い&MOa型半導体装置に従来採用されている構造を第
1図に示す。
The power supply voltage of insulated gate field effect semiconductor @t (hereinafter referred to as MISll semiconductor device) tends to decrease more and more KT
However, on the other hand, devices that still require high voltage operation form the minute hand of MIa type semiconductor devices. And high voltage-t'l1 production, 6M18m! Drain breakdown voltage is a problem in semiconductor devices, and in order to increase this drain breakdown voltage, a silicon oxide film is used as the gate insulating film in MIa type semi-circular casting equipment with an aluminum gate structure, which has been conventionally adopted in MOa type semiconductor devices. The structure shown in Figure 1 is shown in Figure 1.

第1図において、1はP型シリコン基板である。該P型
シリコン基板IKはn串型のソース領域2と、n串型領
taSおよびそのチャンネル側に接して設けられた拡散
深変の小さいn−型領域4からなるドレイン領域互が形
成されている。そして、シリコン塞板1のチャンネル領
域表面には薄いゲート酸化11gが形成され、i九チャ
ンネル領域以外のシリコン基板1表面は厚いシリコン酸
化膜7で被覆されている。このゲ−)lIHEIIEj
上にはアルミニウムパターンからなるゲート電極1が形
成され、他方、厚い酸化I11上には夫々コンタクトホ
ールを介してソース領域2.ドレイン領域5のn中型領
域4とオーミック接続し九アルミ千つム配a9,9が形
成されている。
In FIG. 1, 1 is a P-type silicon substrate. The P-type silicon substrate IK has an n-shaped source region 2, a drain region formed of an n-shaped region taS and an n-type region 4 with a small diffusion depth provided in contact with the channel side thereof. There is. A thin gate oxide 11g is formed on the surface of the channel region of the silicon cover plate 1, and the surface of the silicon substrate 1 other than the i9 channel region is covered with a thick silicon oxide film 7. This game)lIHEIIEj
A gate electrode 1 consisting of an aluminum pattern is formed thereon, and on the other hand, source regions 2 . Nine aluminum mesh patterns a9, 9 are formed in ohmic connection with the n medium-sized region 4 of the drain region 5.

これに対して1通常のアルミニウムゲートによるMO8
W1半導体装置の構造は′a2図に示す通りである。同
図にシいて、第1図と同一部分には同一の参照番号を付
しである。
On the other hand, 1 MO8 with a normal aluminum gate
The structure of the W1 semiconductor device is as shown in Figure 'a2. In this figure, the same parts as in FIG. 1 are given the same reference numerals.

上り第1図および第2図の構造を比較すれば明らかなよ
うに、第1図のMOa型半導半導Wではドレイン領域互
に浅IAH−型領域4を有する点で112図のものと相
違し6次に述べるようにこのn 型領域4の存在によっ
てドレイン耐圧の向上が達成されている。っtす、ドレ
イン領域互とPM1v9コン基板Iの間の降伏現像は両
者間のPn接合面における最屯電界強賓の大きい部分1
gaち、ゲート電極8による電圧印加の影響が最も大き
いゲート電極8下の浅い接合部分において生じる。これ
は一般にサーフェスブレークダウンと呼ばれるが、第2
図の構造ではサーフェスブレークダウンの生じる接合が
P+ n 接合であるのに対して、第1図の構造ではPn  
接合となる。従って、第1図の構造ではサーフェスブレ
ークダウンの生じる接合部分での空乏層が第2図の場合
より屯ドレイン領竣5内部でよ秒大きく広がる。ことに
なるから、空乏層の電界強度がそれだけ低下してサーフ
ェスブレークダウン電圧は高くなる。また、サーフェス
ブレークダウンあるいはチャンネル電流という形でn 
型領域4の先端において電流が流れた場合、高抵抗の浅
いn 型領域4での電圧降下により、n 型領域4先端
の電位はドレイ/印加電圧よ抄、低くなる。上記二つの
理由により第1図のMOg型半導半導!電と第2図のM
Og型中導体装置では、実効チャンネル長が同じであっ
て4第1図の構造の方が高いドレイン電型に耐えること
ができる。
As is clear from a comparison of the structures in FIGS. 1 and 2, the MOa semiconductor W in FIG. 1 is different from the one in FIG. However, as will be described next, the existence of this n-type region 4 improves the drain breakdown voltage. The breakdown development between the drain region and the PM1v9 conductive substrate I is caused by the area 1 where the strongest electric field is large at the Pn junction between them.
This occurs in the shallow junction portion under the gate electrode 8, where the influence of voltage application by the gate electrode 8 is greatest. This is generally called surface breakdown, but the second
In the structure shown in the figure, the junction where surface breakdown occurs is a P+ n junction, whereas in the structure shown in Figure 1, the junction where surface breakdown occurs is a Pn junction.
It becomes a junction. Therefore, in the structure shown in FIG. 1, the depletion layer at the junction where surface breakdown occurs spreads further inside the drain region 5 than in the case shown in FIG. Therefore, the electric field strength in the depletion layer decreases accordingly, and the surface breakdown voltage increases. In addition, n in the form of surface breakdown or channel current
When a current flows at the tip of the type region 4, the potential at the tip of the n-type region 4 becomes lower than the drain/applied voltage due to a voltage drop in the shallow n-type region 4 with high resistance. Due to the above two reasons, the MOg type semiconductor shown in Figure 1! Electric and M in Figure 2
In an Og type medium conductor device, the structure shown in FIG. 1 with the same effective channel length can withstand a higher drain voltage type.

ところで、最近の高密変集積回路では、アルミニウムゲ
ート構造よりも多結晶シリコンを用い九所謂シリコンゲ
ート構造が主流となって−る。従って、上記第1図の構
造をV9コンゲート構造の半導体装置に適用することに
対する必要性が極めて大である。この場合、シリコンゲ
ート構造の製造スロセスにおける一般的な特長を損わな
い製造方法が確立されなければならない。
Incidentally, in recent high-density variable integrated circuits, the so-called silicon gate structure using polycrystalline silicon has become mainstream rather than the aluminum gate structure. Therefore, there is a great need to apply the structure shown in FIG. 1 to a semiconductor device having a V9 conjugate structure. In this case, a manufacturing method must be established that does not impair the general features of the manufacturing process of silicon gate structures.

本発明は上述の事情に鑑みてなされ虎もので。The present invention has been made in view of the above circumstances.

第1図同様の構造により耐圧向上を達成し北シリコンゲ
ート構造の絶縁ゲート型電界効果半導体装置を得ること
ができ、しかもシリコンゲート構造の製造プロセスに大
幅な変更を要しない半導体装置の製造方法を提供するも
のである。
Figure 1: A method for manufacturing a semiconductor device that can achieve improved breakdown voltage with a similar structure and obtain an insulated gate field effect semiconductor device with a northern silicon gate structure, and that does not require major changes to the manufacturing process of the silicon gate structure. This is what we provide.

即ち1本発明は、−導電型を有する半導体1板の素子領
域におけるチャンネル領域予定部両側の少々くともドレ
イン側部分に低濃変で拡散深1の浅か基板とは逆導電型
を有する第1の不純物領域を形成する工程と、該第1の
不純物領域上を覆う多結晶シリコンバター/を形成する
工程と、熱酸化(より素子q4蛾の露出表面にゲート酸
化膜を成長させると共に前記多結晶シリコンパターンを
酸化して前記第1の不純物領域上にはゲート酸化膜より
も厚い酸化膜を形成する工程と、チャンネル領域予宇部
から前記第1の不純物領域上を覆う多結晶シリコン層か
らなるゲート電極を形成する工程と1wIゲート電極を
マスクとして基板とは逆の導電型の不純物をドーピング
することによりソース領域となる高g11fで拡散深度
の深い第2の不純物領域および前記第1の不純物領域に
接続し、該不純物領域と共にドレイ/領域となるIII
Ii濃度で拡散深度の深い第3の不純物領域を形成する
工程とを具備し九・・ことを特徴とする半導体装置の製
造方法である。
That is, one aspect of the present invention is to provide a diffusion layer having a conductivity type opposite to that of the substrate with a low concentration change and a shallow diffusion depth of 1 in at least the drain side portion on both sides of the expected channel region in the element region of a semiconductor substrate having a -conductivity type. A step of forming a first impurity region, a step of forming a polycrystalline silicon butter covering the first impurity region, and a step of thermal oxidation (to grow a gate oxide film on the exposed surface of the element Q4 and to remove the polycrystalline silicon butter) A step of oxidizing the crystalline silicon pattern to form an oxide film thicker than the gate oxide film on the first impurity region, and a polycrystalline silicon layer covering the first impurity region from the channel region region. A step of forming a gate electrode, and a second impurity region with a high g11f and a deep diffusion depth that becomes a source region by doping with an impurity of a conductivity type opposite to that of the substrate using the 1wI gate electrode as a mask, and the first impurity region. III, which is connected to the impurity region and becomes a drain/region together with the impurity region.
9. A method of manufacturing a semiconductor device, comprising a step of forming a third impurity region having a Ii concentration and a deep diffusion depth.

以下、第3図(II)〜(f)を参照して本発明の一実
施例を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3(II) to 3(f).

実施例 中 まず、P型シリコン基板1ノの主面に周知の選択酸
化法を施すことによりフィールド酸化1!12を形成し
、該フィールド酸化@ J zによ抄分離され九活性領
琥(ソース、ドレインおよびゲート領域)を形成する(
第3図(a)図示)。
In the example, first, a well-known selective oxidation method is applied to the main surface of a P-type silicon substrate 1 to form field oxides 1 and 12. , drain and gate regions) are formed (
FIG. 3(a) (illustrated).

(11次に、熱酸化により活性領域表面に膜厚的100
OAの熱酸化膜13を形成した後、高耐圧構造に必要な
ドレイン領域のnil領竣予定部上に開孔部を有するレ
ジストパJ−y14を形成する。tilいて、#レジス
トパターン14をマスクとして加速電圧150KeV。
(11) Next, thermal oxidation is applied to the surface of the active region with a film thickness of 100%.
After forming the OA thermal oxide film 13, a resist film J-y 14 having an opening on the planned nil region of the drain region necessary for a high breakdown voltage structure is formed. The acceleration voltage was 150 KeV using the #resist pattern 14 as a mask.

ドーズ量lXl0”/−の条件で燐をイオン注入する(
同図(b烏図示)。
Phosphorus is ion-implanted at a dose of lXl0”/- (
The same figure (crow shown in b).

(jilt  次に、レジストパターン14を除去し友
後。
(Jilt) Next, the resist pattern 14 is removed.

熱処理を行なって先にイオン注入した燐を活性化するこ
とにより高耐圧化に必要なドレイ/領域のn−型領域1
5を形成する。続いてCVD法により全面に多結晶i/
リコン層を堆積し先後、該多結晶シリコン層をパターン
ユングすることにより、前記n−型領竣15上に膜厚的
150OAの多結晶シリコンパターン16を残置する。
The n-type region 1 of the drain/region necessary for high breakdown voltage is formed by heat treatment to activate the previously ion-implanted phosphorus.
form 5. Subsequently, polycrystalline i/
After depositing a silicon layer, the polycrystalline silicon layer is patterned to leave a polycrystalline silicon pattern 16 with a thickness of 150 OA on the n-type region 15.

このとき、多結晶シリコンパターンIllの端部がn−
型領#15のやや内側に位置するようにするのが望まし
い1次いで、多結晶シリコンパターン16をマスクとし
て熱酸化膜13をエツチング除去する(同図(c1図示
)。
At this time, the end of the polycrystalline silicon pattern Ill is n-
The thermal oxide film 13 is desirably located slightly inside the mold region #15. Next, the thermal oxide film 13 is removed by etching using the polycrystalline silicon pattern 16 as a mask (see figure c1).

なお、多結晶シリコンパターン16の形成にはレジスト
パターンをマスクとするプラズマエツチングを用いれば
よい。
Note that plasma etching using a resist pattern as a mask may be used to form the polycrystalline silicon pattern 16.

IVI  次に、1000℃で250分間のドライ酸化
を行なう、これにより、活性領域の露出表面に膜厚約1
000犬のゲート瞭化膜11が形成され、これと同時に
前記多結晶シリコンパターン16が量化されてシリコン
酸化膜に転化する。この結果、n−型領域15上には膜
厚的400OAの厚いシリコン酸化@1ttが形成され
る(同図1d1図示)。
IVI Next, dry oxidation is performed at 1000° C. for 250 minutes, which results in a film thickness of about 1 mm on the exposed surface of the active region.
A gate clearing layer 11 of 0.000 mm is formed, and at the same time, the polycrystalline silicon pattern 16 is quantified and converted into a silicon oxide layer. As a result, a thick silicon oxide @1tt with a film thickness of 400 OA is formed on the n-type region 15 (as shown in FIG. 1d1).

(Vi  次に、CVD法により全面に膜厚的3000
Aの多結晶シリコン層を堆積した後、これをパターンユ
ングしてゲート電極19をパターンユングし、続いて、
該ゲート電極19をマスクとしてゲート酸化gi r 
yをエツチング除去する(同図(e1図示)。
(Vi) Next, a film thickness of 3000% was applied to the entire surface by CVD method.
After depositing the polycrystalline silicon layer A, it is patterned to form a gate electrode 19, and then,
Using the gate electrode 19 as a mask, gate oxidation gir
y is removed by etching (see figure e1).

このとき、ゲート電極19は1図示のようにチャンネル
領斌予定部および厚いシリコン酸化膜18上を覆うよう
にパターンユングする。
At this time, the gate electrode 19 is patterned to cover the intended channel area and the thick silicon oxide film 18 as shown in FIG.

(V−次に、ゲート電極19をマスクとして燐拡散を行
ない、n中型のソース領域2oおよびドレイ/領域2J
のn中型領域21をゲート電極19に対して自己整合的
に形成する(同図(f塾図示)。
(V-Next, phosphorus is diffused using the gate electrode 19 as a mask, and the n medium-sized source region 2o and drain/region 2J are
The n medium-sized region 21 is formed in a self-aligned manner with respect to the gate electrode 19 (FIG. 2(f)).

このとき、前述のように厚いシリコン酸化膜11の端部
がn−型領域15の内側に位置していれば、ドレイン領
域2−2のn中型領域21とn 型領* J sとが必
ず接続して形成されることになる。
At this time, if the end of the thick silicon oxide film 11 is located inside the n-type region 15 as described above, the n-medium region 21 of the drain region 2-2 and the n-type region will be connected and formed.

(vl)  次に1層間絶縁膜として全面にCVD−8
10,1ljJを堆積した後、コンタクトホールの開孔
、アル2ニウムの蒸着およびパターンユングを行なって
アルきニウム配置1124゜24を形成し、シリコンゲ
ート構造のMOa型半導体装置を得る(同図(g)図示
)。
(vl) Next, CVD-8 is applied to the entire surface as an interlayer insulating film.
After depositing 10,1ljJ, contact holes are opened, aluminum is evaporated and patterned to form an aluminum arrangement 1124°24, thereby obtaining an MOa type semiconductor device with a silicon gate structure (see FIG. g) As shown).

こうして得られた第3図(glのシリコンゲート構造の
MO8型半導体装電装置これを第1図のアルZゲート構
造のMOg型半導半導電と比較すれば明らかなように、
高耐圧を達成するために、必要°な構造的要件を総て具
備しており、従って高いドレイン電圧に耐えることがで
きる。
The thus obtained MO8 type semiconductor device with silicon gate structure shown in FIG.
It has all the necessary structural requirements to achieve high breakdown voltage and can therefore withstand high drain voltages.

ところで、第1図および第3図(g)のMOa型半導体
装置では、ゲート電極の電圧がドレイン領域のn 型領
域に影響するのを防止する之めに、n 型領域上に厚い
酸化膜を介在させることが必要となる。そして、シリコ
ンゲート構造の製造プロセスではこの厚い酸化膜、即ち
、厚いシリコン酸化II J gを如何にして形成する
かが問題となる。これは、アルミゲート構造の製造プロ
セスと同様、第4図(ms (blに示すように全面に
厚い熱着化膜1g’を形成し先後、これを選歌エツチン
グして厚いシリコン酸化11EJJtを形成することも
できる。しかし、この場合は厚い熱酸化膜1g’を成長
させるのに長期間を要するという問題があり、また、フ
ィシ1゛ル下酸化模上には薄い熱酸化膜しか成長しない
ために1選択エツチングの際にフィールド酸化膜12が
エツチングされて薄くなってしまうという問題がある。
By the way, in the MOa type semiconductor devices shown in FIGS. 1 and 3(g), a thick oxide film is formed on the n-type region in order to prevent the voltage of the gate electrode from affecting the n-type region of the drain region. It is necessary to intervene. In the manufacturing process of the silicon gate structure, the problem is how to form this thick oxide film, that is, the thick silicon oxide IIJg. This is similar to the manufacturing process of the aluminum gate structure, as shown in Figure 4 (ms (bl), a thick heat-deposited film 1g' is formed on the entire surface, and then this is selectively etched to form a thick silicon oxide film 11EJJt. However, in this case, there is a problem that it takes a long time to grow 1g' of thick thermal oxide film, and also because only a thin thermal oxide film grows on the oxide pattern under the fiber. There is a problem in that the field oxide film 12 is etched and becomes thinner during selective etching.

これに対して、上記実施例のように、多結晶シリコンパ
ターン16をゲート酸化喚形成のためのドライ酸化によ
り酸化する方法を用いれば、上記の問題が生じることは
ない。
On the other hand, if the method of oxidizing the polycrystalline silicon pattern 16 by dry oxidation to form a gate oxide layer is used as in the above embodiment, the above problem does not occur.

なお、MO811半導体装置においてはビレ4フ111
11合のみならずソ。−ス側の接合についても高耐圧化
が畳重されることがあるが1本発明によればソース側に
も同様の高耐圧化構造を備えたシリコンゲート構造のM
Oa型半導体装置を製造することができる。
Note that in the MO811 semiconductor device, the 4th fin 111
Not only 11 go but also so. - High breakdown voltage may be added to the junction on the source side, but according to the present invention, a silicon gate structure with a similar high breakdown voltage structure on the source side is also used.
Oa type semiconductor devices can be manufactured.

ま九1本発明はnチャンネルのみならず。91. The present invention is applicable not only to n-channel.

同様の構造を備えたPチャンネルのMOa型半導体装置
の製造にも適用できることは言うまでもない。
Needless to say, the present invention can also be applied to manufacturing a P-channel MOa type semiconductor device having a similar structure.

以上詳述し九ように1本発明によればシリコンゲート構
造の一般的な製造プロセスに大幅な変更を要するごどな
く高耐圧化構造を儂え九Vリコンゲート構造の絶縁ゲー
ト型半導装置を得ることができる□半導体装置の製造方
法を提供できる’4−fiである。
As described in detail above, according to the present invention, an insulated gate semiconductor device with a 9V recon gate structure can be manufactured with a high withstand voltage structure without requiring a major change in the general manufacturing process of a silicon gate structure. '4-fi can provide a method for manufacturing a semiconductor device that can obtain □.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はドレイン側に高耐圧化構造を具え九アルミゲー
ト構造のMOa型半導体装置を示す断面図、第2図は高
耐圧化構造を具備しない通常のアルミゲート構造のMO
a型半導体装置を示す断面図、第3図Ca)〜(g)は
本発明の一実施例になる製造工程を示す断面図、憤4図
1ml (blは第3図1m)〜(g)の実施例に対す
る比較例の製造工程における要部を示す断面図である。 11・Il+ p 型シリコン基板、rz・・・フィー
ルド曖化嘆、13・・・熱酸化膜、14・・・レジスト
パターン、15・”−n  型領竣、16・軸条結晶シ
リコンパターン、xr−・・ゲート曖化模、18・−厚
いシリコン酸化11.J9・・・ゲート電極、20・・
・ンース領塘、21・・・ドレイン領域のn中型領域。 zz−Yv4ン領域、zs−CVD−810,膜。 24・―・アルミニウム配線。
Fig. 1 is a cross-sectional view showing an MOa type semiconductor device with a high breakdown voltage structure on the drain side and an aluminum gate structure, and Fig. 2 is a cross-sectional view of an MOa type semiconductor device with an ordinary aluminum gate structure without a high breakdown voltage structure.
A cross-sectional view showing an a-type semiconductor device, FIG. 3 Ca) to (g) are cross-sectional views showing a manufacturing process according to an embodiment of the present invention, (bl is FIG. 3 1 m) to (g) FIG. 3 is a cross-sectional view showing main parts in the manufacturing process of a comparative example with respect to the example. 11. Il+ p-type silicon substrate, rz...field blurring, 13.. thermal oxide film, 14.. resist pattern, 15.''-n type region, 16. axial striated crystal silicon pattern, xr -... Gate ambiguity, 18 - Thick silicon oxide 11. J9... Gate electrode, 20...
- Nsu region, 21... n medium-sized region of the drain region. zz-Yv4 region, zs-CVD-810, membrane. 24.--Aluminum wiring.

Claims (2)

【特許請求の範囲】[Claims] (1)  −導電型を有する半導体基板の素子領域にお
けるチャンネル領域予定部両側の少なくともドレイン側
部分に低濃度で拡散深度の浅i基板とは逆導電型を有す
るtalの不純物領域を形成する工程と、該第1の不純
物領域上を覆う多結晶シリコンパターンを形成する王権
と、熱酸化により素子領域の露出表面にゲート酸化膜を
成長させると共に、前記多結晶シリコンパターンを酸化
して前記1111の不純物領域上にはゲート酸化膜より
も厚い酸化膜を形成する工程と、チャンネル債域予定部
から前記第1の不純物領域上を覆う多結晶シリコン層か
らなるゲート電極を形成する工程と、該ゲート電極をマ
スクとして基板とは逆の導電型の不純物をドーピングす
ることによりソース領域となる高11度で拡散深度の深
い第2の不純物領域および前記Illの不純物領域に接
続し、該不純物領域と共にドレイン領域となる高濃度で
拡散深度の深い第3の不純物領域を形成する工程とを真
備したことを特徴とする半導体装置や製造方法。
(1) - A step of forming tal impurity regions having a conductivity type opposite to that of the i-substrate with a low concentration and a shallow diffusion depth on at least the drain side portions on both sides of the intended channel region in the element region of the semiconductor substrate having a conductivity type; , forming a polycrystalline silicon pattern covering the first impurity region, growing a gate oxide film on the exposed surface of the device region by thermal oxidation, and oxidizing the polycrystalline silicon pattern to remove the impurity 1111. forming an oxide film thicker than the gate oxide film on the region; forming a gate electrode made of a polycrystalline silicon layer covering the first impurity region from the planned channel region; A second impurity region with a high diffusion depth of 11 degrees and a deep diffusion depth is doped with impurities having a conductivity type opposite to that of the substrate using the mask as a mask, and is connected to the second impurity region with a high diffusion depth of 11 degrees and a deep diffusion depth, which becomes the source region, and the drain region together with the impurity region. A semiconductor device and a manufacturing method characterized by comprising a step of forming a third impurity region with a high concentration and a deep diffusion depth.
(2)  多結晶シリコンパターンをそのチャンネル長
方向端部が第1の不純物領域の内側に位置するように形
成することを特徴とする特許請求の範囲哨Um項記載の
半導体装置の製造方法。
(2) A method of manufacturing a semiconductor device according to claim 3, characterized in that the polycrystalline silicon pattern is formed such that its end in the channel length direction is located inside the first impurity region.
JP17690881A 1981-11-04 1981-11-04 Manufacture of semiconductor device Pending JPS5878464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17690881A JPS5878464A (en) 1981-11-04 1981-11-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17690881A JPS5878464A (en) 1981-11-04 1981-11-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5878464A true JPS5878464A (en) 1983-05-12

Family

ID=16021851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17690881A Pending JPS5878464A (en) 1981-11-04 1981-11-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5878464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212470A (en) * 1988-02-19 1989-08-25 Mitsubishi Electric Corp Mos transistor and manufacture thereof
JPH0488062U (en) * 1990-12-17 1992-07-30

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212470A (en) * 1988-02-19 1989-08-25 Mitsubishi Electric Corp Mos transistor and manufacture thereof
JPH0488062U (en) * 1990-12-17 1992-07-30

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
US4757032A (en) Method for DMOS semiconductor device fabrication
US3911560A (en) Method for manufacturing a semiconductor device having self-aligned implanted barriers with narrow gaps between electrodes
JPH0148660B2 (en)
US4375717A (en) Process for producing a field-effect transistor
JPS62286283A (en) Semiconductor device
JPH0824144B2 (en) Method for manufacturing semiconductor device
US5559045A (en) Method of fabricating vertical-type double diffused mosfet having a self-aligned field oxide film
JPS5878464A (en) Manufacture of semiconductor device
JPH10294475A (en) Semiconductor device and its manufacture
JP3307481B2 (en) Semiconductor device
JPS6298663A (en) Semiconductor integrated circuit device
JPS62229880A (en) Semiconductor device and manufacture thereof
JP2993028B2 (en) High voltage MIS transistor
JPH0127589B2 (en)
JPH02186675A (en) High breakdown strength planar type semiconductor element and manufacture thereof
JPS635554A (en) Complementary mos type semiconductor device
JPS6156461A (en) Misfet on insulation layer and manufacture thereof
JPS6244862B2 (en)
JPS5856460A (en) Semiconductor device
JPS61292374A (en) Semiconductor device and its manufacture
JPH0554263B2 (en)
JPH0464458B2 (en)
JP2915040B2 (en) Method for manufacturing semiconductor device
KR100200924B1 (en) Method for making semiconductor device for connecting active region electrically