JPS587070B2 - hand tai souchi no seizou houhou - Google Patents
hand tai souchi no seizou houhouInfo
- Publication number
- JPS587070B2 JPS587070B2 JP10878475A JP10878475A JPS587070B2 JP S587070 B2 JPS587070 B2 JP S587070B2 JP 10878475 A JP10878475 A JP 10878475A JP 10878475 A JP10878475 A JP 10878475A JP S587070 B2 JPS587070 B2 JP S587070B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gate
- region
- insulating layer
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
Description
【発明の詳細な説明】
この発明は、電界効果形半導体装置の製造方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a field effect semiconductor device.
従来、電界効果形半導体装置、特に接合ゲート構造の電
界効果半導体装置としては、電流の流れが主表面に対し
て平行であるが垂直であるかによつて横形あるいは縦形
構造と呼ばれる構造の電界効果半導体装置が製造されて
きた。Conventionally, field effect semiconductor devices, especially field effect semiconductor devices with a junction gate structure, have a structure called a horizontal or vertical structure, depending on whether the current flow is parallel or perpendicular to the main surface. Semiconductor devices have been manufactured.
我々は上記概念と全く異なる平面形構造の電界効果半導
体装置を提案し、製造条件にほとんど依存せず所望の特
性が得られる新しい構造の装置であることが判明した。We proposed a field-effect semiconductor device with a planar structure that is completely different from the above concept, and it turned out that the device has a new structure that can obtain the desired characteristics almost independently of manufacturing conditions.
この発明はこのような点に鑑みてなされたもので平面形
構造の電界効果形半導体装置の新しい製造方法を提供す
るものである。The present invention has been made in view of these points, and provides a new method for manufacturing a field effect semiconductor device having a planar structure.
以下、図面に従ってこの発明の特徴及び製造方法の一例
について説明する。Hereinafter, an example of the features and manufacturing method of the present invention will be explained with reference to the drawings.
なお、第1図及び第2図は従来から周知の横形及び縦形
構造の電界効果形半導体装置である。Incidentally, FIGS. 1 and 2 show conventionally well-known field effect semiconductor devices having horizontal and vertical structures.
ソース3及びドレイン9の間を流れる電流の方向に対し
てゲート電極は垂直に電界がかかるように配置されてい
るが、前者は電流は基板表面に平行に流れ、後者は基板
の垂直方向に流れている。The gate electrode is arranged so that an electric field is applied perpendicularly to the direction of the current flowing between the source 3 and the drain 9, but in the former, the current flows parallel to the substrate surface, and in the latter, the current flows in the direction perpendicular to the substrate. ing.
第3図にこの発明の方法を適用しようとする平面形電界
効果形半導体装置を示す。FIG. 3 shows a planar field effect semiconductor device to which the method of the present invention is applied.
第1図の横形半導体装置との相異点は、横形構造といわ
れる半導体装置では、これまでゲート電極6による電界
は基板1に垂直方向にかかり、したがって電流通路は、
ゲート電極6の下部と基板1ではさまれた預域ニ存在し
ていた。The difference from the lateral semiconductor device shown in FIG.
A deposited region sandwiched between the lower part of the gate electrode 6 and the substrate 1 existed.
しかるに第3図の平面形構造ではゲート電極6,6の電
界の方向も基板1主面に平行であることを特徴とする。However, the planar structure shown in FIG. 3 is characterized in that the direction of the electric field of the gate electrodes 6, 6 is also parallel to the main surface of the substrate 1.
同図において、1は基板、3は単結晶膜、6はゲート領
域、8はソース、9はドレイン、10は分離酸化膜であ
る。In the figure, 1 is a substrate, 3 is a single crystal film, 6 is a gate region, 8 is a source, 9 is a drain, and 10 is an isolation oxide film.
この構造の特徴は、あらかじめマスクによってゲート間
隙をきめておくと、拡散とか気相成長とかの製造工程の
ばらつきによるゲートではさまれた領域(チャンネルと
呼ぶ)の厚みが変化しないという特徴があり所望の特性
が得やすい。A feature of this structure is that if the gate gap is determined in advance using a mask, the thickness of the region sandwiched between the gates (called a channel) will not change due to variations in manufacturing processes such as diffusion or vapor phase growth. It is easy to obtain the characteristics of
それに反し、従来の構造では気相成長層の厚みがばらつ
き、ゲート領域形成のための不純物5拡散のバラツキが
直接チャンネルの変化に結びつき特性変化をもたらすこ
とがよく知られている。On the other hand, in the conventional structure, it is well known that the thickness of the vapor growth layer varies, and the variation in the diffusion of impurity 5 for forming the gate region directly leads to changes in the channel, resulting in changes in characteristics.
この発明の方法による第3図の構造の製造工程の一例を
第4図a〜cに示す断面図によって説明する。An example of the manufacturing process of the structure shown in FIG. 3 by the method of the present invention will be explained with reference to the cross-sectional views shown in FIGS. 4a to 4c.
即ち、まず単結晶の基板1に主として重い元素からなる
膜11を被着させ、選択的にエッチング除去して高速イ
オン防御用マスクとする。That is, first, a film 11 consisting mainly of heavy elements is deposited on a single crystal substrate 1 and selectively removed by etching to form a mask for high-speed ion protection.
なお、膜11は下敷きとして窒化膜11aを敷き、その
上に重い元素、例えば金の蒸着により膜11bを形成し
、選択除去して形成したものであり、基板1の露出面1
a直下がゲート形成領域となるとともに、このゲート形
成領域にはさまれた領域(膜11直下部分)がソース、
ドレイン形成領域となり、それぞれの巾W1,W2は同
程度の長さで、例えば2〜5μmである。The film 11 is formed by laying a nitride film 11a as an underlayer, forming a film 11b on top of the nitride film 11a by vapor deposition of a heavy element, for example, gold, and selectively removing it.
The area directly under a becomes the gate formation region, and the area sandwiched between the gate formation regions (the part directly under the film 11) becomes the source,
This becomes a drain formation region, and the respective widths W1 and W2 are approximately the same length, for example, 2 to 5 μm.
次に、この膜11をマスクとして例えば窒素イオン(酸
素イオンあるいは両者の混合でもよい)を高速のエネル
ギー例えば1 5 0 KeV 〜1 MeVのエネル
ギーで加速し、基板1内に選択注入させる。Next, using this film 11 as a mask, for example, nitrogen ions (or oxygen ions or a mixture of both) are accelerated with high-speed energy, for example, 150 KeV to 1 MeV, and selectively implanted into the substrate 1.
なお、窒素イオンNを200Ke■〜400Ke■のエ
ネルギーで注入すると、基板1内への侵入深さは0.5
〜1μmとなる。Note that when nitrogen ions N are implanted with an energy of 200Ke■ to 400Ke■, the penetration depth into the substrate 1 is 0.5
~1 μm.
(第4図a)膜11にはこの加速イオンを膜11内にと
めるだけの阻止能力をもつ材料と厚さをもたせておく。(FIG. 4a) The membrane 11 is made of a material and thick enough to stop these accelerated ions within the membrane 11.
高速で注入されたイオンは基板内である深さのところに
ピークをもつガウス分布をし、その後の熱処理でシリコ
ンと反応して絶縁層(酸化膜)2を形成する。The ions implanted at high speed have a Gaussian distribution with a peak at a certain depth within the substrate, and react with silicon during subsequent heat treatment to form an insulating layer (oxide film) 2.
このあと基板と同一導電形の不純物、例えばホウ素B
をイオン注入または拡散で絶縁層2に到達する深さまで
導入して絶縁層2上にゲート領域を形成する。After this, impurities of the same conductivity type as the substrate, such as boron B, are added.
A gate region is formed on the insulating layer 2 by ion implantation or diffusion to a depth that reaches the insulating layer 2.
(第4図b)なお、ホウ素B士をイオン注入するに際し
ては、1013〜1015/cm2で100Ke■〜1
5KeVのエネルギで注入すれば良いものである。(Figure 4b) When ion-implanting boron B, 100Ke~1 at 1013~1015/cm2.
It is sufficient to implant with an energy of 5 KeV.
イオン注入後、膜11は除去し、新たに酸化膜等の被膜
を先程の場合とは異なってイオンが注入されていないと
ころのみ被着し、チャンネル形成用マスク12とする。After the ion implantation, the film 11 is removed, and a new film such as an oxide film is deposited only on the areas where ions have not been implanted unlike in the previous case, thereby forming the channel forming mask 12.
このチャンネル形成用マスク12を形成するには、膜1
1の下敷きとしての窒化膜11aおよび重元素、例えば
金の蒸着による膜1lb両者を、あるいは下敷き窒素膜
11aのみを残してそれをマスクとして選択酸化して酸
化膜を形成して、膜11あるいは膜11の窒化膜1lb
を除去する方法が考えられる。To form this channel forming mask 12, the film 1
Either the nitride film 11a as an underlayer of 1 and the film 1lb formed by vapor deposition of a heavy element such as gold are selectively oxidized by leaving only the underlying nitrogen film 11a as a mask to form an oxide film. 11 nitride film 1lb
There are ways to remove this.
次に、この様にして形成された酸化膜12をマスクとし
て、つまりゲート領域ではさまれた部分に、基板1と反
対導電型の不純物、例えばリンPをイオン注入もしくは
拡散により、少なくとも絶縁層2よりも浅くない領域ま
で該不純物を浸入させる。Next, using the oxide film 12 formed in this manner as a mask, in other words, in the portion sandwiched between the gate regions, an impurity having a conductivity type opposite to that of the substrate 1, such as phosphorus P, is ion-implanted or diffused into at least the insulating layer 12. The impurity is allowed to penetrate to a region no shallower than the depth.
第4図C)。Figure 4C).
なお、リンP+をイオン注入する場合には、1011〜
1012/Cdで150Ke■〜200KeVのエネル
ギー注入すれば良いものである。In addition, when ion-implanting phosphorus P+, 1011~
It is sufficient to inject energy of 150 KeV to 200 KeV at 1012/Cd.
その後、ソース及びドレイン領域の形成は通常の方法、
例えば高濃度の基板1と反対導電型の不純物を注入して
実施しうる。After that, the source and drain regions are formed by the usual method.
For example, this can be carried out by implanting a highly concentrated impurity of the conductivity type opposite to that of the substrate 1.
この発明の方法によれば新形半導体装置であるため従来
の半導体装置の製造方法と異なるが特に集積化を容易に
するためにゲート領域を基板と絶縁された構造としなが
らも尚かつ半導体結晶を基板となしうるので、絶縁物基
板を用いるより結晶性のよい領域を動作領域として使用
でき、特性の向上が計れるという利点を有する。The method of the present invention is a new type of semiconductor device, so it is different from the conventional method of manufacturing semiconductor devices, but in order to facilitate integration, the gate region is insulated from the substrate, and the semiconductor crystal is Since it can be used as a substrate, it has the advantage that a region with better crystallinity can be used as an operating region than when using an insulating substrate, and characteristics can be improved.
以上述べたようにこの発明によれば、ゲートの下部分に
イオン注入によって絶縁物を作り、ゲートと基板を絶縁
するようにしたので、製造工程におけるばらつきが少な
い、且つ集積化に適した構造のものが容易に製作できる
ものである。As described above, according to the present invention, an insulator is created under the gate by ion implantation to insulate the gate and the substrate, which reduces variations in the manufacturing process and creates a structure suitable for integration. Something that can be easily manufactured.
第1図及び第2図は従来の電界効果形半導体装置を示す
構造図で、第1図は横形構造、第2図は縦形構造の例で
ある。
第3図は平面図形電界効果形半導体装置を示す斜視図、
第4図はa ” cはこの発明の製造方法の一実施例を
示す半導体装置の断面構造図である。
なお、図中同一符号は同一もしくは相当部分を示す。
1は基板、2は酸化膜(絶縁層)、3は単結結膜、4は
多結晶膜、5は酸化膜、6はゲート、7は空乏層、8は
ソース、9はドレイン、10は分離用酸化膜、11は高
速イオン防御用マスク、12はチャンネル形成用マスク
。1 and 2 are structural diagrams showing conventional field effect semiconductor devices, with FIG. 1 showing an example of a horizontal structure and FIG. 2 showing an example of a vertical structure. FIG. 3 is a perspective view showing a planar field-effect semiconductor device;
4A and 4C are cross-sectional structural diagrams of a semiconductor device showing an embodiment of the manufacturing method of the present invention. Note that the same reference numerals in the figures indicate the same or corresponding parts. 1 is a substrate, 2 is an oxide film (insulating layer), 3 is a single conjunctival membrane, 4 is a polycrystalline film, 5 is an oxide film, 6 is a gate, 7 is a depletion layer, 8 is a source, 9 is a drain, 10 is an isolation oxide film, 11 is a fast ion Protective mask, 12 is a channel forming mask.
Claims (1)
料の被膜を少なくとも1対のゲート形成領域が形成され
る如く選択的に被着する工程、この選択的に被着された
被膜をマスクとして、上記ゲート形成領域に露出面から
窒素酸素あるいは両者の混合されたイオンを高エネルギ
ーで入射せしめ、上記ゲート形成領域において上記基板
内のある深さにピークをもつ分布となるように注入し、
かつその後の熱処理で絶縁層を形成する工程,上記イオ
ンが注入され、その後絶縁層が形成されたゲート形成領
域の上部主表面まで上記基板と同一導電形不純物を導入
してゲート領域を形成する工程、上配ゲート領域ではさ
まれた領域に上記基板と反対導電形とする不純物を導入
せしめ、少くとも上記絶縁層よりは浅くない領域まで該
不純物を侵入させる工程を含む半導体装置の製造方法。1. A step of selectively depositing a film made of a material made of a relatively heavy element on one main surface of a semiconductor substrate so that at least one pair of gate formation regions is formed, and masking this selectively deposited film. Injecting ions of nitrogen, oxygen, or a mixture of both at high energy into the gate formation region from the exposed surface, and implanting the ions in the gate formation region so that the distribution has a peak at a certain depth within the substrate,
and a step of forming an insulating layer through subsequent heat treatment, and a step of forming a gate region by introducing impurities of the same conductivity type as the substrate up to the upper main surface of the gate formation region where the ions are implanted and then the insulating layer is formed. . A method for manufacturing a semiconductor device, including the step of introducing an impurity having a conductivity type opposite to that of the substrate into a region sandwiched between upper gate regions, and causing the impurity to penetrate at least to a region not shallower than the insulating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10878475A JPS587070B2 (en) | 1975-09-08 | 1975-09-08 | hand tai souchi no seizou houhou |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10878475A JPS587070B2 (en) | 1975-09-08 | 1975-09-08 | hand tai souchi no seizou houhou |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5232683A JPS5232683A (en) | 1977-03-12 |
JPS587070B2 true JPS587070B2 (en) | 1983-02-08 |
Family
ID=14493381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10878475A Expired JPS587070B2 (en) | 1975-09-08 | 1975-09-08 | hand tai souchi no seizou houhou |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS587070B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5676575A (en) * | 1979-11-26 | 1981-06-24 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of junction type field effect semiconductor device |
TWI420693B (en) * | 2008-07-17 | 2013-12-21 | Advanced Optoelectronic Tech | Light emitting device and fabrication thereof |
-
1975
- 1975-09-08 JP JP10878475A patent/JPS587070B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5232683A (en) | 1977-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2577330B2 (en) | Method of manufacturing double-sided gate static induction thyristor | |
US5877041A (en) | Self-aligned power field effect transistor in silicon carbide | |
US4481706A (en) | Process for manufacturing integrated bi-polar transistors of very small dimensions | |
US4757026A (en) | Source drain doping technique | |
US4016007A (en) | Method for fabricating a silicon device utilizing ion-implantation and selective oxidation | |
JP3915180B2 (en) | Trench type MOS semiconductor device and manufacturing method thereof | |
US4784965A (en) | Source drain doping technique | |
JPH0640582B2 (en) | Method for manufacturing insulating gate field effect transistor | |
JP2002025931A (en) | Manufacture of semiconductor element | |
JPH05251709A (en) | Mos-fet for power having source-base short-circuitting part and producing method therefor | |
JPS6046831B2 (en) | Manufacturing method of semiconductor device | |
US4261761A (en) | Method of manufacturing sub-micron channel width MOS transistor | |
CA1119733A (en) | Narrow channel mos devices and method of manufacturing | |
JPH0346275A (en) | Manufacture of semiconductor device | |
JP3460639B2 (en) | Silicon carbide semiconductor device and method of manufacturing the same | |
JPS587070B2 (en) | hand tai souchi no seizou houhou | |
RU1830156C (en) | Method of producing semiconducting device | |
JPH02159070A (en) | Semiconductor device and manufacture thereof | |
JPS59119870A (en) | Manufacture of semiconductor device | |
JPS6197975A (en) | Manufacture of semiconductor device | |
JP2544806B2 (en) | Method for manufacturing semiconductor device | |
JPS6136974A (en) | Manufacture of mos semiconductor device | |
JP2024068391A (en) | Manufacturing method of semiconductor device | |
JPS6221264A (en) | Manufacture of semiconductor device | |
JPS5914903B2 (en) | Manufacturing method of field effect transistor using ion implantation method |