JPS5875009A - Shape detection for end part of plate material - Google Patents

Shape detection for end part of plate material

Info

Publication number
JPS5875009A
JPS5875009A JP17423181A JP17423181A JPS5875009A JP S5875009 A JPS5875009 A JP S5875009A JP 17423181 A JP17423181 A JP 17423181A JP 17423181 A JP17423181 A JP 17423181A JP S5875009 A JPS5875009 A JP S5875009A
Authority
JP
Japan
Prior art keywords
plate
data
width data
plate width
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17423181A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sato
和彦 佐藤
Hifumi Tsukuda
佃 一二三
Yoshito Uehara
上原 義人
Toshihiro Konishi
小西 敏弘
Hidekazu Tai
田井 英一
Shuji Onaka
大仲 周次
Junya Ishizaki
石崎 純也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd, Kawasaki Steel Corp filed Critical NEC Corp
Priority to JP17423181A priority Critical patent/JPS5875009A/en
Publication of JPS5875009A publication Critical patent/JPS5875009A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0007Cutting or shearing the product
    • B21B2015/0014Cutting or shearing the product transversely to the rolling direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect quickly the shape of the end part of a plate material, by deciding current plate width data to be defective if this data is smaller (larger) than already taken-in plate width data in respect to the leading edge (the trailing edge) of the plate material. CONSTITUTION:In respect to the leading edge part (the trailing edge part) of a steel plate, if current plate width data is smaller (larger) than already taken-in plate width data in a computer 36, current plate width data is decided to be defective, and defect deciding information is added to current plate width data to take this data into a data storage area; and if plate width data becomes zero once, all following plate width data are decided to be defective, and defect deciding information is added to current plate width data or all following plate width data to take these data into the data storage area. After all data are stored, plate width data are adopted or rejected selectively in accordance with defect deciding information, and the shape of the end part of the steel plate is detected on a basis of effective data, and a shearing position is determined.

Description

【発明の詳細な説明】 本発明は、板材端部の形状検出方法に係り、特に、圧延
工程によって不整形状となった熱間圧延鋼板端部の剪断
位置決定に用いるに好適な、板材をその長さ方向に移動
させながら板幅方向に沿ってバックライトを照射し、板
材によって形成された影像を、板幅方向に沿って受光素
子をR1したリニヤアレイにより周期的に検出し、該リ
ニヤアレイにより順次得られる板幅データと板材の移動
情報とにより板材端部の形状を検出するようにした板材
端部の形状検出方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the shape of the edge of a plate material, and in particular, it is suitable for determining the shear position of the edge of a hot rolled steel plate that has become irregularly shaped due to a rolling process. A backlight is irradiated along the board width direction while moving in the length direction, and the image formed by the board is periodically detected by a linear array with light receiving elements R1 along the board width direction, and the linear array sequentially detects the image formed by the board material along the board width direction. The present invention relates to an improvement in a method for detecting the shape of the edge of a plate by detecting the shape of the edge of the plate using obtained plate width data and information on movement of the plate.

周知のように、熱間圧延工程で圧延された銅板の先後端
部は不整形状となり、この不整形状となった鋼板端部は
、通板時における鋼板のつっかかり、片寄り、鋼板の灰
抜は時における絞り込み、コイル巻取点におけるエンド
マーク等の不都合の発生原因となる。そこで、圧延工程
によって不整形状となった鋼板の端部を予めクロップと
して剪断し、上記のような不都合を生じさせないように
する必要がある。そして、鋼板の不整形状端部をクロッ
プとして剪断する場合には、鋼板端部の不必要な剪断を
行なわないようにして、歩留り向上を図らなければなら
ない。
As is well known, the leading and trailing edges of a copper plate rolled in the hot rolling process become irregularly shaped, and the irregularly shaped edges of the steel plate are prone to jamming, shifting, and ashing of the steel plate during threading. This causes inconveniences such as narrowing down and end marks at the coil winding point. Therefore, it is necessary to shear the ends of the steel plate that have become irregularly shaped due to the rolling process as crops in advance to prevent the above-mentioned problems from occurring. When shearing the irregularly shaped ends of the steel plate as crops, it is necessary to avoid unnecessary shearing of the ends of the steel plate in order to improve the yield.

そこで、撮像管を半導体化した固体撮像素子等の受光素
子を一列直線に並べ、対象物の形状を線としてとらえる
ようにしたリニヤアレイを利用して、例えば、鋼板をそ
の長さ方向に移動させながら板幅方向に沿ってバックラ
イトを照射し、鋼板によって形成された影像を、板幅方
向に沿って受光素子を配置した前記のようなリニヤアレ
イにより周期的に検出し、該リニヤアレイにより順次得
られる板1データと鋼板の移動情報とにより鋼板端部の
不整形状を検出し、該不整形状に応じて鋼板端部の剪断
位胃を決定することが考えられる。
Therefore, using a linear array, in which light-receiving elements such as solid-state image sensors made of semiconductor image pickup tubes are arranged in a straight line to capture the shape of the object as a line, for example, while moving a steel plate in its length direction, A backlight is irradiated along the width direction of the steel plate, and an image formed by the steel plate is periodically detected by a linear array as described above in which light-receiving elements are arranged along the width direction of the plate, and the plate is sequentially obtained by the linear array. It is conceivable to detect the irregular shape of the edge of the steel plate using the 1 data and the movement information of the steel plate, and determine the shear position of the edge of the steel plate according to the irregular shape.

このようにして、リニヤアレイを利用することにより、
鋼板端部の平面形状1゛を非接触で測定することができ
、従って、不整形状に応じて鋼板端部の適切な剪断位冒
を決定することができる。
In this way, by using a linear array,
The planar shape 1' of the edge of the steel plate can be measured in a non-contact manner, and therefore an appropriate shearing position of the edge of the steel plate can be determined depending on the irregular shape.

する場合、リニヤアレイは、環境条件が厳しい場所に配
設され、熱気、水、あるいは、加熱鋼板から発生するス
ケール等の飛散により、リニヤアレイの出力が影響を受
6jで、鋼板端部の不整形状を正確に検出することがで
きない場合があった。即ち、たとえば、第1図に示す如
く、綱板1oの先端部10aの周辺にスケール12が飛
散している場合には、このスケール12の幅も含めて鋼
板10の板幅として処理してしまうことがあった。
In this case, the linear array is installed in a place with severe environmental conditions, and the output of the linear array is affected by hot air, water, or scattering of scale generated from the heated steel plate. In some cases, accurate detection was not possible. That is, for example, as shown in FIG. 1, if scales 12 are scattered around the tip 10a of the steel plate 1o, the width of the scales 12 will be included in the width of the steel plate 10. Something happened.

このような欠点を防止するべく、噴射水流や圧縮空気に
よりスケール等を除去する工夫もなされているが、スケ
ール等を完全に取除くことは難しく、鋼板端部の形状を
検出する際の支障となっていた。
In order to prevent such defects, attempts have been made to remove scale etc. using water jets or compressed air, but it is difficult to completely remove scale etc., and it may become an obstacle when detecting the shape of the edge of the steel plate. It had become.

尚、鋼板の不整形状部分の幅変化情報を全て得たのちに
、不良データが否かの判定をそれぞれ行なっていくこと
も考えられるが、一般に、鋼板の移動情報を検知す鼻た
めのメジャリングロールが、該メジヤリレグ0−ルと鋼
板とのスリップによる誤差を最小限にするため、剪断装
置の直前に設けられているので、前記のような不良判定
処理を、不整形状部分の幅変化情報を全て得た後に行な
うことは、処理時間の面で非常に困難である。
Although it is conceivable to determine whether or not there is defective data after obtaining all the width change information of the irregularly shaped portion of the steel plate, generally speaking, measuring is used to detect movement information of the steel plate. The roll is installed just before the shearing device in order to minimize errors caused by slips between the gear leg and the steel plate. It is very difficult to carry out the process after obtaining all of them in terms of processing time.

本発明は、前記従来の欠点を解消するべくなされたもの
で、板幅データの良否判定を、データ取込み時に逐次性
なうことができ、従って、板材端部の形状を迅速に検出
することができる板材端部の形状検出方法を提供するこ
とを目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional art, and it is possible to sequentially determine the acceptability of board width data at the time of data import, and therefore, it is possible to quickly detect the shape of the end of the board. The purpose of the present invention is to provide a method for detecting the shape of the edge of a plate material.

本発明は、板材をその長さ方向に移動させながら板幅方
向に沿ってバックライトを照射し、板材によって形成さ
れた影像を、板幅方向に沿って受光素子を配置したリニ
ヤアレイにより周期的に検出し、該リニヤアレイにより
順次得られる板幅データと板材の移動情報とにより板材
端部の形状を検出するようにした板材端部の形状検出方
法において、板材先端部については、今回の板幅データ
が既に取込まれた板幅データより小であれば、今回d板
幅データを不良と判定し、一方、板材後端部にpいては
、今回の板幅データが既に取込まれた板幅データより大
であれば、今回の板幅データを不良と判定するようにし
て、前記目的を達成したものである。
The present invention irradiates a backlight along the width direction of the plate while moving the plate in its length direction, and periodically images an image formed by the plate using a linear array in which light receiving elements are arranged along the width of the plate. In the method for detecting the shape of the edge of a plate using the plate width data sequentially obtained by the linear array and the movement information of the plate, the tip of the plate is determined based on the current plate width data. If it is smaller than the plate width data that has already been imported, the current plate width data d is determined to be defective, and on the other hand, if the plate width data is smaller than the plate width data that has already been imported, the current plate width data is determined to be defective. If it is larger than the data, the current board width data is determined to be defective, thereby achieving the above objective.

又、前記板幅データが一旦零となった時は、板材後端部
については、以後の板幅データをすべて不良と判定する
ようにして、外部ノイズの多い板材後端部における不良
判定を迅速に行なえるようにしたものである。
In addition, once the plate width data becomes zero, all subsequent plate width data for the rear end of the plate is determined to be defective, so that defective determination at the rear end of the plate, where there is a lot of external noise, can be quickly performed. It was designed so that it could be done.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

鋼板10等の板材の不整部の形状は、先端部では、第2
図(A)に示す如く、その板幅が、先端からの距離の増
加(時間の経過)と共に連続して増加していく、先端か
らの距離(時間)の単調増加関数と一般的に見ることが
できる。又、その逆に後端部では、第2図(B)に示す
如く、その板幅が、先端からの距離の増加(時間の経過
)と共に連続して減少していく、先端からの距*(時間
)の単調減少関数と一般的に見ることができる。そこで
、先端部においては、板幅データを取込む際に、ある板
幅が検知されて、その後、その板幅よりも数値の小さい
板幅データが得られた時は、そのデータは不良とする。
The shape of the irregular part of the plate material such as the steel plate 10 is such that at the tip, the second
As shown in Figure (A), the plate width can be generally viewed as a monotonically increasing function of the distance (time) from the tip, increasing continuously as the distance from the tip increases (time passes). I can do it. On the other hand, at the rear end, as shown in Figure 2 (B), the plate width decreases continuously as the distance from the tip increases (as time passes). It can generally be seen as a monotonically decreasing function of (time). Therefore, in the tip section, when a certain plate width is detected when importing plate width data, and later plate width data with a numerical value smaller than that plate width is obtained, that data is determined to be defective. .

又、後端部においては、同様に、後で検知された板幅デ
ータが、尋に得られた板幅データより数値が大きい時に
は、そのデータは不良とする。更に、後端においては、
板材の落してゆくスケール等の影によるノイズがのり易
いので、板幅データが一度でも零となった時は、それ以
降の板幅データはすべて不良と判定する。
Similarly, at the rear end, if the board width data detected later is larger than the board width data obtained at the bottom, that data is determined to be defective. Furthermore, at the rear end,
Since it is easy for noise to be caused by shadows such as scales falling on the board, if the board width data becomes zero even once, all subsequent board width data are determined to be defective.

このようにして、スケール等の外部ノイズの影響を受け
ない、正確な板材端部の形状を検出できるものである。
In this way, it is possible to accurately detect the shape of the end of the plate material without being affected by external noise such as scale.

以下図面を参照して、本発明に係る板材端部の形状検出
方法が採用された、熱間圧延鋼板のクロップ形状認識・
剪断装置の実施例を詳細に説明する。
Referring to the drawings below, crop shape recognition of a hot rolled steel plate in which the method for detecting the shape of the edge of a plate according to the present invention is adopted.
An embodiment of the shearing device will be described in detail.

本実施例は、第3図に示す如く、鋼板搬送路上を搬送さ
れている鋼板10の下側に配設され、鋼板10の板幅方
向に沿ってバックライトを照射する棒状光源20と、鋼
板搬送路の上方に配設され、鋼板10によって形成され
た影像を周−的に検出する、内蔵された受光素子が板幅
方向に沿って配置された、たとえば2048ビツトのリ
ニヤアレイ22と、該リニヤアレイ22の出力に応じて
、鋼板10の板幅方向端部位置に対応するエツジデータ
を出力する信号処理装置24と、メジャリングロール2
6の回転量を検出して、鋼板10の移動量に応じたパル
ス信号を出力するパルス発信器28と、鋼板10を剪断
するための、剪断刃30aを有する一対のドラム30.
該ドラム30を剪断時に回転駆動するためのシャーモー
タ32、該シャーモータ32を制御するためのシャーモ
ータ制御@@34からなる剪断装置29と、前記信号処
理装置124出力のエツジデータ及び前記パルス発信器
28出力の鋼板10の移動情報に応じて、鋼板端部の不
整形状を検出し、該不整形状に応じて鋼板端部の剪断位
置を決定して、所定タイミングも前記剪断装置29に剪
断指令を出力する計算機36とを備えた熱間圧延鋼板の
クロップ形状認識・剪断装置において、前記計算機36
内で、鋼板先端部については、今回の板幅データが、既
に取込まれた板幅データより小であれば、今回の板幅デ
ータを不良と判定して、今回の板幅データに不良判定情
報を付加してデータ格納領域に取込み、一方、鋼板後端
部については、今回9板幅データが、既に取込まれた板
幅データより大であれば、今回の板幅データを不良と判
定し、又、板幅データが一旦零となった時は、以後の板
幅データをすべて不良と判定して、今回の板幅データ或
いは以慢の板幅データすべてに不良判定情報を付加して
データ格納領域に取込み、全データ格納後に、不良判定
情報に応じて板幅データの取捨選択を行なった上で、有
効データに基いて鋼板端部の形状を検出して、剪断位置
を決定するようにしたものである。
As shown in FIG. 3, this embodiment includes a rod-shaped light source 20 that is disposed below a steel plate 10 being conveyed on a steel plate conveyance path and irradiates a backlight along the width direction of the steel plate 10; A linear array 22 of, for example, 2048 bits, which is disposed above the conveyance path and has built-in light receiving elements arranged along the width direction of the steel plate 10 for circumferentially detecting the image formed by the steel plate 10; a signal processing device 24 that outputs edge data corresponding to the edge position in the sheet width direction of the steel sheet 10 according to the output of the measuring roll 22;
a pair of drums 30.6, which detects the amount of rotation of the steel plate 10 and outputs a pulse signal according to the amount of movement of the steel plate 10; and a pair of drums 30.6 having shear blades 30a for shearing the steel plate 10.
A shearing device 29 comprising a shear motor 32 for rotationally driving the drum 30 during shearing, a shear motor control@@34 for controlling the shear motor 32, edge data output from the signal processing device 124, and the pulse generator. According to the movement information of the steel plate 10 of 28 outputs, an irregular shape of the steel plate end is detected, a shearing position of the steel plate end is determined according to the irregular shape, and a shearing command is given to the shearing device 29 at a predetermined timing. In the crop shape recognition/shearing apparatus for hot rolled steel sheets, the computer 36 outputs the crop shape of a hot rolled steel plate.
Regarding the tip of the steel plate, if the current plate width data is smaller than the plate width data that has already been imported, the current plate width data is determined to be defective, and the current plate width data is determined to be defective. Information is added and imported into the data storage area. On the other hand, for the rear end of the steel plate, if the current 9 plate width data is larger than the already imported plate width data, the current plate width data is determined to be defective. However, once the sheet width data becomes zero, all subsequent sheet width data will be judged as defective, and defective judgment information will be added to the current sheet width data or all subsequent sheet width data. After importing the data into the data storage area and storing all the data, the sheet width data is selected according to the defect judgment information, and the shape of the steel sheet edge is detected based on the valid data to determine the shearing position. This is what I did.

以下、第4図に示す流れ図を参照して作用を説明する。The operation will be explained below with reference to the flowchart shown in FIG.

まず、リニヤアレイ22の出力信号、或いは、別に設け
た熱塊検出器の出力信号等に応じて、リニヤアレイ22
が、鋼板10の先端部或いは後端部のいずれかを検出し
ているかを、ステップ100で判定する。鋼板10の先
端部を検出している場合には、ステップ101に進み、
信号処理@1124を介してリニヤアレイ22から板幅
データを取込む。ついで、ステップ102で、今回取込
まれた板幅データが、既に取込まれた板幅データの最大
値以上であるか否かを判定する。今回取込まれた板幅デ
ータが、既に取込まれた板幅データの最大値と等しいか
、或いは該最大値より大である場合には、板幅が増加傾
向にあるので、板幅データは正常であると判定して、ス
テップ104に進む。一方、今回取込まれた板幅データ
が、既に取込まれた板幅データの最大値より小である場
合には、スケール等の影響により今回の板幅データが不
良となっていると判定して、ステップ103で今回のデ
ータに不良判定情報を付加した上でステップ104に進
む。ステップ104では、所定のデータ取込み回数、例
えば300回が終了したか否かを判定し、データ取込み
回数が終了していればステップ105に進み、一方、デ
ータ取込み回数が終了していない、場合にはステップ1
01に戻る。ステップ105では、上位計算機或いは操
作員の設定情報により剪断位置の板幅を針幹する。つい
で、ステップ106で、データ群(板幅データ、不良判
定情報の他、明暗の境界に苅応するエツジデータ、鋼板
の移動情報等が含まれている)のうち、不良判定情報の
ついたものは除いて、剪断位置の板幅と板幅データとが
等しいデータ組により、剪断位置を決定する。更に、ス
テップ107で、パルス発信!128より得られている
鋼板の移動情報をもとにして、剪断タイミングを計算す
る。更にステップ108で、剪断タイミングに到達して
いるか否かを判定し、剪断タイミングに到達していれば
、ステップ109で剪断指令を剪断装ff1129に出
力して鋼板先端部のクロップカットを実施する。
First, depending on the output signal of the linear array 22 or the output signal of a separately provided thermal mass detector, the linear array 22
In step 100, it is determined whether the front end or the rear end of the steel plate 10 is detected. If the tip of the steel plate 10 has been detected, proceed to step 101;
Board width data is taken in from the linear array 22 via signal processing @1124. Next, in step 102, it is determined whether the board width data that has been imported this time is greater than or equal to the maximum value of the board width data that has already been imported. If the sheet width data imported this time is equal to or larger than the maximum value of the sheet width data that has already been imported, the sheet width is increasing, and the sheet width data is It is determined that it is normal and the process proceeds to step 104. On the other hand, if the currently imported strip width data is smaller than the maximum value of the already imported strip width data, it is determined that the current strip width data is defective due to the influence of scale, etc. Then, in step 103, defect determination information is added to the current data, and the process proceeds to step 104. In step 104, it is determined whether a predetermined number of data imports, for example 300 times, has been completed. If the number of data imports has been completed, the process proceeds to step 105; on the other hand, if the number of data imports has not been completed, is step 1
Return to 01. In step 105, the plate width at the shearing position is determined based on the setting information of the host computer or the operator. Next, in step 106, among the data group (includes sheet width data, failure judgment information, edge data corresponding to the boundary between light and dark, movement information of the steel plate, etc.), those with failure judgment information are The shearing position is determined using a data set in which the plate width at the shearing position is equal to the plate width data. Furthermore, in step 107, pulse transmission! The shearing timing is calculated based on the movement information of the steel plate obtained from 128. Further, in step 108, it is determined whether or not the shearing timing has been reached. If the shearing timing has been reached, in step 109, a shearing command is output to the shearing device ff1129 to perform crop cutting of the tip of the steel plate.

一方、ステップ100で鋼板10の後端部であると判定
された場合には、ステップ110に進み、ステップ10
1と同様にして、信号処理装置24を介してリニヤアレ
イ22べら板幅データを取込む。ついで、ステップ11
1で、今回取込まれた板幅データが、既に取込まれた板
幅データの最小板幅データが、既に取込まれた板幅デー
タの最小値と等しいか、或いは該最小値より小である場
合には、板幅が減少傾向にあるので、板幅データは正常
であると判定して、ステップ113に進む。
On the other hand, if it is determined in step 100 that it is the rear end of the steel plate 10, the process proceeds to step 110, and step 10
Similarly to 1, the latch width data of the linear array 22 is taken in via the signal processing device 24. Then step 11
1, the width data imported this time is equal to or smaller than the minimum value of the width data that has already been imported. In some cases, the plate width is on a decreasing trend, so it is determined that the plate width data is normal, and the process proceeds to step 113.

一方、今回取込まれた板幅データが、既に取込まれた板
幅データの最小値より大である場合には、スケール等に
より今回の板幅データが不良となっていると判定して、
ステップ112で今回のデータに不良判定情報を付加し
た上でステップ113に進む。ステップ113では、今
回の板幅データが零であるか否かが判定され、今回の板
幅データが零でなければ、ステップ115に進む。一方
、今回の板幅データが零であ、る場合には、以後のデー
タにはすべて不良判定情報を付加するようにして、ステ
ップ115に進む。ステップ115では、所定のデータ
取込み回数、例えば300回が終了□ したか否かを判定し、データ取込み回数が終了していれ
ば前出ステップ105に進み、一方データ取込み回数が
終了していない場合にはステップ110に戻る。ステッ
プ105以降の処理については、鋼板先端部の場合と同
様であるので、説明は省略する。
On the other hand, if the currently imported strip width data is larger than the minimum value of the already imported strip width data, it is determined that the current strip width data is defective due to the scale, etc.
In step 112, defect determination information is added to the current data, and then the process proceeds to step 113. In step 113, it is determined whether or not the current board width data is zero, and if the current board width data is not zero, the process proceeds to step 115. On the other hand, if the current board width data is zero, then the defect determination information is added to all subsequent data, and the process proceeds to step 115. In step 115, it is determined whether a predetermined number of data imports, for example 300 times, has been completed. If the number of data imports has been completed, the process proceeds to step 105, whereas if the number of data imports has not been completed, the process proceeds to step 105. Then, the process returns to step 110. The processing after step 105 is the same as that for the tip end of the steel plate, so a description thereof will be omitted.

本実施例における、鋼板先端部の鋼板形状と板幅データ
及び不良判定部の関係の一例を第5図に示す。
FIG. 5 shows an example of the relationship between the steel plate shape at the tip of the steel plate, the plate width data, and the defect determination section in this example.

本実施例においては、不良判定情報が付加されたデータ
を除外して、剪断位置を決定するようにしているので、
剪断位置がスケール等の外部ノイズによって乱されるこ
とが少ない。
In this embodiment, the shearing position is determined by excluding data to which failure determination information has been added.
The shear position is less likely to be disturbed by external noise such as scale.

又、本実施例においては、鋼板後端部については、今回
の板幅データが、既に取込まれた板幅データより大であ
る時に、今回の板幅データを不良と判定するだけでなく
、板幅データが一旦零となった時は、以慢の板幅データ
をすべて不良と判定するようにしているので、鋼板の落
してゆくスケール等の影による外部ノイズがのり易い、
鋼板後端部における形状検出を適確に行なうことができ
る。なお、鋼板後端部だけでなく、鋼板先一部について
も同様の処理を行なって、鋼板先端部で板幅データが一
旦零となった時は、それ以前の板幅データをすべて不良
と判定することも勿論可能である。
Furthermore, in this embodiment, for the rear end of the steel plate, when the current plate width data is larger than the already imported plate width data, the current plate width data is not only determined to be defective; Once the sheet width data becomes zero, all subsequent sheet width data is determined to be defective, so external noise due to the shadow of the scale etc. falling on the steel sheet is likely to be added.
It is possible to accurately detect the shape at the rear end of the steel plate. In addition, the same process is performed not only for the rear end of the steel plate but also for a part of the tip of the steel plate, and once the plate width data becomes zero at the tip of the steel plate, all the previous plate width data is determined to be defective. Of course, it is also possible to do so.

又、前記実施例においては、クロップ剪断位置決定の演
算処理において、板幅データが不良と判定されたデータ
は使用しないようにして、剪断位−が外部ノイズにより
乱されないようにしていたが、不良判定情報が付加され
たデータの処理方法はこれに限定されず、例えば、不良
と判定されたデータの近くに剪断位置の板幅と等しいも
のがあった場合に、剪断位置をある程度補正する等の措
置をとることも可能である。
Furthermore, in the above embodiment, in the arithmetic processing for determining the crop shear position, data in which the board width data was determined to be defective was not used to prevent the shear position from being disturbed by external noise. The method of processing data to which judgment information has been added is not limited to this. For example, if there is something near the data judged to be defective that is equal to the plate width at the shearing position, the shearing position may be corrected to some extent. It is also possible to take measures.

前記実施例は、本発明を、熱間圧延鋼板のクロップ形状
ml1−剪断装置に適用したものであったが、本発明の
適用範囲はこれに限定されず、一般の板材罎部の形状検
出にも同様に適用できることは明らかである。
In the above embodiment, the present invention was applied to a crop shape ml1-shearing device for hot-rolled steel plates, but the scope of application of the present invention is not limited to this, and can be applied to detecting the shape of general plate curves. It is clear that the same applies.

以上説明した通り、本発明によれば、板幅データの良否
判定を、データ取込み時に行なうことができ、従って、
板材端部の形状を迅速に検出することができるという優
れた効果を有する。
As explained above, according to the present invention, it is possible to determine the quality of board width data at the time of data import, and therefore,
This has the excellent effect of being able to quickly detect the shape of the edge of the plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、スケール等が飛散している鋼板先端部の状況
を示す平面図、第2図(A)、(B)は、本発明の詳細
な説明するための、それぞれ、板材先端部及び板材後端
部における、板材形状と板幅データの関係を示す線図、
第3図は、本発明に係る板材端部の形状検出方法が採用
された熱間圧延鋼板のクロップ形状認識・剪断装置の実
施例の構成を示す、一部ブロック線図を含む斜視図、第
4図は、前記実施例における、計算機内の処理の流れを
示す流れ図、第5図は、同じく前記実施例における、鋼
板先端部の鋼板形状と板幅データ及び不良判定部の関係
の一例を示す線図である。 10・・・鋼板、12・・・スケール、20・・・棒状
光源、22・・・リニヤアレイ、24・・・信号処理装
置、26・・・メジャリングO−ル、28・・・パルス
発信器、36・・・計算機。
FIG. 1 is a plan view showing the state of the tip of the steel plate where scales and the like are scattered, and FIGS. 2(A) and (B) are diagrams showing the tip of the plate and A diagram showing the relationship between the plate shape and plate width data at the rear end of the plate;
FIG. 3 is a perspective view, including a partial block diagram, showing the configuration of an embodiment of a crop shape recognition/shearing device for a hot rolled steel plate in which the method for detecting the shape of the edge of a plate material according to the present invention is adopted; FIG. 4 is a flowchart showing the flow of processing in the computer in the above embodiment, and FIG. 5 is an example of the relationship between the steel plate shape at the tip of the steel plate, the plate width data, and the defect determination section, also in the above embodiment. It is a line diagram. DESCRIPTION OF SYMBOLS 10... Steel plate, 12... Scale, 20... Rod-shaped light source, 22... Linear array, 24... Signal processing device, 26... Measuring o-ru, 28... Pulse transmitter , 36... Calculator.

Claims (2)

【特許請求の範囲】[Claims] (1)板材をその長さ方向に移動させながら板幅方向に
沿ってバックライトを照射し、板材によって形成された
影像を、板幅方向に沿って受光素子を配置したリニヤア
レイにより周期的に検出し、該リニヤアレイにより順次
得られる板幅データと板材の移動情報とにより板材端部
の形状を検出するようにした板材端部の形状検出方法に
おいて、板材先端部については、今回の板幅データが既
に取込まれた板幅データより小であれば、今回の板幅デ
ータを不良と判定し、一方、板材後端部については、今
回の板幅データが既に取込まれた板幅データより大であ
れば、今回の板幅データを不良と判定するようにしたこ
とを特徴とする板材端部の形状検出方法。
(1) While moving the plate material in its length direction, a backlight is irradiated along the width direction of the plate material, and the image formed by the plate material is periodically detected by a linear array with light-receiving elements arranged along the width direction of the plate material. However, in the method for detecting the shape of the edge of a plate using the plate width data sequentially obtained by the linear array and the movement information of the plate, the current plate width data is used for the tip of the plate. If it is smaller than the sheet width data that has already been imported, the current sheet width data is determined to be defective.On the other hand, for the rear end of the sheet, the current sheet width data is larger than the sheet width data that has already been imported. If so, the current board width data is determined to be defective.
(2)前記板幅データが一旦零となった時は、板材後端
部については、以後の板幅データをすべて不良と判定す
るようにした特許請求の範囲第1項に記載の板材端部の
形状検出方法。
(2) When the plate width data once becomes zero, all subsequent plate width data for the rear end of the plate are determined to be defective. shape detection method.
JP17423181A 1981-10-30 1981-10-30 Shape detection for end part of plate material Pending JPS5875009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17423181A JPS5875009A (en) 1981-10-30 1981-10-30 Shape detection for end part of plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17423181A JPS5875009A (en) 1981-10-30 1981-10-30 Shape detection for end part of plate material

Publications (1)

Publication Number Publication Date
JPS5875009A true JPS5875009A (en) 1983-05-06

Family

ID=15975009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17423181A Pending JPS5875009A (en) 1981-10-30 1981-10-30 Shape detection for end part of plate material

Country Status (1)

Country Link
JP (1) JPS5875009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270908A (en) * 1991-02-27 1992-09-28 Kawasaki Steel Corp Method for measuring planar shape of hot rolled steel plate
JP2006208297A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for measuring planar shape of steel plate
JP2013185901A (en) * 2012-03-07 2013-09-19 Jfe Steel Corp Method and device for measuring long body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653403A (en) * 1979-10-08 1981-05-13 Mitsubishi Electric Corp Shape measuring instrument
JPS56111404A (en) * 1980-02-08 1981-09-03 Mitsubishi Electric Corp Detector for shape of body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653403A (en) * 1979-10-08 1981-05-13 Mitsubishi Electric Corp Shape measuring instrument
JPS56111404A (en) * 1980-02-08 1981-09-03 Mitsubishi Electric Corp Detector for shape of body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270908A (en) * 1991-02-27 1992-09-28 Kawasaki Steel Corp Method for measuring planar shape of hot rolled steel plate
JP2006208297A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for measuring planar shape of steel plate
JP2013185901A (en) * 2012-03-07 2013-09-19 Jfe Steel Corp Method and device for measuring long body

Similar Documents

Publication Publication Date Title
JPH0786474B2 (en) Defect period measurement method
EP0428408B1 (en) Automatic calibration of document reading apparatus
JPS5875009A (en) Shape detection for end part of plate material
JP2006292503A (en) Method and device for flaw inspection
JPS6114508A (en) Shape measuring instrument
US10200554B2 (en) Media scan operation control
JP3205007B2 (en) How to detect misalignment and defective shape of conveyed objects
JPH059898U (en) Web cutting equipment
JPS5877406A (en) Shear positioning method for plate edge
JPS6257898A (en) Web cutter
JPH0325387B2 (en)
JPS6360841B2 (en)
JPH0536724B2 (en)
JPH04270908A (en) Method for measuring planar shape of hot rolled steel plate
JP2004257859A (en) Edge shape detection method of metal band
JP2001255136A (en) On-line measuring accuracy inspecting method for width and length measuring instruments
JPH04291138A (en) Marking device for flaw portion on strip
JPH02227662A (en) Ultrasonic automatic test equipment for steel plate
JP2003322622A (en) Defect inspection apparatus and defect inspection method using the same
JPS61136869A (en) Folding failure inspecting device
JP5100877B1 (en) Surface inspection device
JP2003247951A (en) Defect detection method and device for strip-shaped material
JP2004205696A (en) Method for determining failure length of photosensitive material and system for removing faulty part of photosensitive material roll
JPH08101141A (en) Flaw sensing method and device for edge of steel band
JPS61175791A (en) Paper sheet discriminating method