JP2936489B2 - Tilt correction method and fine shape measurement method using the same - Google Patents
Tilt correction method and fine shape measurement method using the sameInfo
- Publication number
- JP2936489B2 JP2936489B2 JP10609390A JP10609390A JP2936489B2 JP 2936489 B2 JP2936489 B2 JP 2936489B2 JP 10609390 A JP10609390 A JP 10609390A JP 10609390 A JP10609390 A JP 10609390A JP 2936489 B2 JP2936489 B2 JP 2936489B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- scanning
- sample
- sample surface
- tilt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、探針を試料表面上で走査し試料表面形状の
測定を行う測定装置における、試料表面の傾きを補正す
る方法に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting a tilt of a sample surface in a measuring device that scans a probe on the sample surface and measures the shape of the sample surface.
探針を走査方向若しくは試料の取付方向を回転させ
て、探針の走査方向と試料表面に必ず存在する傾きのな
い方向を一致させることにより、試料表面の傾きを補正
し、探針を試料表面上で走査し試料表面の形状測定を行
う測定装置における形状測定の精度の向上と効率を実現
するものである。By rotating the probe in the scanning direction or the mounting direction of the sample, the scanning direction of the probe and the direction that does not always exist on the sample surface coincide with each other, thereby correcting the inclination of the sample surface and moving the probe to the sample surface. It is intended to improve the accuracy and efficiency of shape measurement in a measuring device that scans the above and measures the shape of the sample surface.
例えば、トンネル効果を利用して試料表面と探針間の
距離を一定に保持しながら、試料表面に沿って探針を面
内方向に走査し、この時の探針の高さ情報から試料表面
の三次元微細形状を得るSTM(走査型トンネル顕微鏡)
においては、試料表面の傾きによる測定像の傾きを補正
するために、探針の高さ情報を取り込む部分にハイパス
フィルターを組み込み、試料の傾きに起因する取り込み
情報のゆるやかな増減は排除しつつ、試料表面の微細形
状の凹凸に起因する情報のみを取り込む方法、取り込ん
だ情報を後からデータ処理することにより傾き補正を行
う方法等が試みられている。For example, while keeping the distance between the sample surface and the probe constant using the tunnel effect, the probe is scanned in the in-plane direction along the sample surface, and the sample surface information is obtained from the height information of the probe at this time. (Scanning Tunneling Microscope) to Obtain Three-Dimensional Fine Shapes
In order to correct the tilt of the measurement image due to the tilt of the sample surface, a high-pass filter is incorporated in the portion that captures the height information of the probe, while eliminating the gradual increase and decrease of the capture information due to the tilt of the sample, Attempts have been made to adopt a method of taking in only information due to irregularities in the fine shape of the sample surface, a method of correcting the tilt by performing data processing of the taken-in information later.
しかし、ハイパスフィルターを用いる方法において
は、試料表面のゆるやかな微細形状の情報が消えてしま
う恐れがあり、更に探針の走査の折り返し点である各走
査線の出発点においては、試料表面の傾きによる取り込
み情報のゆるやかな増減が急激に逆方向に変化すること
になり、この影響をハイパスフィルターで排除すること
はできず、かえって測定像を乱すこととなり、従って正
確な試料表面の微細形状を得ることが困難となる。However, in the method using a high-pass filter, there is a possibility that information of a gently fine shape on the sample surface may be lost.In addition, at the starting point of each scanning line, which is a turning point of the scanning of the probe, the inclination of the sample surface may be reduced. The gradual increase / decrease of the captured information changes rapidly in the opposite direction, and this effect cannot be eliminated by the high-pass filter, but rather disturbs the measurement image, and thus obtains a precise fine shape of the sample surface. It becomes difficult.
また、後からデータ処理を行う方法においては、その
処理に大きな時間を費やすこととなり非常に効率が悪く
なるばかりでなく、測定と同時に観察像を得る同時観察
も不可能となってしまう。Further, in the method of performing data processing later, a large amount of time is spent for the processing, so that not only efficiency is extremely deteriorated, but also simultaneous observation of obtaining an observation image simultaneously with measurement becomes impossible.
前記問題点は当然探針の走査方向に対して試料表面が
傾いているがゆえに発生するものである。そのため何ら
かの手段で探針の走査方向に対する試料表面の傾きをな
くせば前記問題点の解決をはかることが可能となる。し
かしながら、試料表面の傾きを補正するための試料傾き
補正テーブル等を設けることは、測定装置の機能を複雑
にするばかりでなく、その傾きを正確に補正することは
多大な労力と時間を費やすことになり、事実上非常に困
難である。The above problem naturally occurs because the sample surface is inclined with respect to the scanning direction of the probe. Therefore, if the inclination of the sample surface with respect to the scanning direction of the probe is eliminated by some means, the above problem can be solved. However, providing a sample tilt correction table or the like for correcting the tilt of the sample surface not only complicates the function of the measuring device, but also requires a great deal of labor and time to correct the tilt accurately. And is very difficult in practice.
そこで、ある面が水平面に対して傾いた状態で存在し
ていたとしても、その面上に必ず水平面と平行な直線が
存在するという点と、XY平面内をSTM等で走査する場
合、一画面分の走査を行う場合、X軸方向には何回も走
査を繰り返し行うがY軸方向にはわずか1回の走査を行
うものであるという点に着目し、探針の走査方向若しく
は試料の取付方向を回転させることにより、探針のX軸
走査方向と試料表面上に必ず存在する傾きのない方向を
一致させ、更にY軸方向の1回の走査時間、すなわち一
画面の走査時間中にわずか一回発生するのみのY軸走査
方向の試料表面の傾きに起因する探針の高さ情報の増減
を排除できる程度の極めて弱いハイパスフィルターを組
み込み試料表面の微細形状の測定を行うという方法であ
る。Therefore, even if a certain plane is inclined with respect to the horizontal plane, there is always a straight line parallel to the horizontal plane on that plane, and when scanning in the XY plane with STM etc., one screen When performing minute scanning, pay attention to the fact that scanning is repeated many times in the X-axis direction, but only one scanning is performed in the Y-axis direction. By rotating the direction, the X-axis scanning direction of the probe is made coincident with the direction without inclination always present on the sample surface, and furthermore, during one scanning time in the Y-axis direction, that is, during one screen scanning time, It is a method of measuring the fine shape of the sample surface by incorporating an extremely weak high-pass filter that can eliminate the increase and decrease of the height information of the probe caused by the inclination of the sample surface in the Y-axis scanning direction that occurs only once. .
前記の方法により、複雑な機構を設けて多大な補正作
業を行うことなく、探針の走査方向若しくは試料の取付
方向を回転させる手段と、取り込む探針の高さ情報に対
しほとんど影響を与えることのないハイパスフィルター
を組み込むという簡便な手段を用いることによって、極
めて容易に試料表面の傾き補正を行い、試料表面の微細
形状の正確な測定と同時観察が可能となる。According to the above method, the means for rotating the scanning direction of the probe or the mounting direction of the sample and having almost no influence on the height information of the probe to be taken in are provided without providing a complicated mechanism and performing a large amount of correction work. By using a simple means of incorporating a high-pass filter having no sample, the inclination of the sample surface can be extremely easily corrected, and accurate measurement and simultaneous observation of the fine shape of the sample surface become possible.
本実施例は、特に圧電素子を用いて探針を面内方向に
走査し、この時の探針の高さ情報から試料表面の三次元
微細形状を得るSTM装置における試料表面の傾きの補正
方法について示すものであり、以下図面に従って説明を
行う。In the present embodiment, in particular, a method of correcting the inclination of the sample surface in an STM apparatus in which the probe is scanned in the in-plane direction using a piezoelectric element and a three-dimensional fine shape of the sample surface is obtained from height information of the probe at this time. This will be described below with reference to the drawings.
(第一実施例) 第1図は本発明の第一実施例に適用する装置構成を示
したものである。(First Embodiment) FIG. 1 shows an apparatus configuration applied to a first embodiment of the present invention.
X軸走査信号発生器1から発生するX軸方向走査信号
Xを二系統に分け、一系統はCOS信号変調器5に入力
し、もう一系統は反転増幅器3で信号を反転した上でSI
N信号変調器6に入力する。Y軸走査信号発生器2から
発生するY軸方向走査信号Yは、二系統に分けてそのま
まCOS信号変調器7とSIN信号変調器8に入力する。基準
電圧発生器4は、探針16の面内走査方向を回転させよう
とする角度に応じた基準電圧θを発生するものであり、
基準電圧発生器4から発生する角度に応じた基準電圧θ
は、四系統に分けられてCOS信号変調器5,7及びSIN信号
変調器6,8の基準電圧としてそれぞれ入力される。COS信
号変調器5,7は、それぞれ入力された信号X,Yを基準電圧
θのCOS関数で変調して、それぞれXCOSθ、YCOSθとい
う信号を出力する。また、SIN信号変調器6,8は、それぞ
れ入力された信号−X,Yを基準電圧θのSIN関数で変調し
て、それぞれ−XSINθ、YSINθという信号を出力する。The X-axis direction scanning signal X generated from the X-axis scanning signal generator 1 is divided into two systems, one of which is input to a COS signal modulator 5, and the other of which is obtained by inverting a signal with an inverting amplifier 3 and
Input to N signal modulator 6. The Y-axis direction scanning signal Y generated from the Y-axis scanning signal generator 2 is divided into two systems and input to the COS signal modulator 7 and the SIN signal modulator 8 as they are. The reference voltage generator 4 generates a reference voltage θ corresponding to an angle at which the in-plane scanning direction of the probe 16 is to be rotated,
Reference voltage θ according to the angle generated from reference voltage generator 4
Are divided into four systems and input as reference voltages for the COS signal modulators 5 and 7 and the SIN signal modulators 6 and 8, respectively. The COS signal modulators 5 and 7 modulate the input signals X and Y with the COS function of the reference voltage θ, and output signals XCOS θ and YCOS θ, respectively. The SIN signal modulators 6 and 8 modulate the input signals -X and Y with the SIN function of the reference voltage θ, and output signals -XSINθ and YSINθ, respectively.
COS信号変調器5から出力された信号XCOSθは、SIN信
号変調器8から出力された信号YSINθは、加算器9に入
力され、加算器9から出力される加算信号YSINθ+XCOS
θは高圧アンプ11で所望の増幅率で増幅されて、面内走
査機構の一例である円筒形圧電素子13のX軸電極14に印
加されて、円筒形圧電素子13の先端に取り付けられてい
る探針16を、探針16に対向するように配置されている試
料17の表面に沿って、X方向に走査する。The signal XCOSθ output from the COS signal modulator 5 is the signal YSINθ output from the SIN signal modulator 8 is input to the adder 9, and the addition signal YSINθ + XCOS output from the adder 9
θ is amplified at a desired amplification factor by the high-voltage amplifier 11, applied to the X-axis electrode 14 of the cylindrical piezoelectric element 13 which is an example of an in-plane scanning mechanism, and attached to the tip of the cylindrical piezoelectric element 13. The probe 16 is scanned in the X direction along the surface of the sample 17 arranged so as to face the probe 16.
SIN信号変調器6から出力された信号−XSINθと、COS
信号変調器7から出力された信号YCOSθは、加算器10に
入力され、加算器10から出力される加算信号YCOSθ−XS
INθは高圧アンプ12で所望の増幅率で増幅されて、円筒
形圧電素子13のY軸電極15に印加されて、円筒形圧電素
子13の先端に取り付けられている探針16を探針16に対向
するように配置されている試料17の表面に沿って、Y方
向に走査する。The signal −XSINθ output from the SIN signal modulator 6 and COS
The signal YCOSθ output from the signal modulator 7 is input to the adder 10 and the added signal YCOSθ−XS output from the adder 10 is output.
IN θ is amplified at a desired amplification factor by a high-voltage amplifier 12, applied to the Y-axis electrode 15 of the cylindrical piezoelectric element 13, and the probe 16 attached to the tip of the cylindrical piezoelectric element 13 is connected to the probe 16. Scanning is performed in the Y direction along the surface of the sample 17 arranged so as to be opposed.
以上のような構成にすることにより、X軸方向走査信
号X及びY軸方向走査信号Yを、探針16の面内走査方向
を回転させようとする角度に応じた信号θに応じて、そ
れぞれYSINθ+XCOSθ、YCOSθ−XSINθに変換すること
が可能となり、探針16をX軸方向にYSINθ+XCOSθ、ま
たY軸方向にYCOSθ−XSINθという信号に応じて走査す
ることとなり、これは角度信号θに応じて探針16の面内
走査方向をX及びY信号が0の点を中心として右方向に
回転させることとなり、よって探針16の面内走査方向を
任意の角度に回転させることが可能となる。また、本装
置はSTM装置構成の一部分として、図示していない部分
で試料17と探針16との間の距離は一定に制御されてお
り、また探針16の高さ情報は試料17の表面形状の情報と
して取り込まれ、画像化されるようになっている。With the above-described configuration, the X-axis direction scanning signal X and the Y-axis direction scanning signal Y are converted into signals θ corresponding to angles at which the in-plane scanning direction of the probe 16 is rotated, respectively. YSINθ + XCOSθ and YCOSθ−XSINθ can be converted, and the probe 16 is scanned according to the signal YSINθ + XCOSθ in the X-axis direction and YCOSθ−XSINθ in the Y-axis direction. The in-plane scanning direction of the needle 16 is rotated to the right around the point where the X and Y signals are zero, so that the in-plane scanning direction of the probe 16 can be rotated to an arbitrary angle. Further, as a part of the configuration of the STM device, the distance between the sample 17 and the probe 16 is controlled to be constant at a portion not shown, and the height information of the probe 16 is It is taken in as shape information and is imaged.
更に、探針16の高さ情報の取り込み部には、ごく弱い
ハイパスフィルター、すなわち極めて低い周波数の信号
のみカットするフィルターが組み込まれており、極めて
長い周期の傾き信号以外のすべての信号は通過し画像化
されるようになっている。In addition, a very weak high-pass filter, that is, a filter that cuts only signals at extremely low frequencies, is incorporated in the height information capturing section of the probe 16, so that all signals other than extremely long-period tilt signals pass through. It is designed to be imaged.
ここで、STM装置においては一般的にX軸走査信号発
生器1、及びY軸走査信号発生器2からは、その走査軌
跡が第3図の面内走査軌跡とその回転例を示す図に示さ
れるような探針走査軌跡21となるような信号が発生され
ており、基準電圧発生器4から角度信号θを発生させる
ことによって、回転前の探針走査軌跡21が回転後の探針
走査軌跡22のように変化することになる。Here, in the STM apparatus, generally, the X-axis scanning signal generator 1 and the Y-axis scanning signal generator 2 show the scanning trajectory in FIG. 3 showing an in-plane scanning trajectory and a rotation example thereof. The reference voltage generator 4 generates an angle signal θ so that the probe scan trajectory 21 before rotation is changed to the probe scan trajectory after rotation. It will change like 22.
さて、このような装置構成において、X軸走査信号発
生器1とY軸走査信号発生器2から走査信号X、Yをそ
れぞれ発生させると、それら走査信号に応じて探針16が
試料17の表面に沿って面内走査されることになる。この
時試料17の表面が探針16に直交する平面に比較して傾い
ていた場合、探針16の高さは試料17の表面形状とその傾
きに応じて変化する。この状態で実際に探針16の試料17
の表面に沿った面内走査を行いつつ、基準電圧発生器4
から発生する角度信号θを逐次変化させることにより探
針16の試料17の表面に沿った面内走査の方向を変化させ
ていきながら、測定と同時に観察像を得る同時観察によ
り試料17の表面形状を観察することにより、基準電圧発
生器4から発生する角度信号θによる探針16の試料17の
表面に沿った面内走査の方向の変化の範囲が最大180℃
以内で必ず、観察像の横方向、すなわちX軸方向の傾き
がなくなる点が存在する。この時の探針16のX軸走査信
号発生器1からの走査信号Xによる走査の方向が、試料
17の表面に必ず存在する傾きのない方向ということにな
る。そして以後は基準電圧発生器4からの角度信号θを
固定したままで測定を続行すれば良いだけである。Now, in such an apparatus configuration, when the X-axis scanning signal generator 1 and the Y-axis scanning signal generator 2 generate scanning signals X and Y, respectively, the probe 16 moves the surface of the sample 17 in accordance with the scanning signals. Are scanned in-plane along the line. At this time, if the surface of the sample 17 is inclined compared to a plane orthogonal to the probe 16, the height of the probe 16 changes according to the surface shape of the sample 17 and its inclination. In this state, the sample 17 of the probe 16 is actually
The reference voltage generator 4 performs in-plane scanning along the surface of
While changing the direction of in-plane scanning along the surface of the sample 17 of the probe 16 by sequentially changing the angle signal θ generated from the Is observed, the range of change in the direction of in-plane scanning along the surface of the sample 17 of the probe 16 due to the angle signal θ generated from the reference voltage generator 4 is 180 ° C.
Within the range, there is always a point where the inclination of the observation image in the horizontal direction, that is, the X-axis direction disappears. At this time, the scanning direction of the probe 16 with the scanning signal X from the X-axis scanning signal generator 1 is
This means that there is no direction that is always present on the surface of 17. Thereafter, it is only necessary to continue the measurement with the angle signal θ from the reference voltage generator 4 fixed.
以上のように何ら特別な技術を必要とせず、測定開始
時に観察像を見ながら横方向の傾きがなくなるように探
針16の面内走査方向を回転させるという極めて容易な方
法により試料17の傾き補正が行われることになる。As described above, no special technique is required, and the tilt of the sample 17 is adjusted by an extremely easy method of rotating the in-plane scanning direction of the probe 16 so as to eliminate the horizontal tilt while observing the observation image at the start of measurement. Correction will be performed.
(第二実施例) 第2図は本発明第二実施例に適用する装置構成を示し
たものであるが、第一実施例と傾き補正の方法はほとん
ど同じであるので異なる部分のみ説明を行う。(Second Embodiment) FIG. 2 shows an apparatus configuration applied to the second embodiment of the present invention. However, since the inclination correction method is almost the same as that of the first embodiment, only different parts will be described. .
第一実施例においては、走査信号を回転変換すること
により探針16の試料17の表面に沿った面内走査の方向を
変える事により、X軸走査信号発生器1からの走査信号
Xによる走査の方向と試料17の表面に必ず存在する傾き
のない方向を一致させるものであるが、第二実施例にお
いては、基準電圧発生器4からの角度信号θにより、試
料17を搭載している試料回転ステージ18を回転させるこ
とにより、X軸走査信号発生1からの走査信号Xによる
走査の方向と試料17の表面に必ず存在する傾きのない方
向を一致させるものであり、その他はすべて同じであ
る。In the first embodiment, by changing the direction of in-plane scanning along the surface of the sample 17 of the probe 16 by rotationally converting the scanning signal, scanning by the scanning signal X from the X-axis scanning signal generator 1 is performed. And the direction without inclination that is always present on the surface of the sample 17 is matched. In the second embodiment, the sample on which the sample 17 is mounted is determined by the angle signal θ from the reference voltage generator 4. By rotating the rotary stage 18, the direction of scanning by the scanning signal X from the X-axis scanning signal generation 1 is made to coincide with the direction without inclination that always exists on the surface of the sample 17, and all others are the same. .
以上のように本発明の方法を用いることにより、非常
に簡単に試料の傾き補正を行うことが可能となり、これ
により試料表面の微細形状の測定を、リアルタイムで正
確に行うことが可能となり、よって測定の高精度化、高
速化が実現する。As described above, by using the method of the present invention, it is possible to perform the inclination correction of the sample very easily, and thereby it is possible to accurately measure the fine shape of the sample surface in real time, High precision and high speed measurement are realized.
第1図は本発明の第一実施例に適用する装置の説明図で
あり、第2図は本発明の第二実施例に適用する装置の説
明図である。また、第3図は面内走査軌跡とその回転例
を示す図である。 1……X軸走査信号発生器 2……Y軸走査信号発生器 3……反転増幅器 4……基準電圧(角度信号)発生器 5,4……COS信号変調器 6,8……SIN信号変調器 9,10……加算器 11,12……高圧アンプ 13……円筒形圧電素子 14……X軸電極 15……Y軸電極 16……探針 17……試料 18……試料回転ステージ 19……回転前の面内走査エリア 20……回転後の面内走査エリア 21……回転前の探針走査軌跡 22……回転後の探針走査軌跡FIG. 1 is an explanatory view of an apparatus applied to the first embodiment of the present invention, and FIG. 2 is an explanatory view of an apparatus applied to the second embodiment of the present invention. FIG. 3 is a diagram showing an in-plane scanning locus and an example of its rotation. 1 X-axis scanning signal generator 2 Y-axis scanning signal generator 3 Inverting amplifier 4 Reference voltage (angle signal) generator 5, 4 COS signal modulator 6, 8 SIN signal Modulator 9,10 Adder 11,12 High voltage amplifier 13 Cylindrical piezoelectric element 14 X-axis electrode 15 Y-axis electrode 16 Tip 17 Sample 18 Sample rotation stage 19: In-plane scanning area before rotation 20: In-plane scanning area after rotation 21: Probe scanning locus before rotation 22: Probe scanning locus after rotation
Claims (2)
針の走査方向若しくは試料の取り付け方向を回転させ、
探針のX軸走査方向を試料表面の傾きのない方向に一致
させ、更にY軸方向の1回の走査時間に1回発生するY
軸走査方向の試料表面の傾きに起因する探針の高さ情報
の増減を排除できる程度のハイパスフィルターを組み込
む事により試料表面の傾きを補正することを特徴とする
傾き補正方法。When scanning one screen in the XY plane, the scanning direction of the probe or the mounting direction of the sample is rotated,
The X-axis scanning direction of the probe is made to coincide with the direction in which the sample surface is not tilted, and Y is generated once in one scanning time in the Y-axis direction.
A tilt correction method comprising correcting a tilt of a sample surface by incorporating a high-pass filter capable of eliminating an increase or a decrease in height information of a probe caused by a tilt of the sample surface in an axial scanning direction.
高さ情報から試料表面の微細形状を得る微細形状測定方
法において、XY平面内を一画面分の走査を行う場合、探
針の走査方向若しくは試料の取り付け方向を回転させ、
探針のX軸走査方向を試料表面の傾きのない方向に一致
させ、更にY軸方向の1回の走査時間に1回発生するY
軸走査方向の試料表面の傾きに起因する探針の高さ情報
の増減を排除できる程度のハイパスフィルターを組み込
むことにより試料表面の傾き補正を行う微細形状測定方
法。2. A fine shape measuring method for scanning a probe in an in-plane direction and obtaining a fine shape of a sample surface from height information of the probe at this time, in which one screen is scanned in an XY plane. Rotating the scanning direction of the probe or the mounting direction of the sample,
The X-axis scanning direction of the probe is made to coincide with the direction in which the sample surface is not tilted, and Y is generated once in one scanning time in the Y-axis direction.
A fine shape measurement method for correcting the tilt of the sample surface by incorporating a high-pass filter capable of eliminating an increase or decrease in height information of the probe caused by the tilt of the sample surface in the axial scanning direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10609390A JP2936489B2 (en) | 1990-04-20 | 1990-04-20 | Tilt correction method and fine shape measurement method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10609390A JP2936489B2 (en) | 1990-04-20 | 1990-04-20 | Tilt correction method and fine shape measurement method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH045503A JPH045503A (en) | 1992-01-09 |
JP2936489B2 true JP2936489B2 (en) | 1999-08-23 |
Family
ID=14424930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10609390A Expired - Fee Related JP2936489B2 (en) | 1990-04-20 | 1990-04-20 | Tilt correction method and fine shape measurement method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2936489B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006220597A (en) * | 2005-02-14 | 2006-08-24 | Sii Nanotechnology Inc | Surface information measurement device |
KR101469365B1 (en) * | 2013-05-30 | 2014-12-08 | 안동대학교 산학협력단 | A atomic force microscope with rotatable probe and scanning method using the atomic force microscope |
CN106643602B (en) * | 2016-12-24 | 2019-03-12 | 重庆与德通讯技术有限公司 | A kind of probe benchmark compensation system and method |
AT520313B1 (en) * | 2017-09-13 | 2019-03-15 | Anton Paar Gmbh | Handling device for handling a measuring probe |
-
1990
- 1990-04-20 JP JP10609390A patent/JP2936489B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH045503A (en) | 1992-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2909829B2 (en) | Compound scanning tunneling microscope with alignment function | |
US5081353A (en) | Combined scanning electron and scanning tunnelling microscope apparatus and method | |
JPH07190741A (en) | Measuring error correction method | |
JP2936489B2 (en) | Tilt correction method and fine shape measurement method using the same | |
JP2761801B2 (en) | Angular positional relationship detection method and encoder using the same | |
JPH067472B2 (en) | Vibration removal system for scanning electron microscope | |
CN110151122A (en) | A kind of OCT image device spiral scanning method | |
US7005849B2 (en) | System and method for high-speed massive magnetic imaging on a spin-stand | |
JP2002202112A (en) | Shape measuring apparatus | |
Bauch et al. | X‐ray Rotation‐Tilt‐Method—First Results of a new X‐ray Diffraction Technique | |
JPH07303631A (en) | Ct scanner | |
JPH10311705A (en) | Image input apparatus | |
JPH09229639A (en) | Automatic hole diameter measuring device | |
JPH01232647A (en) | Scanning type electron microscope equipment | |
JP3126047B2 (en) | Scanning probe microscope | |
JPH1090284A (en) | Scanning type probe microscope and its measuring method | |
JP3377918B2 (en) | Scanning probe microscope | |
JPH05322802A (en) | X-ray ct device | |
JP2890056B2 (en) | Probe inspection method | |
JPH0429363Y2 (en) | ||
JPH02147803A (en) | Scanning tunnel electron microscope | |
JP3121619B2 (en) | Image processing method for scanning tunneling microscope | |
JPH0238806A (en) | Constitution of optical distance sensor for detecting surface state | |
JPS6188440A (en) | Sample image display system | |
JPS6344166B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |