JPS5874069A - Semiconductor ic device and manufacture thereof - Google Patents

Semiconductor ic device and manufacture thereof

Info

Publication number
JPS5874069A
JPS5874069A JP57173319A JP17331982A JPS5874069A JP S5874069 A JPS5874069 A JP S5874069A JP 57173319 A JP57173319 A JP 57173319A JP 17331982 A JP17331982 A JP 17331982A JP S5874069 A JPS5874069 A JP S5874069A
Authority
JP
Japan
Prior art keywords
channel
type
field effect
gate field
silicon gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57173319A
Other languages
Japanese (ja)
Other versions
JPH0376029B2 (en
Inventor
Hideharu Egawa
江川 英晴
Yasoji Suzuki
八十二 鈴木
Koji Matsuki
松木 宏司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57173319A priority Critical patent/JPS5874069A/en
Publication of JPS5874069A publication Critical patent/JPS5874069A/en
Publication of JPH0376029B2 publication Critical patent/JPH0376029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Abstract

PURPOSE:To simultaneously control the threshold voltage to approx. the same value by a method wherein P type and N type wells of approx. the same densities are formed on an N<-> type Si substrate, the same conductive type gate electrodes are provided, and conductivity conversion layers are provided on channel parts of both FETs. CONSTITUTION:N and P type wells 33, 39 of approx. the same densities are provided on the N<-> type Si substrate 30 in clearance and covered with an oxide thin film 37. B ions are implanted resulting in the formation of conductivity conversion layers 38, 39, and a poly Si 40 added with P and a low temperature oxide film 41 are superposed. A resist mask 42 is provided, and layers 41, 40 and the oxide film 37 are etched. After the mask 42 is removed, a PSG 43 and a thermal oxide film 44 are selectively provided, P<+> layers 50, 51 are formed on the N well by B diffusion and N<+> layers 52-54 on the P well by P diffusion from the PSG 43. The PSG 43 and the oxide films 41, 44 are etched, Al electrodes 55-58 are laid on the layers 50-53, the electrodes 56, 57 are short-circuitted by an Al wiring 59, and the gate electrode is led out of the region by the poly Si 40 and covered over the entire surface with a silane 60. In this constitution, the threshold voltage of a C-IGFET can be easily controlled to approx. the same value.

Description

【発明の詳細な説明】 本発明は半導体集積回路装置、特にPチャンネル及びN
チャンネル型シリコンゲート電界効果トランジスタを同
一基板く形成してなる相補蓋シリコンゲート電界効果半
導体集積回路装置(以下シリコンゲー) 0MO8・I
Cと略記する)K関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor integrated circuit devices, particularly P-channel and N-channel devices.
Complementary lid silicon gate field effect semiconductor integrated circuit device (hereinafter referred to as silicon gate) formed by forming channel type silicon gate field effect transistors on the same substrate 0MO8・I
(abbreviated as C) related to K.

−慇にこ?種CMO8−ICでは、特殊な0M011回
路を除いて通常回路しきい値電圧を使用電源のほぼ1/
2 K選ぶことから、Pチャンネル及びNチャンネル貴
シリコンゲート電界効果トランジスタのしきい値電圧を
互いに等しい値にすることが要求されている。
-Are you cool? In the type CMO8-IC, except for the special 0M011 circuit, the normal circuit threshold voltage is approximately 1/1 of the power supply used.
2K, it is required that the threshold voltages of the P-channel and N-channel noble silicon gate field effect transistors be equal to each other.

し、かもその両方のトランジスタのしきい値電圧をほぼ
等しい値に適切に制御するにあたって、各々のトランジ
スタのゲート電極直下のチャンネル領域部分く適切な量
、分布の所定導電蓋不純物を添加する所謂チャンネル・
ドープによって1両方のトランジスタのチャンネル領域
部分の不純物濃度をそれぞれ制御してトランジスタのし
きい値電圧を互いに$Lい値に制御するが、この様なし
きい値電圧の制御をPチャンネルとNチャンネル履シリ
コンゲート電界効果トランジスタととに別々に制御する
と写真蝕刻工程及びチャンネル・ドーブエ穆がそれぞれ
2回必要で制御工程が多くなる丸め、両方のトランジス
タのしきい値電圧の制御を同時に行うことが要求されて
いる。
However, in order to properly control the threshold voltages of both transistors to approximately the same value, a so-called channel is added by adding a predetermined conductive lid impurity in an appropriate amount and distribution to the channel region directly under the gate electrode of each transistor.・
By doping, the impurity concentrations in the channel regions of both transistors are controlled, and the threshold voltages of the transistors are controlled to a value lower than each other. If the silicon gate field effect transistor and the silicon gate field effect transistor are controlled separately, the photolithography process and the channel dovetailing process will be required twice each, which increases the number of control processes.Also, it is required to control the threshold voltage of both transistors at the same time. ing.

ところで、この様な2つの畳条を満足させる九めに従来
ではシリコンゲ−) 0MO8・ICは第1図及び第2
図に示すようく形成してなる。則ち、N形シリコン基板
(1)を約2 XIO” atoms/age@度の不
純□□1、□っ。。、−、、、lユ1)IM。6.わ、
よ領域(2)を約I X 10” atoms/a11
@度としてすc、ソt。
By the way, in the past, the ninth method that satisfies these two tatami conditions is the silicon game (0MO8・IC) as shown in Figures 1 and 2.
It is formed as shown in the figure. In other words, the N-type silicon substrate (1) has an impurity of about 2
The area (2) is approximately I x 10” atoms/a11
@degreesc, sot.

てこのN*シリコン基板(1)及びP形島状領域(2)
の少くともトランジスタのチャンネル領域に相当する部
分にリンネ細物を同時にチャンネル・ドープしてその部
分にそれぞれ同じ導電率変換層■及び121)を形成し
てなる。そしてこのN形シリコン基板(1)にゲート酸
化膜(3)及び多結晶シリコン(4)をマスクとしてボ
ロン不純物拡散を行いPチャンネル蓋シリコンゲート電
界効果トランジスタのソース(5)及びドレイン領域(
6)を形成し、一方P形島状領域(2)Kゲート酸化膜
[(3γ及び多結晶シリコン(4γをマスクとしてリン
ネ鈍物拡散を行いNチャンネル蓋シリコンゲート電界効
果トランジスタのソース(7)及びドレイン領域(8)
を形成してなる。そしてこのソース領域(5) 、 (
7)及びドレイン領域+6) 、 +8)よ)それぞれ
ソース電極(9) 、 Ql)及びドレイン電極Q(1
、αaを職り出し、例えばそのドレイン電極αのと輪を
互いKAj配線Iを5介して接続し、且つ多結晶シリコ
ン゛1・・ のゲート電極(3)と(3Fは、ソース及びドレイン領
域11′・ 形成時に同時(不純物をそれぞれ導入して低抵抗O導電
層に変換されてなる丸め互いに導電波が異なり、第2図
に示すように、互いKAj接続体α◆を介して接続して
なる。
Lever N* silicon substrate (1) and P-shaped island region (2)
At least a portion corresponding to the channel region of the transistor is simultaneously channel-doped with a phosphorescent material, and the same conductivity conversion layers (1) and 121) are formed in those portions, respectively. Boron impurities are then diffused into this N-type silicon substrate (1) using the gate oxide film (3) and polycrystalline silicon (4) as masks, and the source (5) and drain regions (
6), while P-type island region (2) K gate oxide film [(3γ and polycrystalline silicon (4γ) was used as a mask to perform Linnean blunt diffusion to form the source of the N-channel lid silicon gate field effect transistor (7) and drain region (8)
It forms. And this source area (5), (
7) and drain region +6), +8) respectively) source electrode (9), Ql) and drain electrode Q(1)
, αa, for example, connect the drain electrode α and the ring to each other via the KAj wiring I, and connect the gate electrode (3) of polycrystalline silicon ゛1... (3F is the source and drain region 11' Simultaneously at the time of formation (converted into a low-resistance O conductive layer by introducing impurities into each layer), the conductive waves are different from each other, and as shown in Figure 2, they are connected to each other via the KAj connection body α◆. Become.

しかして上記の様に、Nllシリコン基板(1)0不純
物議度を約2X10  at(2)l/(IIg程度に
選び、且つP形島状領域(2)の不純物一度を約lXl
0  at軸ル侃種度に選ぶことによシ、例えば、ゲー
ト酸化膜(3)(3Fの膜厚(TOX)を約tzooX
 8度、5i−sto、界面に存在する固定電荷量(N
ss)をへ約5 X 1010/lll 9度、多結晶
シリコンの不純物濃度を約I X 10  aloms
/dに形成した場合、第3図に示すように%Nチャンネ
ル型シリコンゲート電界効果トランジスタのしきい値電
圧が約1.25 V 9度で、一方Pチャンネル減シリ
コンゲート電界効果トランジスタのしきい値電圧が約−
0,75V程度となる。したがって両方のトランジスタ
のしきい値電圧を適切な等しい値、例えば11.OVl
に揃える場合、同じ負の方向に且つ同じ量、例えばlO
,25Vlだけ両方のトランジスタのし白い値電圧をシ
フトするように制御すればよいことkなる。即ち、Nチ
ャンネル蓋シリツンゲート電界効果トランジスタにつ−
では、チャンネル領域の不純物濃度を約0.25Vのし
きい値電圧分だけ低下させ、一方11ヤンネル臘シリコ
ンゲート電界効果トランジスタについては、チャンネル
領域の不純物濃度を約0.25Vと同じしきい部分だけ
高めればよいととKなる。
As mentioned above, the impurity density of the Nll silicon substrate (1) is selected to be about 2X10 at(2)l/(IIg), and the impurity density of the P-type island region (2) is selected to be about lXl
By selecting the 0 at-axis type, for example, the gate oxide film (3) (3F film thickness (TOX) can be set to approximately tzooX
8 degrees, 5i-sto, fixed charge amount (N
ss) to about 5 x 1010/ll 9 degrees, and the impurity concentration of polycrystalline silicon to about I x 10 aloms
/d, the threshold voltage of the N-channel silicon gate field effect transistor is about 1.25 V 9 degrees, as shown in Figure 3, while the threshold voltage of the P channel silicon gate field effect transistor is approximately 1.25 V 9 degrees. The value voltage is about -
The voltage will be approximately 0.75V. Therefore, the threshold voltages of both transistors should be set to suitable equal values, for example 11. OVl
, in the same negative direction and by the same amount, for example lO
, 25Vl, it is sufficient to control the white value voltage of both transistors to shift. That is, for an N-channel lidded silicon gate field effect transistor.
In this case, the impurity concentration in the channel region is reduced by a threshold voltage of about 0.25V, while for the 11-channel silicon gate field effect transistor, the impurity concentration in the channel region is reduced by a threshold voltage equal to about 0.25V. I thought it would be better if I raised it.

その丸め上記の様KNチャンネル及びPチャンネル雇シ
リコンゲート電界効果トランジスタのチャンネル領域部
分にいずれも約0.2!SVのし自い値一部分に相当す
る量、即ち加速電圧130に@V、ドーズ量9 X 1
0 ” a tonVallのリンネ細物を同時にチャ
ンネル・ドープして形成した導電率変換層(至)及びQ
カを設けておくととKより、Nチャンネル及びPチャネ
ル型シリコンゲート電界効果トランジスタのし」い値電
圧が、それぞれ約7刈011,1・rnS/dの濃度の
基−及び約4X10”mtoma%−の濃度の基板を用
いた場合に得られるしきい値電圧1例えば+1.OVl
となシ、互いに等しい値例えば11.0VIK揃えられ
てなる。
As shown above, the rounding is approximately 0.2 in the channel region of the KN channel and P channel silicon gate field effect transistors. An amount corresponding to a part of the flexibility value of SV, that is, an acceleration voltage of 130 @V, and a dose of 9 x 1
The conductivity conversion layer (to) and Q
If K is provided, the threshold voltages of N-channel and P-channel silicon gate field effect transistors will be approximately 7×011,1·rnS/d and approximately 4×10” mtoma, respectively. The threshold voltage 1 obtained when using a substrate with a concentration of %-, for example +1.OVl
Then, the values are equal to each other, for example, 11.0 VIK.

以上の様に、従来のシリコンゲー)0MO8−ICでは
、N型シリコン基板を約2 XIO”atoms/−及
びP形島状領域を約I X 1G ” a toms/
d橿度の不純物濃度にそれぞれ選ぶととにより、Nチャ
ンネル及びPチャンネル型シリコンゲート電界効果トラ
ンジスタのチャンネル領域部分く、同じリンネ鈍物を同
量だけ同時にチャンネル・ドープするととによって両方
のトランジスタOLきい値電圧:亙いく等しい所望の値
に制御できるが、しかし上記のようKP形形状状領域約
lXl0”atomsz−1変の不純物濃度に選ばれて
いる丸めに以下のような問題がある。即ち、Nチャンネ
ル型シリコンゲート電界効果トランジスタの基板となる
P形状状領域の不純物ll&度が約I X 10 ” 
atoms/a11とPチャンネル型シリコンゲート電
界効果トランジスタの基板となるN形シリコン基板の不
純物濃度的2X10”M神囮/dK比較して高く、シか
も各トランジスタのソース及びドレイン領域の接合容量
並びに基板バイアス効果が基板の不純物濃度に依存し基
板の不純物濃度が高くなれば、その接合容量並びに基板
バイアス効果も會九大自(なるとい−関係にあるoし九
がって例えばNチャンネルio?チャンネル臘シリコン
ゲート電界効果トランジスタのソース^びドレイン領域
をいずれ4約30 s X 20 s 0寸法に形成し
た場合、Nチャンネル型シリコンゲート電界効果トラン
ジスタのソース及びドレイン1[の接合容量は約0.1
9PFとなり、一方rチャンネルーシリコンゲート電界
効果トランジスタのソース及びドレイン領域の接合容量
は約0.085PFとなシ、Nチャンネル型シリコンゲ
ート電界効果トランジスタの接合容量がPチャンネル型
シリコンゲート電界効果トランジスタのそれの約2.3
倍と大きく、ま九基板バイアス効果が大きいという問題
がある〇特にこの様なシリコンゲー) 0MO8−IC
を用いて例えば4にビットシリコンゲートCMOIラン
ダム・アクセスメモリーを構成した場合、上記のNチャ
ンネル渥シリ;ンゲート電界効果トランジスタの接合容
量及び基板バイアス効果の問題が極めて大きい問題とな
る。即ち、4にビットシリコンゲー) 0M01ランダ
ム・アクセスメモリーでは、第4図に示すようなメモ・
す、、、−セル単位を基本単位とし′、′1 て構成されるので、こむでは図示のメモリーセル単位に
ついて考えてみる。このメモリーセル単位は、一般KP
チャンネルQsmQs及びNチャンネル臘シリコンゲー
ト電界効果トランジスタQaeQsとでメモリーセルM
Cを構成し、そのメモリーセルMCとディジット線り、
6との間にそれぞれビット線BK与えられるビット信号
によ〉開閉するスイッチ用シリコンゲート電界効果トラ
ンジスタQ@*Q@を接続してなるが、通常このスイッ
チ用トランジスタQseQ・としてはPチャンネル型シ
リコンゲート電界効果トランジスタよ)スイッチング速
度の速いNチャンネル型シリコンゲート電界効果トラン
ジスタが用いられてなる。そしてディジット−D、DK
つながる容量CD、CDはとONチャンネル型シリコン
ゲート電界効果トランジスタの接合容量、 次R−のト
ランジスタのゲート容量、配線容量等からなるが;しか
しこの容量cD、ciはほとんどNチャンネル型シリコ
ンゲート電界効果トランジスタの接合容量で決定される
と言切りでも過言でない。従ってこのCD、Ci5はr
チャンネル型シリコンゲート電界効果トランジスタによ
る場合に比べて約2.3倍と大−く、ちなみに4mCピ
ットランダム・アクセス時間り一のように64個ONf
ヤソネル臘シリコンゲート電界効果トランジスタQse
Q・がディジット纏り、5にそれぞれ接続される場合に
は、そのco、ci5はNチャンネル臘シリコンゲート
電界効果トランジスタQ@*Q@の接合容量のそれでれ
総和にな〉、例えば5.4PFKもなシNチャンネル重
シリコンゲート電界効果トランジスタQs*Qsを用い
てアクセス時間の向上を計ろうとしているにもかかわら
ず、容量cD、cE充・放電時間が長くなりアクセス時
間が極めて遅くなってしまう。ま九N+ヤンネル蓋シリ
;ン電界効果トランジスタQseq6は基板バイアス効
果が大きく電流が流れ難い丸め、アクセス時間が遅くな
ってしまうという欠点が招来される。
As described above, in the conventional silicon gate MO8-IC, the N-type silicon substrate is approximately 2 XIO" atoms/- and the P-type island region is approximately I X 1G" atoms/-.
By doping the same amount of the same Linnean obtuse into the channel regions of N-channel and P-channel silicon gate field effect transistors, depending on the impurity concentration of the d-radius selected, the OL conductivity of both transistors can be improved. Value voltage: can be controlled to a desired value that is approximately equal, but the rounding selected for the impurity concentration of the KP shape region of about 1X10'' atomsz-1 as described above has the following problems: The impurity level of the P-shaped region which becomes the substrate of the N-channel silicon gate field effect transistor is approximately I x 10''
atoms/a11 and the impurity concentration of the N-type silicon substrate, which is the substrate of the P-channel silicon gate field effect transistor, are higher than the 2X10"M decoy/dK, and the junction capacitance of the source and drain regions of each transistor and the substrate The bias effect depends on the impurity concentration of the substrate, and if the impurity concentration of the substrate becomes high, the junction capacitance and substrate bias effect will also be similar to each other.臘When the source and drain regions of a silicon gate field effect transistor are formed with dimensions of approximately 30 s x 20 s 0, the junction capacitance of the source and drain 1 of an N-channel silicon gate field effect transistor is approximately 0.1.
9PF, while the junction capacitance of the source and drain regions of an r-channel silicon gate field effect transistor is approximately 0.085PF, whereas the junction capacitance of an n-channel silicon gate field effect transistor is that of a p-channel silicon gate field effect transistor. Approximately 2.3 of
There is a problem that the substrate bias effect is large (especially in silicon games like this) 0MO8-IC
If a 4-bit silicon gate CMOI random access memory is configured using, for example, a 4-bit silicon gate CMOI random access memory, the problems of the junction capacitance and substrate bias effect of the N-channel gate field effect transistor described above become extremely serious. In other words, 0M01 random access memory (4 bits silicon game) has a memory memory as shown in Figure 4.
Since it is constructed by using cells as basic units, let us now consider the memory cell unit shown in the figure. This memory cell unit is a general KP
Memory cell M with channel QsmQs and N-channel silicon gate field effect transistor QaeQs
configuring C, its memory cell MC and digit line,
A switching silicon gate field effect transistor Q@*Q@ is connected between each of the switch transistors QseQ and QseQ, which are opened and closed by the bit signal applied to the bit line BK.Usually, this switching transistor QseQ is a P-channel silicon (gate field effect transistor) N-channel type silicon gate field effect transistor with high switching speed is used. and digits-D, DK
The connecting capacitances CD and CD are composed of the junction capacitance of the ON-channel silicon gate field effect transistor, the gate capacitance of the R- transistor, the wiring capacitance, etc.; however, these capacitances cD and ci are mostly due to the N-channel silicon gate field effect transistor. It is no exaggeration to say that it is determined by the junction capacitance of the transistor. Therefore, this CD, Ci5 is r
This is approximately 2.3 times larger than when using a channel type silicon gate field effect transistor, and by the way, the 4mC pit random access time is 64 ONf.
Yasonel 臘 silicon gate field effect transistor Qse
When Q is connected to digits 5 and 5 respectively, its co and ci5 are the sum of the junction capacitances of the N-channel silicon gate field effect transistor Q@*Q@, for example, 5.4PFK. Despite trying to improve the access time using a monolithic N-channel heavy silicon gate field effect transistor Qs*Qs, the capacitance cD and cE charging/discharging time becomes long and the access time becomes extremely slow. . The N+ field effect transistor Qseq6 has drawbacks such as a large substrate bias effect, rounding that makes it difficult for current to flow, and slow access time.

ところで、このようなNチャンネル型シリコンゲート電
界効果トランジスタのソース及びドレイン領域の接合容
量並びに基板バイアス効果を小さくする方法として、N
チャンネル型シリ;ンゲート電界効果トランジスタの基
板となるP形状状領域(2)の不純物濃度を低く1例え
ばI X 10 ” a tome、AtS変にするこ
とが考えられる0こうすることにより確KNチャンネル
型シリコンゲート電界効果トランジスタのソース及びド
レイン領域O接合容量を約0.19PFから約0.08
5PPK小さくする仁とができ、しかも基板バイアス効
果も小さくすることが可能である。しかしながらとのよ
うな濃度のP形状状領域(2)を形成するためには、轟
然N形シリ;ン基板(1)は約2 XIO”atoms
/d程度ostotoよシ低い1例えば約2X1014
atoms、%−程度のものが選ばれることくなる。こ
のとI!、第3図に示されるように%Nチャンネル及び
Pチャンネル蓋シリコンゲート電界効果トランジスタの
し自い値電圧はそれぞれ約o、zsv及び約Ov程度と
なり1両方のトランジスタのしきい値電圧を例えば% 
11.OVIKm、t、る場合には、互いKし自い値電
圧をシフトする方向及びシフト量が異なる九めに、Nチ
ャンネルとPチャンネル蓋シリコンゲート電界効果トラ
ンジスタのチャンネル領域□1′#C別ヂに異なる不純
物のチャンネル番ドープを行なわなければならなくし自
い値電圧の制御工程が多くなると−う問題がある。
By the way, as a method of reducing the junction capacitance and substrate bias effect of the source and drain regions of such an N-channel silicon gate field effect transistor, N
It is conceivable that the impurity concentration of the P-shaped region (2), which is the substrate of the channel-type silicon-gate field effect transistor, can be lowered to 1, for example, I x 10 '' a tome, AtS. The O-junction capacitance of the source and drain regions of a silicon gate field effect transistor is reduced from about 0.19PF to about 0.08PF.
It is possible to reduce 5PPK and also to reduce the substrate bias effect. However, in order to form the P-shaped region (2) with a concentration such as
/d is lower than 1, for example about 2X1014
Atoms, of the order of %, will be selected. Konoto I! , as shown in FIG.
11. In the case of OVIKm, t, the direction and amount of shifting of the voltages are different from each other. There is a problem in that it requires doping with impurities of different channel numbers for different voltages, which increases the number of voltage control steps.

即ち、従来のシリコングー) 0MO8・ICでは、N
チャンネルとPチャンネル型シリコンゲート電界効果ト
ランジスタのしき一値電圧を互いに等しい値にするため
の制御を容JIKLようとするとNチャンネル型シリコ
ンゲート電界効果トランジスタのソース及びドレイン領
域の接合容量並びに基板バイアス効果が極めて大きくな
り、逆にその接合容量差びに基板バイアス効果の小さい
tのを得ようとするとし自い値電圧の制御が面倒で、し
きい値鴫覗の親御が容易で且つNチャンネル型シリコン
ゲート電界効果トランジスタのソース及びドレイン領域
の接合容量並びに基板バイアス効果の小さいという両方
の効果を満足させるものは得られなかった。
In other words, in the conventional silicon group) 0MO8 IC, N
When attempting to control the threshold voltages of the channel and P-channel silicon gate field effect transistors to equal values, the junction capacitance of the source and drain regions of the N-channel silicon gate field effect transistor and the substrate bias effect will be affected. On the other hand, when trying to obtain t with a small junction capacitance difference and substrate bias effect, it is troublesome to control the voltage at an arbitrary value, and it is easy to control the threshold voltage, and N-channel silicon It has not been possible to obtain a gate field effect transistor that satisfies both the junction capacitance of the source and drain regions and the small substrate bias effect.

本発明は上記点に鑑みなされたもので、Nチャンネル及
びp(、ンネル型シリコンゲート電界効・11″:′1
、 果トランジスタの、シ白い値電圧を互いKtlぼ等しい
極切な値に容JIK制御で自且っNチャンネル型シリコ
ンゲート電界効果トランジスタのソーびドレイン領域の
接合容量並びに基板バイアス効果が極めて小さい半導体
集積回路を提供しようとするものである〇 以下本発明の一実施例を嬉!$wJK示した製造工程を
参照しながら説明する0図はN形シリコン基板を用いた
場合の例であり、まず基板@)として(10G>の結晶
面を有し、且つ約10 %lOatomva11程度の
不純物一度を有するN形シリコン基板を用い、この基板
CJD)の全面に薄い酸化膜(810り(至)を形成し
、ホトレジスト膜(2)をマスクとしてイオン注入法で
、リンネ鈍物をその酸化膜(財)を介してmlF@)内
に注入し、約2X10”atomsAa11@度の島状
のN形半導体層(至)を形成してなる。この状態が第5
図(14であり、次いでホトレジスト膜−をマスクとし
てイオン注入法で、ボロン不純物を酸化膜cカを介して
基板(3o)内に注入し、第5図(→の如くN形半導体
層−とほぼ同−一度、即ち、約2XIO”atotns
/II程度の不純物一度を有する島状OP形形部導体層
至)をそのN形半導体層−と離間形成してなる。そして
上記酸化膜a1及びホトレジスト膜−を除去した後、嬉
5図(C)の如く基板(3G) 0金面に厚いフィルド
酸化1IcIIを形成し且つN形半導体層−及びP形半
導体層−のそれぞれNチャンネル及びPチャンネル腫シ
リコンゲート電界効果トランジスタを形成する部分並び
KP形亭導体層(至)のPN接合境界部分のフィルド酸
化Jl[CIIを除去してなる0次に露出されたN形半
導体層(至)及びP形半導体層(至)部分並びKPNP
合境界部分に約1200ム程度の膜厚を有するゲート酸
化膜(ロ)を形成し、そしてNチャンネル及びPチャン
ネル腫シリコンゲート電界効果トランジスタのしきい値
電圧を互いに適切な値、例えばl 1.OV lのしき
い値電圧にする九めK。
The present invention has been made in view of the above points, and includes N-channel and p(, channel type silicon gate field effects, 11":'1
, the white value voltages of the transistors can be set to extreme values that are approximately equal to each other by JIK control, and the junction capacitance and substrate bias effect of the source and drain regions of an N-channel silicon gate field effect transistor are extremely small. The following is an embodiment of the present invention, which is intended to provide a circuit. Figure 0, which will be explained with reference to the manufacturing process shown, is an example in which an N-type silicon substrate is used. First, the substrate @) has a crystal plane of (10G> Using an N-type silicon substrate containing impurities, a thin oxide film (up to 810 mm) is formed on the entire surface of this substrate (CJD), and the oxidation process is carried out using ion implantation using a Linnean blunt material using the photoresist film (2) as a mask. mlF@) through the film to form an island-shaped N-type semiconductor layer of approximately 2 x 10" atomsAa11@degrees. This state is the fifth state.
Next, using the photoresist film as a mask, boron impurities were implanted into the substrate (3o) through the oxide film C, and the N-type semiconductor layer was formed as shown in Figure 5 (→). approximately the same time, i.e. approximately 2XIO”atons
An island-like OP-shaped conductor layer having an impurity of about /II is formed separately from the N-type semiconductor layer. After removing the oxide film a1 and the photoresist film, a thick filled oxide 1IcII is formed on the gold surface of the substrate (3G) as shown in Figure 5(C), and the N-type semiconductor layer and the P-type semiconductor layer are formed. The zero-order exposed N-type semiconductor formed by removing the filled oxidation Jl [CII] of the part forming the N-channel and P-channel silicon gate field effect transistors and the PN junction boundary part of the KP-type conductor layer (to), respectively. Layer (to) and P-type semiconductor layer (to) portion and KPNP
A gate oxide film (b) having a thickness of about 1200 μm is formed at the junction boundary, and the threshold voltages of the N-channel and P-channel silicon gate field effect transistors are adjusted to appropriate values, for example, l1. Ninth K to set the threshold voltage to OV l.

例えばボロン不純物を加速電圧的55KeVでもってド
ーズ量的9.5 XIO”at6ms/csl福度、 
七〇 ケ−) 酸化膜(ロ)を介してN形半導体層(至
)及びP形半導体層(至)k同時にイオン注入法でチャ
ンネル・ドープして同じ導電型の導電率変換層(至)、
@をそれぞれ形成して渣る。そしてこのゲート酸化膜(
至)及びツィルド酸化属(至)上K # I X 10
” atoms、#種度o員g。
For example, if a boron impurity is applied at an acceleration voltage of 55 KeV and a dose of 9.5 XIO" at 6 ms/csl,
70 K) Channel-dope the N-type semiconductor layer (to) and P-type semiconductor layer (to) through the oxide film (b) simultaneously by ion implantation to form a conductivity conversion layer of the same conductivity type (to). ,
Form each @ and leave. And this gate oxide film (
(to) and Tzird Oxide Genus (to) K # I X 10
” atoms, #species o member g.

リンネ鈍物を含有し九多結晶シリコン−を形成してなる
。ところでチャンネルドープされる不純物量は、ソース
、ドレイン領域形成の九めに導入され為不純物量に比べ
て十分く少ないので、チャンネル領域以外すなわちソー
ス、ドレイン領域に形成されていても問題はない0ま九
チャンネル・ドープ0rlAKP形半導体層−のPNi
l会境界部分にもリンネ鈍物がドープされて導電率変換
層が形成されるが、41にこれは重畳でないので図示を
省略する。この状態が第5図(4であ薯、次に第1II
(→に示すように、多結晶シリコン1曝C食面に低温酸
化lI鵠及びホトレジスト属−をり−す、Nチャンネル
及びPチャンネル臘シリコンゲート電界効果トランジス
タO各ゲートを形成す1部分に04ホトレジスト属−を
残し且つ他を除去してなる。そして第5図(f)K示す
ように、そのホトレジスト属−をマ゛スクとして低温酸
化膜部をエツチング除去し、更に多結晶シリ;ン−をプ
ラズマエツチング法によシ除去してなる0次いで一、1
図(2)に示すように引続いてゲート酸化膜φカをエツ
チング除去し、Nチャンネル及びPチャンネル型シリコ
ンゲート電界効果トランジスタのソース・ドレイン領域
を形成すべきN形半導体層■及びP形半導体層(至)部
分並びKP形半導体層(至)のPN接金境界部分を露出
させ、次いでホトレジスト属−をエツチング除去してな
る0そして第5図1に示すように、リンネ鈍物を含有し
九酸化属(PJIG属)I及び低温酸化膜−を基板00
)全面に形成し死後、そのPIIG属−及び低温酸化膜
−をPチャンネル型シリコンゲート電界効果トランジス
タのソース及びドレイン領域を形成すべ自P形半導体層
(至)上並びKそのP形半導体層(至)のPN接合境界
部分上K”O与残し、その他を除去してなる。次に第5
11(h)の状態で、N形半導体層(至)にゲート酸化
膜(至)、多結晶シリコン−及び低温酸化属偵9をマス
クとしてポロン不純物を気相拡散法で拡散し、Pチャン
ネル型シリコンゲート電界効果トランジスタのP形ソー
xf4及びドレイン領域61を例え430βX20μ程
度の寸法に形成すると同時にグー1酸化化属(ロ)、多
結晶シリ・・−及び低温酸化属四を一スクとしてP2O
膜−よ)リンネ鈍物をP形半導体層(至)内に拡歇せし
めて、Nチャンネル型シリコンゲート電界効果トランジ
スタのN形ソース(至)及びドレイン領域(至)を例え
ば美声×20声糧度に形成する。このと自問時にP形半
導体層(至)OWN接合境界部分にもN形領域−が形成
されてなるoしかしてソース・ドレイン領域及びPN接
合境界部分く形成されていた導電率変換層はソース、ド
レイン及びN形領域の不純物織度が高い丸め、そのよう
な領域に変換されてなるOその後、このPIG膜I及び
低温酸化IH1,−をエツチング除去してなシ、この状
態を#lEs図(すに示す。そして低温酸化膜−を形成
した後、ソース(至)、f4及びドレイン領域an 、
 61の一部を露出させ、例えばAjを蒸着してPチャ
ンネル臘シリコンゲート電界効果トランジスタのソース
−及びドレイン領域6珍にソース(至)及びドレイン電
極(至)を、またNチャンネル型シリコンゲート電界効
果トランジスタのノース6謙及びドレイン領域@にソー
ス(至)及びF°レイン電m圀をそれぞれ設け、そのド
レイン電極−と(至)とを亙いに、a配線体−でもって
接続してなる。
It contains Linnaeus dull material and forms nine polycrystalline silicon. By the way, the amount of impurities doped with the channel is sufficiently small compared to the amount of impurities introduced at the ninth stage of forming the source and drain regions, so there is no problem even if the impurities are formed in areas other than the channel region, that is, in the source and drain regions. Nine-channel doped 0rlAKP type semiconductor layer - PNi
The conductivity conversion layer is also doped with Linnaeus blunt material at the boundary portion of the 1st layer, but since this layer does not overlap 41, illustration thereof is omitted. This state is shown in Figure 5 (4 shows yam, then 1 II
(As shown in →, apply low-temperature oxidation lI and photoresist on the exposed carbon surface of the polycrystalline silicon 1, and apply 04 to 04 on the 1 part to form each gate of N-channel and P-channel silicon gate field effect transistors. The photoresist layer is left and the other portions are removed.Then, as shown in FIG. is removed by plasma etching method to obtain 0, 1, 1
As shown in Figure (2), the gate oxide film φ is then removed by etching, and the N-type semiconductor layer 2 and the P-type semiconductor layer to form the source/drain regions of the N-channel and P-channel type silicon gate field effect transistors are removed. The PN welding boundary portion of the KP-type semiconductor layer and the KP-type semiconductor layer are exposed, and then the photoresist is etched away, and as shown in FIG. Substrate 00 with nona oxide (PJIG genus) I and low temperature oxide film
) is formed over the entire surface, and after death, the PIIG and low temperature oxide films are used to form the source and drain regions of a P-channel silicon gate field effect transistor. K"O is left on the PN junction boundary part of (to), and the rest is removed. Next, the fifth
In the state of 11(h), poron impurities are diffused into the N-type semiconductor layer (1) by vapor phase diffusion using the gate oxide film (1), polycrystalline silicon, and low-temperature oxidized metal layer 9 as masks, thereby forming a P-channel type semiconductor layer. The P-type saw xf4 and the drain region 61 of a silicon gate field effect transistor are formed to a size of, for example, about 430β x 20μ, and at the same time, P2O is formed using Goo 1 oxide metal (b), polycrystalline silicon... and low temperature oxidation metal 4 as one screen.
For example, the N-type source and drain regions of an N-channel silicon gate field effect transistor can be formed by spreading a Linnaeus blunt material into the P-type semiconductor layer. form at a time. If you ask yourself this question, an N-type region is also formed in the OWN junction boundary of the P-type semiconductor layer (toward). The impurities in the drain and N-type regions are rounded and converted into such regions. After that, this PIG film I and low-temperature oxidation IH1,- are removed by etching, and this state is shown in #lEs diagram ( After forming a low-temperature oxide film, the source (to), f4 and drain regions an,
61, for example, by evaporating Aj to form the source and drain electrodes on the source and drain regions 6 of the P-channel silicon gate field effect transistor, and also on the N-channel silicon gate field effect transistor. Source (to) and F° drain electrodes are provided in the north and drain regions of the effect transistor, respectively, and the drain electrodes and (to) are connected by a wiring body. .

この場合、ゲー)O′IIl!?出し電極は、多結晶シ
リクン−を予めトランジスタ領域の6書で弧長して鴨し
ておき、その部分でソース及びドレイン電極形成と同時
に設ける0この後、シランコート−が施されて第5図(
j)K示すようにシリコンゲートCMO8・ICが完成
されてなる。
In this case, game) O'IIl! ? For the outgoing electrodes, polycrystalline silicon is preliminarily cut into an arc length in the transistor region, and then provided at the same time as the source and drain electrodes are formed.After this, a silane coat is applied, as shown in Fig. 5. (
j) As shown in K, a silicon gate CMO8 IC is completed.

以上のような本発明によれば、N形シリコン基板を約1
0”〜101014ato/d@度と低濃度の基板とす
るととKよりNチャンネル型シリコンゲート電界効果ト
ランジスタの基板となるP形半導体層を約2X10’″
atomS/cdの低濃度く形成してなる0そのためN
チャンネル型シリコンゲート電界効果トランジスタのソ
ース及びドレイン領域の接合容量は例えばソース及びド
レイン領域を約30μX 20 sの寸法に形成した場
合、約0.085PFと従来の約0.111PFのもの
く比べて約’/2.3倍と極めて小さい。しかも基板バ
イアス効果もP形半導体層の濃度に依在し従来のものく
比べて極めて小さいという効果があるO しかして、このような本発明のものを用いてインバータ
回路、シフトレジスタ回路、カウンタ回路等の0M08
回路を構成し九場合には、従来のものを用い九場合に比
べて動作速度が速く、シかも充・放電電流による消費電
力も極めて小さいという優れた効果が得られる。41に
このような本発明の%Oを用いて4にビットシリーンゲ
ートCMOIIランダム・アクセスメモリーを構成し九
場合にはディジシト−につながる容量CD、CDは−ず
れも約1.8Pν種度となシ従来O約5.4PPK比べ
て極めて小さくなる@しかもNチャンネル臘シリコンゲ
ート電界効果トランジスタの基板バイアス効果も極めて
小さいため、従来のものに比べてアクセス時間が非常に
速°くなるという効果が得られる・更K、本発明ではN
形シリコン基板にこれよ〉高機度で且つP形半導体層と
ほぼ同一の低い一度即ち、約2 X 10” a to
ml/a110不純物員度を有するN形半導体層を設け
、このN形半導体層をPチャンネル形シリ;ンゲート電
界効果トランジスタの基板として用いてなる0そし女・
1□Nfヤンネル及びPチャンネル11シリコンゲート
電界効果トランジスタのゲート電極となる多結晶シリコ
ンをいずれも同一不純物#IFILで、且つ同−導電層
、即ち約l×診 10atoms/r−のリンネ鈍物含有のNilに形成
してなる。従ってIs6図に示すように、Nチャンネル
及びPチャンネル臘シリコンゲート電界効果、トランジ
スタのしきい値電圧はそれぞれ約0゜25V及び約−1
,7!SVとなり1両方のトランジスタのし自い値電圧
を互いに適切な値、例えば+1.0VIK制御する場合
、両方のトランジスタのしきい値電圧を同じ正方向く且
つ同じio、75Vlだけシフトすればよいことになる
According to the present invention as described above, the N-type silicon substrate is
Assuming a substrate with a low concentration of 0" to 101014ato/d@degrees, the P-type semiconductor layer that will become the substrate of an N-channel silicon gate field effect transistor is approximately 2X10'"
Formed at low concentration of atoms/cd, therefore N
The junction capacitance of the source and drain regions of a channel type silicon gate field effect transistor is approximately 0.085PF when the source and drain regions are formed to have dimensions of approximately 30μ×20s, which is approximately 0.111PF in the conventional case. '/2.3 times, which is extremely small. Moreover, the substrate bias effect also depends on the concentration of the P-type semiconductor layer, and has the effect of being extremely small compared to conventional ones. etc.0M08
When the circuit is constructed in the same manner as in the previous example, the operating speed is faster and the power consumption due to charging and discharging currents is also extremely small. In 41, a bit serial gate CMO II random access memory is constructed using such %O of the present invention, and in the case of 9, the capacitance CD connected to the digits, CD has a deviation of about 1.8Pν kind. The N-channel silicon gate field effect transistor has an extremely small substrate bias effect compared to the conventional O of about 5.4 PPK, which has the effect of significantly speeding up the access time compared to the conventional one. In the present invention, N
2 x 10” a to
An N-type semiconductor layer having an impurity concentration of 110 ml/a is provided, and this N-type semiconductor layer is used as a substrate of a P-channel type silicon gate field effect transistor.
1□Nf channel and polycrystalline silicon that will become the gate electrode of the P channel 11 silicon gate field effect transistor are both made of the same impurity #IFIL and the same conductive layer, that is, about 1 x 10 atoms/r containing Linnean obtuse. It is formed in Nil. Therefore, as shown in the Is6 diagram, the threshold voltages of the N-channel and P-channel silicon gate field effect transistors are about 0°25V and about -1, respectively.
,7! When controlling the comfortable value voltage of both transistors to an appropriate value, for example +1.0VIK, it is sufficient to shift the threshold voltage of both transistors in the same positive direction and by the same io, 75Vl. Become.

しかるに、Nチャンネル及びPチャンネル型シリコンゲ
ート電界効果トランジスタのチャンネル領域部分となる
P形半導体層及びN形半導体層部分にいずれも約0.7
5Vのしきい値電圧をシフトするに61!な量、即ち、
加速電圧的55に@V テ)’ −ス量的9.5 X 
10  a tents/csf程度のボロン不純物を
同時にチャンネル・ト:−プして形成した導電率変換層
を設けておくζ4’1.tt6よシ、Nチャンネル及び
Pチャンネル型シリコンゲート電界効果トランジスタの
しきい値電圧はそれぞれ+ 1.OV lとなシ、互い
に等しい値に同時に制御されてなるという効果が得られ
る〇 更には本発明では、Nチャンネル及びPチャンネル型シ
リコンゲート電界効果トランジスタのシリコンゲート電
極が同一導電11に形成されてなるO従ってNチャンネ
ル及びPチャンネル型シリコンゲート電界効果トランジ
スタのゲート電極を共通接続して入力端として用いる場
番、従来ではゲート電極をn接続体を介して接続1なけ
ればならなく、そのために特にコンタクトをとる部分と
して大きな面積を必要とするが、本発明ではこのよりな
hl接続体を弄して接続する必要がなく、為密度化が可
能となる等積々の効果が得られる。
However, the P-type semiconductor layer and the N-type semiconductor layer, which are the channel regions of the N-channel and P-channel type silicon gate field effect transistors, each have a thickness of about 0.7.
61 to shift the threshold voltage of 5V! amount, i.e.
Accelerating voltage is 55 @V Te)' - Su quantity is 9.5
A conductivity conversion layer formed by simultaneously channel-doping boron impurities of approximately 10 a tents/csf is provided.ζ4'1. For tt6, the threshold voltages of N-channel and P-channel silicon gate field effect transistors are +1. The effect that OV l and OV l are simultaneously controlled to be equal to each other can be obtained.Furthermore, in the present invention, the silicon gate electrodes of the N-channel and P-channel silicon gate field effect transistors are formed to have the same conductivity 11. Therefore, when the gate electrodes of N-channel and P-channel silicon gate field effect transistors are commonly connected and used as an input terminal, conventionally the gate electrodes must be connected via an n-connector, and for this reason, especially Although a large area is required as a contacting part, in the present invention, there is no need to manipulate this thicker hl connector for connection, and therefore, a number of effects such as increased density can be obtained.

なお、上記実施例ではNチャンネル及びPチャンネル型
シリコンゲーF電界効果トランジスタのシリコンゲート
電極がリンネ鈍物を含有し九Nllに形成されてなる場
合について説明し九が、例えばNチャンネル及びPチャ
ンネル型シリコンゲート電界効果トランジスタのシリコ
ンゲート電極がボロン不純物を含有し九PIIK形成し
九場合も同様の効果が得られる0即ち、この場合には、
#E1図に示すように、Nチャンネル及びPチャンネル
型シリコンゲート電界効果トランジスタのしきい値電圧
はそれぞれ約1.25 V及び約−0,7BYとなシ、
両方のトランジスタのしきい値電圧を互いに等しい適切
な値、例えば+ 1.OV Iに制御する場合1両方の
トランジスタのしきい値電圧を同じ負の方向に且つ同じ
lO,25Vlだけシフトすればよ−ので、P形半導体
層及びN形半導体層部分にいずれも約0.25Vのしき
い値電圧をシフトするに必要な量、即ち、加速電圧的1
30KeVでドーズ量的9X10  atcmm鷹程度
のリンネ鈍物を同時にチャンネル・ドープして導電率変
換層を形成すればよい。
In the above embodiments, the case where the silicon gate electrode of the N-channel and P-channel type silicon gate F field effect transistor contains Linnean blunt material and is formed in 9Nll is explained. A similar effect can be obtained even when the silicon gate electrode of a silicon gate field effect transistor contains boron impurities and forms 9PIIK, i.e., in this case,
As shown in Figure #E1, the threshold voltages of N-channel and P-channel silicon gate field effect transistors are approximately 1.25 V and approximately -0.7 BY, respectively.
Set the threshold voltages of both transistors to a suitable value equal to each other, for example +1. When controlling to OV I, the threshold voltages of both transistors need to be shifted in the same negative direction and by the same lO, 25Vl, so that both the P-type semiconductor layer and the N-type semiconductor layer have approximately 0.0V. The amount required to shift the threshold voltage of 25V, i.e. 1 in terms of acceleration voltage.
A conductivity conversion layer may be formed by simultaneously doping the channel with Linnean blunt material at a dose of 9×10 atcm at 30 KeV.

また本発明は、各実施例のように、基板として極〈一般
的なシリコン基板を用いた場合に限らず例えばSO8な
どのようにサファイヤ、スピンネル等の絶縁物上に成長
させた半導体薄膜をシリコン基板と同じように用いて形
成してもよく、更には第8図に示すように、上記のよう
な絶縁物基板(70)上KN形半導体層(至)及びP形
半導体層(至)を互いに絶縁体(71)を介して分離形
成し、その半導体層(至)及び@にそれぞれPチャンネ
ル及びNfキャンネルシリコンゲート電界効果トランジ
スタを形成してもよい。
Furthermore, as in each embodiment, the present invention is not limited to the case where a general silicon substrate is used as a substrate; Alternatively, as shown in FIG. 8, a KN-type semiconductor layer (to) and a P-type semiconductor layer (to) may be formed on an insulating substrate (70) as described above. They may be formed separated from each other via an insulator (71), and P channel and Nf channel silicon gate field effect transistors may be formed in the semiconductor layers (to) and @, respectively.

を九前記−実論例において、導電率変換層はゲート酸化
膜を形成し九後に設は九が、これはゲート酸化膜形成前
に設けることも自由であプ、更には多結晶シリコンをプ
ラズマエツチング法でパターニングしているが、これは
窒化膜をマスクとする通常のエツチング法でもってパタ
ーニングすることも自由である。
In the above practical example, the conductivity conversion layer is formed after forming the gate oxide film, but it is also possible to provide it before forming the gate oxide film. Although patterning is performed using an etching method, patterning may also be performed using a normal etching method using a nitride film as a mask.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び継2図はそれでれ従来のシリコンゲ−) 0
MO8−ICの縦断面図及び平面図、ls3図は従来の
シリコンゲートCMO8・ICO基板一度としき込値電
圧との関係を示す図、第4図は通常の4にビットシリコ
ンゲート0M051ランダム・アク1スメモリーのメ毫
す−セル単位を示す回路図、嬉5、トす゛ 図は本発明の一実施例のしv 11  ンゲー) 0M
O8・ICの製造1糧を示す工程断面図、嬉6図線本発
@〇−実施例におけるシリコンゲー) 0MO8・IC
の基板本発明の他の実施例におけるシリコンゲー) 0
MO8ICの基板濃度とし龜い値電圧との関係を示す図
、第8図は本発明の更に他の実施例KjPけるシリコン
ゲー) 0MO8・ICを示す縦断面図である。 図中(3G)、(70)・・・基板、 (至)・・・N
形半導体層。 (至)・・・P形半導体層、0乃・・・ゲート酸化膜、
(至)、(至)・・・導電率変換層、 禰・・・多結晶シリコン(ゲート電極)。 (4)及び50・・・Pチャンネル型シリコンゲート電
界効果トランジスタのソース及ヒトレ イン領域、 61及び□□□・・・Nチャンネル型シリコンゲート電
界効果トランジスタのソース及ヒトレ イン領域、 に)、(至)・・・ソース電極、 (至)、67)・・・ドレイン電極である。 −。 (7317)代理人 弁理士  則 近 憲 佑(81
73)代理人 弁理士  大 胡 典 夫TI図 1′2図 $30 基板411− 1f仝図 l/り図 1、二、1 ′f5図 (シJ rb図 基板濃度− 軍7図 基飯It庚−
Figures 1 and 2 are conventional silicon games) 0
A vertical cross-sectional view and a plan view of MO8-IC, ls3 diagram is a diagram showing the relationship between conventional silicon gate CMO8/ICO substrate and threshold voltage, and Figure 4 is a diagram showing the relationship between conventional silicon gate CMO8/ICO substrate and threshold voltage. 1. The circuit diagram showing each memory cell unit is an example of an embodiment of the present invention.
A cross-sectional diagram of the process showing one step in the production of O8・IC, 6-diagram line Honshu@〇-Silicon game in the example) 0MO8・IC
0
FIG. 8 is a diagram showing the relationship between substrate concentration and high voltage of MO8IC, and FIG. 8 is a longitudinal cross-sectional view showing still another embodiment of the present invention. In the figure (3G), (70)...board, (to)...N
shaped semiconductor layer. (to)...P-type semiconductor layer, 0 to...gate oxide film,
(To), (To)...Conductivity conversion layer, Ne...Polycrystalline silicon (gate electrode). (4) and 50... source and human train region of a P-channel type silicon gate field effect transistor, 61 and □□□... source and human train region of an N-channel type silicon gate field effect transistor, (to), (to) . . . source electrode, (to), 67) . . . drain electrode. −. (7317) Agent Patent Attorney Noriyuki Chika (81)
73) Agent Patent Attorney Oko Nori Geng-

Claims (1)

【特許請求の範囲】 (1)基体表面く形成され九はぼ同一濃度のP形及びN
形の半導体領域と、上記基体表面に上記半導体領域と共
に形成4された基体領域と、上記P形及びN形の半導体
領域に形成され、ゲート電極の導電層をそれぞれ同一と
するNチャンネル及びPチャンネル型シリコンゲート電
界効果トランジスタと、上記Nチャンネル及びPチャン
ネルトランジータのチャンネル領域に形成され先導電車
、変換層とを有することを特徴とする半導体集積回路!
tI置、(2、特許請求の範囲第1項に記載した基体を
低濃度ON形半導体基体とし九ことを特徴とする半導体
集積回路装置。 (3)低濃度中導体基体を使用し九相補形シリコンゲー
ト電界効果トランジスタOIl造方法において上記相補
形シリコンゲート電界効果、トランジスタのスレッシ為
ホールド電圧O合わせ法として、夫々のトランジスタ形
成部に予め高濃度の深いP形インプラ層並びに上記P形
インプラ層と同じ濃度の深いN形インプラ層を形成して
おいてから、同、−導電形の浅いインプラ層をうちスレ
ッシ1ホールド電圧を合わせるようにし九ことを特徴と
する半導体集積回路装置の製造方法。
[Claims] (1) P-type and N-type formed on the surface of the substrate and having the same concentration
a base region formed together with the semiconductor region on the surface of the base body, and an N channel and a P channel formed in the P type and N type semiconductor regions and having the same conductive layer of the gate electrode, respectively. A semiconductor integrated circuit comprising a type silicon gate field effect transistor, and a leading conductor and a conversion layer formed in the channel regions of the N-channel and P-channel transistors!
(2) A semiconductor integrated circuit device characterized in that the substrate according to claim 1 is a low-concentration ON type semiconductor substrate. In the method for manufacturing a silicon gate field effect transistor OIl, as a method for adjusting the hold voltage O for the threshold of the complementary silicon gate field effect transistor, a deep P-type implant layer with a high concentration and the P-type implant layer are formed in advance in each transistor forming area. 9. A method for manufacturing a semiconductor integrated circuit device, comprising: forming a deep N-type implantation layer of the same concentration, and then forming a shallow implantation layer of the same negative conductivity type so as to match the threshold 1 hold voltage.
JP57173319A 1982-10-04 1982-10-04 Semiconductor ic device and manufacture thereof Granted JPS5874069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173319A JPS5874069A (en) 1982-10-04 1982-10-04 Semiconductor ic device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173319A JPS5874069A (en) 1982-10-04 1982-10-04 Semiconductor ic device and manufacture thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7904577A Division JPS5413779A (en) 1977-07-04 1977-07-04 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5874069A true JPS5874069A (en) 1983-05-04
JPH0376029B2 JPH0376029B2 (en) 1991-12-04

Family

ID=15958226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173319A Granted JPS5874069A (en) 1982-10-04 1982-10-04 Semiconductor ic device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5874069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296379A (en) * 1987-05-28 1988-12-02 Sharp Corp Manufacture of complementary thin-film transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279045A (en) * 1975-12-25 1977-07-02 Teikoku Hormone Mfg Co Ltd Method of producing instant grated radish
JPS5413779A (en) * 1977-07-04 1979-02-01 Toshiba Corp Semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279045A (en) * 1975-12-25 1977-07-02 Teikoku Hormone Mfg Co Ltd Method of producing instant grated radish
JPS5413779A (en) * 1977-07-04 1979-02-01 Toshiba Corp Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296379A (en) * 1987-05-28 1988-12-02 Sharp Corp Manufacture of complementary thin-film transistor
JPH065753B2 (en) * 1987-05-28 1994-01-19 シャープ株式会社 Method of manufacturing complementary thin film transistor

Also Published As

Publication number Publication date
JPH0376029B2 (en) 1991-12-04

Similar Documents

Publication Publication Date Title
US4975757A (en) Complementary semiconductor device
KR20030032836A (en) A method to form a self-aligned CMOS inverter using vertical device integration
JPH0226063A (en) Trench transistor structure and its manufacture
JPS5940297B2 (en) Method of manufacturing large-scale integrated circuits
US4455737A (en) Process for and structure of high density VLSI circuits, having self-aligned gates and contacts for FET devices and conducting lines
CN107425057A (en) Semiconductor structure of transistor including being provided with gate electrode area in the substrate and forming method thereof
US6342719B1 (en) Semiconductor device having a double-well structure and method for manufacturing the same
JPS5874069A (en) Semiconductor ic device and manufacture thereof
US6255147B1 (en) Silicon on insulator circuit structure with extra narrow field transistors and method of forming same
KR100266688B1 (en) Method for fabricating high voltage vertical diffused mos transistor
JPS63283155A (en) Semiconductor device and manufacture thereof
KR100282984B1 (en) Shimo transistor of split gate structure using nitric oxide film and its manufacturing method
KR100356825B1 (en) Method for manufacturing mask rom cell
JP2617217B2 (en) Method for manufacturing semiconductor device
JP3918696B2 (en) Manufacturing method of semiconductor device
JPH01164062A (en) Manufacture of semiconductor device
JP2921266B2 (en) Complementary MOS integrated circuit device
JPH0113230B2 (en)
JPH05315557A (en) Manufacture of semiconductor integrated circuit device
KR100793672B1 (en) Semiconductor device and its manufacturing method
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPH01181556A (en) Semiconductor integrated circuit device
JPH03101264A (en) Manufacture of complementary field effect transistor
JPH04109670A (en) Mos type read only semiconductor memory
JPH01248555A (en) Semiconductor device