JPS5875748A - Image revolution corrector for scanning type analyzer - Google Patents

Image revolution corrector for scanning type analyzer

Info

Publication number
JPS5875748A
JPS5875748A JP56175079A JP17507981A JPS5875748A JP S5875748 A JPS5875748 A JP S5875748A JP 56175079 A JP56175079 A JP 56175079A JP 17507981 A JP17507981 A JP 17507981A JP S5875748 A JPS5875748 A JP S5875748A
Authority
JP
Japan
Prior art keywords
signal
image
sample
scanning
deflection coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56175079A
Other languages
Japanese (ja)
Other versions
JPH0255902B2 (en
Inventor
Kazuo Koyanagi
和夫 小柳
Yuji Mori
森 優治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP56175079A priority Critical patent/JPS5875748A/en
Publication of JPS5875748A publication Critical patent/JPS5875748A/en
Publication of JPH0255902B2 publication Critical patent/JPH0255902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • H01J37/256Tubes for spot-analysing by electron or ion beams; Microanalysers using scanning beams

Abstract

PURPOSE:To simplify the modification of image magnification and facilitate the observation of an image by controlling a scanning signal supplied to a directional deflection coil and always making the scanning direction constant. CONSTITUTION:12 is a section which outputs the vertical position of a sample as a voltage signal. When the sample positional transducer section is a potentiometer, 12 is integrated. When the transducer section is a counter that counts a pulse motor supply pulse, 12 is a D/A converter, 13 is a function generator circuit and converts the voltage signal that indicates the sample position into an angle of revolution signal in accrdance with a predetermined function. 14 is a servoamplifier and 15 is a servomotor. The servomotor 15 is revolved only for the angle that corresponds to the angle signal obtained by 13. 16 is a two-way potentiometer with sintheta and costheta outputs, is driven by the servomotor 15, and obtains sintheta and costheta signals. These signals combine a signal X(t) supplied to an X directional deflection coil and a signal Y(t) supplied to a Y directional deflection coil in a circuit 7.

Description

【発明の詳細な説明】 本発明は走査型電子顕微鏡のような荷電粒子線で試料面
を走査して分析出力を映像として表示する装置で電磁レ
ンズを使用した装置における像の回転を補正する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a device that uses an electromagnetic lens to correct image rotation in a device that scans a sample surface with a charged particle beam and displays the analysis output as an image, such as a scanning electron microscope. Regarding.

上述した走査型電子顕微鏡等では電磁レンズの強さを変
えた多試料の光軸方向の位置を変えると像の回転が起る
。像の回転があると像の目視観察シ映像観察に不便であ
るから、通常はこのような場合手動的操作によってX方
向偏向コイル及びY方向偏向コイルに印加する掃引信号
を調整して走査方向を像の回転角だけ反対方向に回転さ
せ、試料面上での走査方向を分析装置に固有の一定方向
にしており、このため像の倍率を変えるような操作は大
へん面倒であった。
In the above-mentioned scanning electron microscope and the like, image rotation occurs when the position of multiple samples in the optical axis direction is changed by changing the strength of the electromagnetic lens. Since rotation of the image is inconvenient for visual observation of the image and video observation, normally in such cases, the scanning direction is adjusted manually by adjusting the sweep signals applied to the X-direction deflection coil and the Y-direction deflection coil. The image is rotated in the opposite direction by the rotation angle, and the scanning direction on the sample surface is set in a fixed direction specific to the analyzer, which makes operations such as changing the magnification of the image extremely troublesome.

変更操作が大変簡単になり、映像の観察がやり易くなる
。以下実施例によって本発明を説明する。
Changing operations become very simple, and video observation becomes easier. The present invention will be explained below with reference to Examples.

第1図は本発明の一実施例の全体を示すブロック図であ
る。1は電子ビーム、2,3は互に直角の方向に電子ビ
ームを偏向させる偏向コイルで便宜上2をX方向偏向コ
イル、3をY方向偏向コイルと云うことにする。と\で
便宜上と云うのはX方向偏向コイルが試料面の水平走査
を司り、Y方わ 向側向コイルが垂直走査を司ると決っている惑けではな
いからであるo ’Fi電磁対物レンズ、5゜6は試料
の上下2つの位置を示し、5は高倍率、6は低倍率の位
置ゼある。7は走査像回転装置、8は走査制御部でX掃
引信号及びy掃引信号を発生している。これらの信号は
鋸歯状波で、その−周期の傾斜直線部はat及びbtで
表わされる。
FIG. 1 is a block diagram showing an entire embodiment of the present invention. 1 is an electron beam, and 2 and 3 are deflection coils that deflect the electron beam in directions perpendicular to each other.For convenience, 2 is called an X-direction deflection coil, and 3 is called a Y-direction deflection coil. The reason why I say "for convenience" is because the X-direction deflection coil controls the horizontal scanning of the sample surface, and the Y-direction lateral coil controls the vertical scanning. , 5°6 indicate the upper and lower positions of the sample, 5 is the high magnification position, and 6 is the low magnification position. 7 is a scanning image rotating device, and 8 is a scanning control section which generates an X sweep signal and a Y sweep signal. These signals are sawtooth waves whose periodic slopes are denoted by at and bt.

走査像回転装置はこのat・ btの信号を受けて、X
方向偏向コイル2に与える信号X (t)及びY方向偏
向コイル3に与える信号y 、(t)を構成する。こ\
に X(t)=K a t +  L b t・−・(1)
Y(t) =M a t −4−N b t  ・−・
(2)上式でに、Mは走査線の方向を表わし、L、Nは
走査線の間隔を表わす。装置の基準状態ではX方向偏向
コイル2は水平走査だけを司り、Y方向偏向コイル3は
垂直走査だけを司る。この場合上式%式% となり、L及びMはOである。この状態よ多角度θだけ
像を回転させたいときは第2図を参照してに=に□co
θθ、  M=Koθ1nθ   ・43)L = N
 □ sinθ、  N = N (、cosθ   
−(4)第2図で線は走査線を表わし、1(、は水平走
査の一周期を表わす。走査像回転装置7はat及びbt
の走査信号を受゛けて上記(1)及び(2)式によって
表わされるX (t)及びy (t)に変換してコイル
2及び3に供給している。9は対物レンズの励磁電源で
ある。10は試料の対物レンズ9の光軸方向即ち上下方
向の位置を検出する位置検出部で試料台にょシ摺動され
るポテンショメータである。或は試料台上下装置駆動用
パルスモータの駆動用パルスを計数するカラ/りでもよ
い。11は制御回路で上記10によって得られた試料の
上下位置のデータから像の回転角を算出し、その回転角
から同量反対方向に像を回転させるために上記(3)、
 (4)の演算を行ってに、  L、  M、  Nの
値を決定し、走査像回転装置7に出力する。
The scanning image rotation device receives the at and bt signals and rotates the
A signal X (t) given to the direction deflection coil 2 and a signal y 2 (t) given to the Y direction deflection coil 3 are configured. child\
X(t) = K a t + L b t・−・(1)
Y(t) = M a t -4-N b t ・-・
(2) In the above equation, M represents the direction of the scanning line, and L and N represent the interval between the scanning lines. In the standard state of the device, the X-direction deflection coil 2 controls only horizontal scanning, and the Y-direction deflection coil 3 controls only vertical scanning. In this case, the above formula % formula % is obtained, and L and M are O. In this state, if you want to rotate the image by multiple angles θ, refer to Figure 2 and turn it into = □co
θθ, M=Koθ1nθ ・43) L = N
□ sinθ, N = N (, cosθ
-(4) In FIG. 2, the lines represent scanning lines, and 1(, represents one period of horizontal scanning. The scanning image rotation device 7 is
The scanning signal is received, converted into X (t) and y (t) expressed by the above equations (1) and (2), and supplied to the coils 2 and 3. 9 is an excitation power source for the objective lens. Reference numeral 10 denotes a potentiometer which is a position detection unit that detects the position of the objective lens 9 of the sample in the optical axis direction, that is, in the vertical direction, and is slid on the sample stage. Alternatively, it may be a device that counts the driving pulses of a pulse motor for driving the sample stage up/down device. 11 is a control circuit that calculates the rotation angle of the image from the data on the vertical position of the sample obtained in 10 above, and rotates the image in the opposite direction by the same amount from the rotation angle as described in (3) above.
After performing the calculation in (4), the values of L, M, and N are determined and output to the scanning image rotation device 7.

像の回転は電孕加速電圧及び電磁対物レンズ4の磁束密
度分布に関係し理論式によって計算できるが・、実際に
磁束密度分布を検出して回転角を計算すると云う方法は
余り実用的でない。加速電圧及び磁束密度りレンズの焦
点距離に関係し、試料の上下方向の位置と関係するので
、像の回転角を試料の上下方向の位置の関数として予め
決定しておき、試料の上下位置を検出して像の回転角を
求め、X方向偏向コイル及びY方向偏向コイルに供給す
る走査信号を制御して走査像を反対方向に回転させるこ
とによって対物レンズによる像の回転を相殺し、試料面
上の走査方向を常に一定であるようにした所に本発明の
特徴がある。
The rotation of the image is related to the electromagnetic accelerating voltage and the magnetic flux density distribution of the electromagnetic objective lens 4, and can be calculated using a theoretical formula; however, it is not very practical to calculate the rotation angle by actually detecting the magnetic flux density distribution. The accelerating voltage and magnetic flux density are related to the focal length of the lens and the vertical position of the sample, so the rotation angle of the image is determined in advance as a function of the vertical position of the sample, and the vertical position of the sample is determined in advance. The rotation angle of the image is determined by detection, and the scanning signal supplied to the X-direction deflection coil and the Y-direction deflection coil is controlled to rotate the scanned image in the opposite direction, thereby canceling out the rotation of the image by the objective lens. The present invention is characterized in that the upper scanning direction is always constant.

第3図は第1図における走査像回転装置7及び制御回路
11の構成の一例を示す。12は試料の上下位置を電圧
信号として出力する部分で、試料位置検出部10がポテ
ンショメータであるときは10と一体のものである。1
0がパルスモータ供給パルスを計数するカウンタである
ときは12はD / A変換器である。ユ3は関数発生
回路で、試料位置を表わす電圧信号を予め決定しである
関数に従って回転角の信号に変換する。14はサーボア
ンプ、15はサーボモータで13で得られた角度信号に
相当する角度だけサーボモータ15が回転する。16は
sinθ、  coθθの出力を持つ2連ポテンシヨメ
ータでサーボモータで15で駆動されて、上記+3)、
 (4)式に用いるθ1nθ、 c、osθの信号を得
る。この信号によって回路7で上記(1)、 (2)式
のx(t)、  y(t)が合成される。
FIG. 3 shows an example of the configuration of the scanning image rotation device 7 and control circuit 11 in FIG. 1. Reference numeral 12 denotes a part that outputs the vertical position of the sample as a voltage signal, and is integrated with 10 when the sample position detection section 10 is a potentiometer. 1
When 0 is a counter that counts the pulse motor supply pulses, 12 is a D/A converter. Numeral 3 is a function generating circuit which converts a voltage signal representing the sample position into a rotation angle signal according to a predetermined function. 14 is a servo amplifier; 15 is a servo motor; the servo motor 15 rotates by an angle corresponding to the angle signal obtained at 13; 16 is a double potentiometer with outputs of sin θ and co θθ, and is driven by 15 with a servo motor, +3) above.
Obtain signals of θ1nθ, c, and osθ used in equation (4). Using this signal, x(t) and y(t) in equations (1) and (2) above are synthesized in circuit 7.

上述した実施例はアナログ方式であるが、マイクロプロ
セッサを用い、サーボアンプ、  sin、 cos出
力ポテンショメータ等の機械的な部品装置を全く用いな
いで上記fl)、 +2)式の出力を得ることは容易で
ある。また回転角θの信号を得るまでは上側と同じであ
るが、この角度信号によシ、X方向偏向コイル2及びY
方向偏向コイル3を角度θだけ機械的に回わすようにし
てもよい。また像・の回転角補正をより高精度に行うに
は試料位置のデータの他、加速電圧及び磁束密度の代り
にレンズ励磁電流を検出して、これら3種の量の関数と
して像回転角を求めるようにすればよい。
Although the above-mentioned embodiment is an analog method, it is easy to obtain the output of the above fl) and +2) formulas using a microprocessor and without using any mechanical components such as a servo amplifier, sine output potentiometer, and cos output potentiometer. It is. The process is the same as above until the rotation angle θ signal is obtained, but depending on this angle signal, the X direction deflection coil 2 and Y
The direction deflection coil 3 may be mechanically turned by an angle θ. In addition, in order to correct the rotation angle of the image with higher precision, in addition to data on the sample position, the lens excitation current is detected instead of the accelerating voltage and magnetic flux density, and the image rotation angle is calculated as a function of these three quantities. All you have to do is ask for it.

本発明装置によれば対物レンズの焦点位置に関係なく、
試料は装置個有の一定走査方向によって走査され、映像
の回転がないから、例えば試料の走査像により試料の分
析位置を探す場合、低倍で分析個所を定め、高倍でその
場所を調べる操作で走査像が常に試料のX、  Y方向
微動と一致して操作が大へんやり易くなる。
According to the device of the present invention, regardless of the focal position of the objective lens,
The sample is scanned in a fixed scanning direction unique to the device, and there is no rotation of the image. Therefore, for example, when searching for the analysis position of the sample using a scanned image of the sample, it is necessary to locate the analysis point at low magnification and then examine that location at high magnification. The scanned image always matches the fine movement of the sample in the X and Y directions, making the operation much easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の全体を示すブロック図
、第2図は走査線の回転と偏向信号の各係数の関係を示
す図、第3図は第1図のブロック7及び11の内部構成
の詳細ブロック図である。 1・・・電子ビーム、2・・・X方向偏向コイル、3・
・・Y方向偏向コイル、4・・・対物レンズ、5,6・
・・試料の2位置、q・・・走査像回転装置、8・・・
走査制御部、9・・・励磁電源、10・・・試料位置検
出部、11・・・回転角制御部。 代理人 弁理士  縣   浩  介 特開昭58−75748(3>
FIG. 1 is a block diagram showing the entire apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the rotation of a scanning line and each coefficient of a deflection signal, and FIG. 3 is a block diagram showing blocks 7 and 11 of FIG. 1. FIG. 2 is a detailed block diagram of the internal configuration of FIG. 1... Electron beam, 2... X direction deflection coil, 3...
...Y direction deflection coil, 4...Objective lens, 5, 6.
...2 positions of the sample, q...Scanning image rotation device, 8...
Scanning control section, 9... Excitation power supply, 10... Sample position detection section, 11... Rotation angle control section. Agent: Hiroshi Agata, Patent Attorney JP-A-58-75748 (3>

Claims (1)

【特許請求の範囲】[Claims] 試料の分析装置光軸方向の位置を検出する手段と、同手
段の出力を像の回転角に対応した信号に変換する手段と
、この変換手段の出力によってX方向偏向コイル及びY
方向偏向コイルに与える走査信号を算出する手段とより
なり、この算出手段により走査方向を上記像の回転角と
同じ角度だけ反対方向に回転させるようにした走査型分
析装置の像回転補正装置。
means for detecting the position of the sample in the optical axis direction of the analyzer; means for converting the output of the means into a signal corresponding to the rotation angle of the image;
An image rotation correction device for a scanning analyzer, comprising means for calculating a scanning signal to be applied to a direction deflection coil, the calculating means rotating the scanning direction by the same angle as the rotation angle of the image in the opposite direction.
JP56175079A 1981-10-30 1981-10-30 Image revolution corrector for scanning type analyzer Granted JPS5875748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175079A JPS5875748A (en) 1981-10-30 1981-10-30 Image revolution corrector for scanning type analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175079A JPS5875748A (en) 1981-10-30 1981-10-30 Image revolution corrector for scanning type analyzer

Publications (2)

Publication Number Publication Date
JPS5875748A true JPS5875748A (en) 1983-05-07
JPH0255902B2 JPH0255902B2 (en) 1990-11-28

Family

ID=15989866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175079A Granted JPS5875748A (en) 1981-10-30 1981-10-30 Image revolution corrector for scanning type analyzer

Country Status (1)

Country Link
JP (1) JPS5875748A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329870A (en) * 1995-06-01 1996-12-13 Hitachi Ltd Scanning electron microscope
JP2010198826A (en) * 2009-02-24 2010-09-09 Jeol Ltd Alignment device of transmission type electron microscope
JP2014143033A (en) * 2013-01-23 2014-08-07 Hitachi High-Technologies Corp Stage device and beam irradiation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031770A (en) * 1973-04-19 1975-03-28
JPS5294768A (en) * 1976-02-04 1977-08-09 Jeol Ltd Electronic microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031770A (en) * 1973-04-19 1975-03-28
JPS5294768A (en) * 1976-02-04 1977-08-09 Jeol Ltd Electronic microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329870A (en) * 1995-06-01 1996-12-13 Hitachi Ltd Scanning electron microscope
JP2010198826A (en) * 2009-02-24 2010-09-09 Jeol Ltd Alignment device of transmission type electron microscope
JP2014143033A (en) * 2013-01-23 2014-08-07 Hitachi High-Technologies Corp Stage device and beam irradiation device

Also Published As

Publication number Publication date
JPH0255902B2 (en) 1990-11-28

Similar Documents

Publication Publication Date Title
USRE43757E1 (en) Rotational stage for high speed, large area scanning in focused beam systems
JP3293739B2 (en) Scanning electron microscope
JPS5875748A (en) Image revolution corrector for scanning type analyzer
JPH06174644A (en) Method for automatic setting of coordinate transform coefficient
JP3400608B2 (en) Scanning electron microscope
JP3672728B2 (en) Automatic specimen tilting device in transmission electron microscope
JPH1078311A (en) Method and device for measuring rotating angle of motor
JP2936489B2 (en) Tilt correction method and fine shape measurement method using the same
JPH01156644A (en) Automatic optical axis adjusting device for goniometer of x-ray diffraction device
JPH10210327A (en) Camera equipment
JP2870891B2 (en) X-ray micro analyzer
JP2716878B2 (en) Beam convergence position measuring device
JP2003045370A (en) Scanning electron microscope
JPH0425772A (en) Method and device for measuring electrostatic charge amount of charged powder particle
JPS63281002A (en) Body surface state access system
JPH0658795B2 (en) Dynamic focus circuit
JPS63229419A (en) Lens distortion correcting device
JPH0429363Y2 (en)
JPS62263425A (en) Thermography apparatus
JPH08148108A (en) Automatic focus adjustment
JPH0228601Y2 (en)
JPS6188440A (en) Sample image display system
JPH0723940B2 (en) Liquid crystal projection type writing position correction device
JPH1114310A (en) Three-dimensional position measuring device
SU565413A1 (en) Television device for measuring linear dimensions and two-dimensional objects position