JPH0464458B2 - - Google Patents

Info

Publication number
JPH0464458B2
JPH0464458B2 JP59252319A JP25231984A JPH0464458B2 JP H0464458 B2 JPH0464458 B2 JP H0464458B2 JP 59252319 A JP59252319 A JP 59252319A JP 25231984 A JP25231984 A JP 25231984A JP H0464458 B2 JPH0464458 B2 JP H0464458B2
Authority
JP
Japan
Prior art keywords
field plate
region
plate electrode
semiconductor layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59252319A
Other languages
Japanese (ja)
Other versions
JPS61129867A (en
Inventor
Koji Shirai
Takeshi Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59252319A priority Critical patent/JPS61129867A/en
Priority to KR1019850008747A priority patent/KR890004495B1/en
Priority to US06/802,372 priority patent/US4707720A/en
Priority to DE8585115145T priority patent/DE3585225D1/en
Priority to EP85115145A priority patent/EP0190423B1/en
Publication of JPS61129867A publication Critical patent/JPS61129867A/en
Publication of JPH0464458B2 publication Critical patent/JPH0464458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/7302Bipolar junction transistors structurally associated with other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はプレーナ型の半導体装置に関し、就
中、その接合耐圧を向上するために用いられるフ
イールドプレート構造の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a planar semiconductor device, and more particularly to an improvement in a field plate structure used to improve the junction breakdown voltage thereof.

〔発明の技術的背景〕[Technical background of the invention]

プレーナ型の半導体装置は一導電型の半導体層
表面から該半導体層に対して逆導電型の不純物領
域を形成した構造を有し、これにより形成される
接合(プレーナ接合)は必然的に湾曲され且つそ
の接合端部は半導体層の表面に露出されることに
なる。
A planar semiconductor device has a structure in which an impurity region of an opposite conductivity type is formed from the surface of a semiconductor layer of one conductivity type to the semiconductor layer, and the junction (planar junction) formed thereby is inevitably curved. Moreover, the bonding end portion is exposed to the surface of the semiconductor layer.

第2図Aは上記プレーナ接合の一例を示す断面
図である。同図において、1はN型シリコン層で
ある。該N型シリコン層1の表面からは高濃度の
P+型不純物領域2が形成されると共に、全表面
を覆うシリコン酸化膜3が形成されている。この
プレーナ接合に逆バイアスが印加されると、接合
近傍には図中破線で示す状態で空乏層が広がる。
空乏層はP+型領域2内にも形成されるが、不純
物濃度の高いP+型領域内部での空乏層の幅は極
めて狭いから、図では省略してある。
FIG. 2A is a sectional view showing an example of the planar joint. In the figure, 1 is an N-type silicon layer. From the surface of the N-type silicon layer 1, a high concentration of
A P + type impurity region 2 is formed, and a silicon oxide film 3 covering the entire surface is formed. When a reverse bias is applied to this planar junction, a depletion layer spreads near the junction as shown by the broken line in the figure.
A depletion layer is also formed within the P + type region 2, but the width of the depletion layer inside the P + type region with high impurity concentration is extremely narrow, so it is omitted in the figure.

一般にプレーナ接合にはブレークダウン耐圧が
低いという問題があり、これは主に接合面の湾曲
部に電界が集中することによるものであるが、図
示のように接合表面近傍における空乏層の幅が狭
くなつていることも耐圧低下の原因になつてい
る。即ち、表面近傍でのみ空乏層が狭くなるため
空乏層の湾曲部は更に湾曲が大きくなり、電界集
中が激しくなる。そこで、プレーナ接合における
耐圧向上を図るために、従来からフイールドプレ
ート構造が採用されている。
In general, planar junctions have a problem of low breakdown voltage, which is mainly due to the concentration of the electric field at the curved part of the junction surface, but as shown in the figure, the width of the depletion layer near the junction surface is narrow. The aging also causes a drop in pressure resistance. That is, since the depletion layer becomes narrower only near the surface, the curved portion of the depletion layer becomes even more curved, and the electric field becomes more concentrated. Therefore, in order to improve the withstand voltage in planar bonding, a field plate structure has conventionally been adopted.

第2図Bは最も一般的に行なわれているフイー
ルドプレート構造を示しており、図示のように接
合近傍のN型シリコン層領域2上に、酸化膜3を
介してアルミニウム等の導電性金属からなるフイ
ールドプレート電極4が形成されている。該フイ
ールドプレート電極4には負の電圧が印加され、
これにより電極下のN型シリコン層領域表層から
電子が排斥される結果、図示のように空乏層が形
成される。こうしてフイールドプレート効果によ
り表面の空乏層の形状が補正されるため、プレー
ナ接合の耐圧の向上を図ることが可能となる。
FIG. 2B shows the most commonly used field plate structure. As shown in the figure, a conductive metal such as aluminum is deposited on the N-type silicon layer region 2 near the junction via an oxide film 3. A field plate electrode 4 is formed. A negative voltage is applied to the field plate electrode 4,
As a result, electrons are excluded from the surface layer of the N-type silicon layer region under the electrode, and a depletion layer is formed as shown in the figure. In this way, the shape of the depletion layer on the surface is corrected by the field plate effect, making it possible to improve the withstand voltage of the planar junction.

第3図Aは従来行なわれている他のフイールド
プレート構造を示す断面図である。この構造で
は、例えば酸素添加された多結晶シリコン層等の
高抵抗導体からなるフイールドプレート電極4′
を用い、且つ該電極4′のY端からX端に向けて
図示ように微少電流iを流すようになつている。
微少電流iが流れることによつて電圧降下が生じ
るから、フイールドプレート電極4′にはY端か
らX端にかけて第3図Bに示すような電位勾配が
形成される。このような勾配をもつた電圧が印加
される結果、この場合にフイールドプレート効果
により形成される空乏層は、図中破線で示すよう
に周辺部に向つて滑かに傾斜した形状になる。
FIG. 3A is a sectional view showing another conventional field plate structure. In this structure, a field plate electrode 4' made of a high resistance conductor such as an oxygenated polycrystalline silicon layer is used.
, and a minute current i is caused to flow from the Y end to the X end of the electrode 4' as shown in the figure.
Since a voltage drop occurs due to the flow of the minute current i, a potential gradient as shown in FIG. 3B is formed in the field plate electrode 4' from the Y end to the X end. As a result of applying a voltage with such a gradient, the depletion layer formed by the field plate effect in this case has a shape that slopes smoothly toward the periphery, as shown by the broken line in the figure.

〔背景技術の問題点〕[Problems with background technology]

第2図Bの構造では空乏層の形状補正はなされ
るものの、フイールドプレート電極4に印加され
る電圧は一定であるため、延長して形成された空
乏層の端部には曲率の大きい湾曲部が発生する。
このため、この新たな湾曲部分に電界集中を生
じ、充分な耐圧向上効果が得られないという問題
があつた。
Although the shape of the depletion layer is corrected in the structure shown in FIG. Occur.
Therefore, there was a problem that electric field concentration occurred in this new curved portion, and a sufficient effect of improving the breakdown voltage could not be obtained.

これに対し、第3図Aの構造ではフイールドプ
レート効果による空乏層の延びは極めて滑らかで
あるため第2図Bの場合のような問題はなく、充
分な耐圧向上効果が得られる。しかし、この場合
にはフイールドプレート電極4′に微少電流iを
流さなければならないから、電力損失を生じると
いう問題があつた。また、このような構造をトラ
ンジスタ等の素子に採用した場合、小電流領域で
の動作が困難で、誤動作を生じ易いという問題が
あつた。
On the other hand, in the structure of FIG. 3A, the extension of the depletion layer due to the field plate effect is extremely smooth, so there is no problem as in the case of FIG. 2B, and a sufficient effect of improving breakdown voltage can be obtained. However, in this case, a small current i must be passed through the field plate electrode 4', resulting in a problem of power loss. Further, when such a structure is adopted for an element such as a transistor, there is a problem that operation in a small current region is difficult and malfunction is likely to occur.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、逆
バイアスされたプレーナ接合の空乏層の形状を滑
らかな理想的な形状に補正して充分な耐圧向上効
果を得ることができ、且つ電流損失や誤動作の発
生をも防止できるフイールドプレート構造を具備
した半導体装置を提供するものである。
The present invention has been made in view of the above circumstances, and it is possible to correct the shape of the depletion layer of a reverse biased planar junction to a smooth ideal shape, thereby obtaining a sufficient effect of improving breakdown voltage, and reducing current loss and The present invention provides a semiconductor device equipped with a field plate structure that can also prevent malfunctions.

〔発明の概要〕[Summary of the invention]

本発明による半導体装置は、第一導電型半導体
層と、該第一導電型半導体層の表面から所定の拡
散深さで選択的に形成されて第一導電型半導体層
との間にプレーナ接合を形成している第二導電型
不純物領域と、該第二導電型不純物領域および前
記第一導電型半導体層の表面を覆う絶縁膜と、該
絶縁膜を介して前記第二導電型不純物領域の周縁
からその外側の第一導電型領域に亙る領域上に形
成された半導体層からなるフイールドプレート電
極と、該フイールドプレート電極を構成する半導
体層において前記第二導電型不純物領域の周縁か
らプレーナ接合の外側方向に向けて交互に形成さ
れた複数の第一導電型領域および複数の第二導電
型領域と、該第一導電型領域およびこれよりも内
側の第二導電型領域により前記フイールドプレー
ト電極の全膜厚に亙つて形成される少なくとも二
つ以上の接合とを具備し、前記プレーナ接合に逆
バアスを印加して動作させる際、前記フイールド
プレート電極の両端部間にも前記少なくとも二つ
以上の接合が逆バイアスとなる電圧を印加するよ
うにしたことを特徴とするものである。
A semiconductor device according to the present invention provides a planar junction between a first conductive type semiconductor layer and a first conductive type semiconductor layer that is selectively formed at a predetermined diffusion depth from the surface of the first conductive type semiconductor layer. A formed second conductivity type impurity region, an insulating film covering the surface of the second conductivity type impurity region and the first conductivity type semiconductor layer, and a peripheral edge of the second conductivity type impurity region via the insulating film. A field plate electrode consisting of a semiconductor layer formed on a region extending from the region to the first conductivity type region outside the field plate electrode, and the outside of the planar junction from the periphery of the second conductivity type impurity region in the semiconductor layer constituting the field plate electrode. A plurality of first conductivity type regions and a plurality of second conductivity type regions are formed alternately in the direction, and the entire field plate electrode is and at least two or more junctions formed over the film thickness, and when operating by applying a reverse bias to the planar junction, the at least two or more junctions are also formed between both ends of the field plate electrode. This is characterized in that a voltage is applied that provides a reverse bias.

上記本発明におけるフイールドプレート電極に
は、少なくとも三つのPN接合が存在することに
なりる。しかも、プレーナ接合に逆バイアスが印
加されて半導体装置が動作される際、フイールド
プレート電極における少なくとも二つの接合は逆
バイアスとなり、その近傍には空乏層が形成され
る。この空乏層が形成されている状態のフイール
ドプレート電極は直列に接続された複数のコンデ
ンサと等価であり、空乏層領域にはその幅方向に
電位勾配が形成される。従つてフイールドプレー
ト電極の両端間には、何等電流が流れなくても傾
斜した電位勾配部分が複数形成され、何等電力損
失を伴うことなく第3図Aの場合に近似したフイ
ールドプレード効果を得ることができる。
The field plate electrode according to the present invention has at least three PN junctions. Furthermore, when a semiconductor device is operated with a reverse bias applied to the planar junction, at least two junctions in the field plate electrode are reverse biased, and a depletion layer is formed in the vicinity thereof. The field plate electrode in which this depletion layer is formed is equivalent to a plurality of capacitors connected in series, and a potential gradient is formed in the depletion layer region in its width direction. Therefore, a plurality of inclined potential gradient parts are formed between both ends of the field plate electrode even if no current flows, and a field plate effect similar to that in the case of FIG. 3A can be obtained without any power loss. I can do it.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を高耐圧バイポーラトランジスタ
に適用した一実施例を説明する。
An embodiment in which the present invention is applied to a high voltage bipolar transistor will be described below.

第1図は本発明の一実施例になる高耐圧バイポ
ーラ型半導体装置を示す断面図である。同図にお
いて、11はP型シリコン基板である。該P型シ
リコン基板上にはN型エピタキシヤルシリコン層
が成長され、両者の間にはN+型埋込層12が形
成されている。N型エピタキシヤルシリコン層の
表面からは前記P型基板に達するP+型分離領域
13が選択的に形成され、これによつてN型コレ
クタ領域14が周囲から電気的に分離されてい
る。コレクタ領域14の表層にはP型ベース領域
15が形成され、該ベース領域内にはN+型エミ
ツタ領域16が形成されている。また、ベース領
域15にはP+型ベースコンタクト領域17が形
成され、コレクタ領域にもN+型コレクタコンタ
クト領域18が形成されている。エピタキシヤル
シリコン層の表面はシリコン酸化膜19で覆わ
れ、該酸化膜上には多結晶シリコン層からなるフ
イールドプレート電極20がパターンニングされ
ている。該フイールドプレート電極20はP型ベ
ース領域15の周縁部上からその外側のN型コレ
クタ領域14上に亙つて形成され、その表面は酸
化膜21で覆われている。
FIG. 1 is a sectional view showing a high voltage bipolar semiconductor device according to an embodiment of the present invention. In the figure, 11 is a P-type silicon substrate. An N type epitaxial silicon layer is grown on the P type silicon substrate, and an N + type buried layer 12 is formed between the two. A P + -type isolation region 13 is selectively formed from the surface of the N-type epitaxial silicon layer to reach the P- type substrate, thereby electrically separating the N-type collector region 14 from the surroundings. A P type base region 15 is formed in the surface layer of the collector region 14, and an N + type emitter region 16 is formed within the base region. Further, a P + type base contact region 17 is formed in the base region 15, and an N + type collector contact region 18 is also formed in the collector region. The surface of the epitaxial silicon layer is covered with a silicon oxide film 19, and a field plate electrode 20 made of a polycrystalline silicon layer is patterned on the oxide film. The field plate electrode 20 is formed from the peripheral edge of the P-type base region 15 to the N-type collector region 14 outside thereof, and its surface is covered with an oxide film 21.

また、このフイールドプレート電極20にはそ
の内側端部、即ちP型ベース領域側の端部から外
側端部方向に向けて複数のP型領域22…、複数
のN型領域23…が交互に形成されている。これ
らP型多結晶シリコン領域22…およびN型多結
晶シリコン領域23の両者はフイールドプレート
電極20の全膜厚に亙るPN接合を形成してい
る。シリコン酸化膜19上にはアルミニウムパタ
ーンからなるエミツタ電極24、ベース電極2
5、コレクタ電極26が形成されており、これら
の電極はコンタクトホールを介して夫々エミツタ
領域16、ベースコンタクト領域17、コレクタ
コンタクト領域18に接続されている。更に、エ
ミツタ電極24はフイールドプレート電極20に
おける内側端部のP型領域22に接続され、また
コレクタ電極26はフイールドプレート電極20
における外側端部のN型領域23に接続されてい
る。
Further, in this field plate electrode 20, a plurality of P-type regions 22, a plurality of N-type regions 23, etc. are formed alternately from the inner end, that is, the end on the P-type base region side, toward the outer end. has been done. Both the P-type polycrystalline silicon regions 22 . . . and the N-type polycrystalline silicon regions 23 form a PN junction that extends over the entire thickness of the field plate electrode 20. On the silicon oxide film 19 are an emitter electrode 24 and a base electrode 2 made of an aluminum pattern.
5. A collector electrode 26 is formed, and these electrodes are connected to the emitter region 16, base contact region 17, and collector contact region 18, respectively, via contact holes. Furthermore, the emitter electrode 24 is connected to the P-type region 22 at the inner end of the field plate electrode 20, and the collector electrode 26 is connected to the P-type region 22 at the inner end of the field plate electrode 20.
It is connected to the N-type region 23 at the outer end of.

上記実施例における作用を説明すれば次の通り
である。
The operation of the above embodiment will be explained as follows.

第1図のバイポーラ型半導体装置を動作させる
際、エミツタ領域16とベース領域15の間には
順バイアスが印加され、ベース領域15とコレク
タ領域14との間には逆バイアスが印加される。
その結果、第4図Aに示すようにフイールドプレ
ート電極20には内側端部XのP型領域22が
負、外側端部YのN型領域23が正になる電圧が
印加される。従つて、ベース/コレクタ間のPN
接合近傍に空乏層が広がると共に、フイールドプ
レート電極20のPN接合にも逆バイアスが印加
されて空乏層が広がる。第4図Aはフイールドプ
レート電極20に空乏層が広がつた状態を示して
おり、図中交差斜線を付した部分が空乏層を示し
ている。なお、フイールドプレート電極20の
PN接合のうち、逆バイアスが加わるのは内側の
P型領域と外側のN型領域とで形成される接合A
であつて、内側N領域と外側P領域とで形成され
る接合Bは順バイアスとなる。従つて、図示のよ
うに接合の一つおきに空乏層が形成される。もち
ろん、順バイアスの接合にも空乏層は存在する
が、そこにおける電位の変化は微少であるため、
ここでは省略する。
When operating the bipolar semiconductor device shown in FIG. 1, a forward bias is applied between the emitter region 16 and the base region 15, and a reverse bias is applied between the base region 15 and the collector region 14.
As a result, as shown in FIG. 4A, a voltage is applied to the field plate electrode 20 such that the P-type region 22 at the inner end X is negative and the N-type region 23 at the outer end Y is positive. Therefore, the PN between base and collector
The depletion layer spreads near the junction, and a reverse bias is also applied to the PN junction of the field plate electrode 20, causing the depletion layer to spread. FIG. 4A shows a state in which a depletion layer has spread in the field plate electrode 20, and the cross-hatched area in the figure shows the depletion layer. Note that the field plate electrode 20
Of the PN junctions, reverse bias is applied to junction A formed between the inner P-type region and the outer N-type region.
The junction B formed by the inner N region and the outer P region is forward biased. Therefore, a depletion layer is formed at every other junction as shown. Of course, a depletion layer exists in a forward-biased junction, but the change in potential there is minute, so
It is omitted here.

このような状態おけるフイールドプレート電極
20は、空乏層を誘電体層としたコンデンサを直
列に結合したものと等価である。従つて全く電流
が流れない状態でも空乏層領域には電位勾配が形
成され、フイールドプレート電極20全体では第
4図Bに示すよな電位分布が形成される。このよ
うな電位分布をもつた電極20によるフイールド
プレート効果が加わる結果、コレクタ領域のベー
ス領域15との接合近傍表面には第5図中に破線
で示す形状の空乏層が形成され、第2図の通常の
フイールドプレート構造に比較して接合耐圧の向
上を図ることができる。また、既述のようにフイ
ールドプレート電極20に電流を流す必要がない
から、第3図の従来例のように電力損失や微少電
流動作領域での誤動作を生じることがない。この
場合、第3図の改良された従来例に比較すると空
乏層の形状補正効果は若干劣ると思われるが、こ
れは接合の数を増加することでかなりの程度改良
され、それよりも電力損失がないこと及び誤動作
を防止できる効果の方が大きい。しかも、多結晶
シリコン層に形成された接合は単結晶シリコン層
に形成された接合に比較して耐圧が低くならざる
を得ないが、フイールドプレート電極の両端に印
加される電圧を複数の接合部分に分割することで
その欠点を備える利点がある。
The field plate electrode 20 in this state is equivalent to a series connection of capacitors in which the depletion layer is a dielectric layer. Therefore, even in a state where no current flows, a potential gradient is formed in the depletion layer region, and a potential distribution as shown in FIG. 4B is formed across the field plate electrode 20. As a result of the addition of the field plate effect due to the electrode 20 having such a potential distribution, a depletion layer in the shape shown by the broken line in FIG. 5 is formed on the surface of the collector region near the junction with the base region 15, and as shown in FIG. The junction breakdown voltage can be improved compared to the normal field plate structure. Furthermore, since there is no need to flow a current through the field plate electrode 20 as described above, there is no power loss or malfunction in the micro current operation region as in the conventional example shown in FIG. In this case, the shape correction effect of the depletion layer seems to be slightly inferior compared to the improved conventional example shown in Figure 3, but this can be improved to a considerable degree by increasing the number of junctions, and the power loss is This has a greater effect of preventing errors and malfunctions. Furthermore, although a junction formed in a polycrystalline silicon layer inevitably has a lower breakdown voltage than a junction formed in a single-crystal silicon layer, the voltage applied to both ends of the field plate electrode can be applied to multiple junctions. There is an advantage in overcoming this drawback by dividing the data into two parts.

次に、第1図の実施例におけるフイールドプレ
ート電極20を形成する方法の一例につき、第6
図A〜Dを参照して説明する。
Next, regarding an example of the method of forming the field plate electrode 20 in the embodiment of FIG.
This will be explained with reference to Figures A to D.

まず、P型シリコン基板11を用いた従来のバ
イポーラプロセスにおける定法に従つて、N型エ
ピタキシヤル層14N+型埋込層12、P+型分離
領域13を形成した後、エピタキシヤル層表面を
1100℃の上記雰囲気中で60分酸化し、膜厚6000〓
のフイールド酸化膜19を形成する。続いて
CVD法により膜厚5000〓のN型多結晶シリンコ
ン層を堆積し、これをパターンニングしてフイー
ルドプレート電極となるN型多結晶シリコンパタ
ーン20′を形成する(第6図A図示)。
First, an N-type epitaxial layer 14, a N + -type buried layer 12, and a P + -type isolation region 13 are formed according to a standard method in a conventional bipolar process using a P-type silicon substrate 11, and then the surface of the epitaxial layer is
Oxidized for 60 minutes in the above atmosphere at 1100℃, resulting in a film thickness of 6000mm.
A field oxide film 19 is formed. continue
A 5000 mm thick N-type polycrystalline silicon layer is deposited by CVD and patterned to form an N-type polycrystalline silicon pattern 20' which will become a field plate electrode (as shown in FIG. 6A).

次に、フオツトエツチングによりベース領域と
なる部分のフイールド酸化膜を選択的にエツチン
グして開孔した後、1100℃でドライ酸化を行なう
ことにより、ベース開孔部および多結晶シリコン
パターン20の表面に膜厚1000〓の薄い酸化膜21
を形成する(第6図B図示)。
Next, the field oxide film in the portion that will become the base region is selectively etched by photo etching to form holes, and then dry oxidation is performed at 1100°C to form the base hole and the surface of the polycrystalline silicon pattern 20. A thin oxide film 21 with a film thickness of 1000 mm
(as shown in FIG. 6B).

次に、ベース領域開孔部上およびフイールドプ
レート電極のP型領域22…となる部分上に開孔
部を有するレジストパターン31を形成し、該レ
ジストパターン31をマスクとしてボロンのイオ
ン注入を行なことにより、ベース領域予定部およ
びP型領域22…の予定部にホロンをドープする
(第6図C図示)。
Next, a resist pattern 31 having openings is formed over the openings in the base region and over the portions that will become the P-type regions 22 of the field plate electrode, and using the resist pattern 31 as a mask, boron ions are implanted. As a result, the planned portions of the base region and the planned portions of the P-type regions 22 are doped with holons (as shown in FIG. 6C).

次に、レジストパターン31を除去し、熱処理
をを行なつて先にイオン注入したボロンの活性化
を行ない、P型ベース領域25を形成すると同時
に、フイールドプレート電極20のP型領域22
…を形成する(第6図D図示)。
Next, the resist pattern 31 is removed, and heat treatment is performed to activate the previously implanted boron ions to form the P-type base region 25. At the same time, the P-type region 22 of the field plate electrode 20 is
... is formed (as shown in FIG. 6D).

その後は定法に従つてエミツタ拡散およびコレ
クタコンタクト領域18の形成、ベースコンタク
ト領域17の形成、更にアルミニウム配線24,
25,26の形成を行なえば第1図の構造を具備
したバイポーラ型半導体装置を得ることができ
る。
After that, according to the conventional method, emitter diffusion and collector contact region 18 are formed, base contact region 17 is formed, aluminum wiring 24,
By forming 25 and 26, a bipolar semiconductor device having the structure shown in FIG. 1 can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば半導体装
置のフイールドプレート電極構造を改良すること
により、逆バイアスされたプレーナ接合の空乏層
の形状を滑らかな理想的な形状に補正して充分な
耐圧向上効果を得ると同時に、電流損失や誤動作
の発生をも防止できる等、顕著な効果が得られる
ものである。
As described in detail above, according to the present invention, by improving the field plate electrode structure of a semiconductor device, the shape of the depletion layer of a reverse biased planar junction is corrected to a smooth ideal shape, and a sufficient breakdown voltage can be achieved. In addition to obtaining improvement effects, remarkable effects such as being able to prevent current loss and malfunctions can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をバイポーラ型半導体装置に適
用した一実施例を示す断面図、第2図Aはプレー
ナ接合とその耐圧低下の問題を説明する断面図で
あり、同図Bは従来の半導体装置におけるフイー
ルドプレート構造を示す断面図、第3図A,Bは
従来の改良されたフイールドプレート構造を示す
説明図、第4図A,Bは第1図の実施例における
作用を示す説明図、第5図は第1図の実施例にお
いてベース領域15とコレクタ領域14の接合近
傍に広がる空乏層の形状を示す断面図、第6図
A,Dは第1図の実施例になる半導体装置の要部
製造工程を順を追つて示す断面図である。 11……P型シリコン基板、12……N+型埋
込領域、13……P+型分離領域、14……N型
コレクタ領域、15……P型ベース領域、16…
…N+型エミツタ領域、17……P+型ベースコン
タクト領域、18……N+型コレクタコンタクト
領域、19……フイールド酸化膜、20……フイ
ールドプレート電極、20′……N型多結晶シリ
コンパターン、21……薄い酸化膜、22……P
型領域、23……N型領域、31……レジストパ
ターン。
FIG. 1 is a cross-sectional view showing an embodiment in which the present invention is applied to a bipolar semiconductor device, FIG. 3A and 3B are explanatory diagrams showing a conventional improved field plate structure; FIGS. 4A and B are explanatory diagrams showing the operation of the embodiment of FIG. 1; 5 is a cross-sectional view showing the shape of the depletion layer extending near the junction between the base region 15 and collector region 14 in the embodiment of FIG. 1, and FIGS. 6A and 6D are of the semiconductor device according to the embodiment of FIG. FIG. 3 is a cross-sectional view showing the main manufacturing process in order. DESCRIPTION OF SYMBOLS 11... P type silicon substrate, 12... N + type buried region, 13... P + type isolation region, 14... N type collector region, 15... P type base region, 16...
...N + type emitter region, 17...P + type base contact region, 18...N + type collector contact region, 19...field oxide film, 20...field plate electrode, 20'...N type polycrystalline silicon Pattern, 21...thin oxide film, 22...P
Type area, 23...N type area, 31...Resist pattern.

Claims (1)

【特許請求の範囲】 1 第一導電型半導体層と、該第一導電型半導体
層の表面から所定の拡散深さで選択的に形成され
て前記第一導電型半導体層との間にプレーナ接合
を形成している第二導電型不純物領域と、該第二
導電型不純物領域および前記第一導電型半導体層
の表面を覆う絶縁膜と、該絶縁膜を介して前記第
二導電型不純物領域の周縁からその外側の第一導
電型領域に亙る領域上に形成された半導体層から
なるフイールドプレート電極と、該フイールドプ
レート電極を構成する半導体層において前記第二
導電型不純物領域の周縁からプレーナ接合の外側
方向に向けて交互に形成された複数の第一導電型
領域および複数の第二導電型領域と、該第一導電
型領域および第二導電型領域により前記フイール
ドプレート電極の全膜厚に亙つて形成される三つ
以上の接合と、前記プレーナ接合に逆バイアスを
印加して動作させる際、前記フイールドプレート
電極の両端部間にも前記三つ以上の接合のうち少
なくとも二つ以上の接合が逆バイアスとなる電圧
が印加されるコンタクトとを具備したことを特徴
とする半導体装置。 2 前記第一導電型半導体層がバイポーラトラン
ジスタのコレクタ領域を構成し、前記第二導電型
不純物領域がバイポーラトランジスタのベース領
域を構成していることを特徴とする特許請求の範
囲第1項記載の半導体装置。 3 前記フイールドプレート電極を構成する半導
体層が多結晶シリコン層であることを特徴とする
特許請求の範囲第1項または第2項記載の半導体
装置。
[Claims] 1. A planar junction between a first conductive type semiconductor layer and the first conductive type semiconductor layer, which is selectively formed at a predetermined diffusion depth from the surface of the first conductive type semiconductor layer. an insulating film that covers the second conductive type impurity region and the surface of the first conductive type semiconductor layer; A field plate electrode consisting of a semiconductor layer formed on a region extending from the periphery to the first conductivity type region outside the field plate electrode, and a planar junction from the periphery of the second conductivity type impurity region in the semiconductor layer constituting the field plate electrode. A plurality of first conductivity type regions and a plurality of second conductivity type regions are formed alternately toward the outside, and the first conductivity type regions and the second conductivity type regions cover the entire film thickness of the field plate electrode. When operating by applying a reverse bias to the planar junction, at least two of the three or more junctions are formed between both ends of the field plate electrode. 1. A semiconductor device comprising a contact to which a reverse bias voltage is applied. 2. The semiconductor layer according to claim 1, wherein the first conductivity type semiconductor layer constitutes a collector region of a bipolar transistor, and the second conductivity type impurity region constitutes a base region of the bipolar transistor. Semiconductor equipment. 3. The semiconductor device according to claim 1 or 2, wherein the semiconductor layer constituting the field plate electrode is a polycrystalline silicon layer.
JP59252319A 1984-11-29 1984-11-29 Semiconductor device Granted JPS61129867A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59252319A JPS61129867A (en) 1984-11-29 1984-11-29 Semiconductor device
KR1019850008747A KR890004495B1 (en) 1984-11-29 1985-11-22 Semiconductor device
US06/802,372 US4707720A (en) 1984-11-29 1985-11-27 Semiconductor memory device
DE8585115145T DE3585225D1 (en) 1984-11-29 1985-11-29 PLANAR SEMICONDUCTOR DEVICE WITH A FIELD PLATE.
EP85115145A EP0190423B1 (en) 1984-11-29 1985-11-29 Planar semiconductor device having a field plate electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252319A JPS61129867A (en) 1984-11-29 1984-11-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61129867A JPS61129867A (en) 1986-06-17
JPH0464458B2 true JPH0464458B2 (en) 1992-10-15

Family

ID=17235598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252319A Granted JPS61129867A (en) 1984-11-29 1984-11-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61129867A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2956434B2 (en) * 1992-10-30 1999-10-04 株式会社デンソー Insulated semiconductor device
JP2803565B2 (en) * 1994-04-15 1998-09-24 株式会社デンソー Method for manufacturing semiconductor device
CN103681808A (en) * 2012-09-09 2014-03-26 苏州英能电子科技有限公司 LBJT (Lateral Bipolar Junction Transistor) containing field plate structure

Also Published As

Publication number Publication date
JPS61129867A (en) 1986-06-17

Similar Documents

Publication Publication Date Title
US4399449A (en) Composite metal and polysilicon field plate structure for high voltage semiconductor devices
EP0129362A2 (en) Schottky barrier diode with guard ring
EP0663698B1 (en) Semiconductor device and its manufacture
US4375717A (en) Process for producing a field-effect transistor
KR890004495B1 (en) Semiconductor device
JP4607266B2 (en) Power semiconductor device using semi-insulating polysilicon (SIPOS) and manufacturing method thereof
US5202573A (en) Dual anode mos scr with anti crosstalk collecting region
JP3468571B2 (en) Semiconductor device
JPH0464458B2 (en)
US6040219A (en) Method of fabricating power semiconductor device using semi-insulating polycrystalline silicon (SIPOS) film
JPH10294475A (en) Semiconductor device and its manufacture
JP2753011B2 (en) High breakdown voltage planar semiconductor device and method of manufacturing the same
JPS6048111B2 (en) Non-volatile semiconductor memory device
JPH0344412B2 (en)
KR100289742B1 (en) Power semiconductor device using Semi-Insulating PO1ycrysta IIine Silicon(SIPOS) film
JPH07130898A (en) Semiconductor device and manufacture thereof
JP3869581B2 (en) Semiconductor device and manufacturing method thereof
JP2003163351A (en) Insulated-gate semiconductor device and method of manufacturing the same
JP2904545B2 (en) High breakdown voltage planar semiconductor device and method of manufacturing the same
JP2982510B2 (en) Semiconductor device and manufacturing method thereof
KR19990010738A (en) Power semiconductor device and manufacturing method
JP2858445B2 (en) Self-extinguishing reverse conducting thyristor
JP2692292B2 (en) Vertical bipolar transistor for integrated circuit devices
JP2682231B2 (en) Semiconductor device
JP2000216381A (en) Field effect transistor