JPS5867643A - Preparation of unsaturated acid - Google Patents

Preparation of unsaturated acid

Info

Publication number
JPS5867643A
JPS5867643A JP56164756A JP16475681A JPS5867643A JP S5867643 A JPS5867643 A JP S5867643A JP 56164756 A JP56164756 A JP 56164756A JP 16475681 A JP16475681 A JP 16475681A JP S5867643 A JPS5867643 A JP S5867643A
Authority
JP
Japan
Prior art keywords
catalyst
reaction tube
raw material
air
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56164756A
Other languages
Japanese (ja)
Other versions
JPS6345658B2 (en
Inventor
Masaaki Kato
正明 加藤
Masaki Kamogawa
鴨川 正毅
Toshiharu Nakano
敏治 中野
Jiyunji Furuse
古瀬 順史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP56164756A priority Critical patent/JPS5867643A/en
Publication of JPS5867643A publication Critical patent/JPS5867643A/en
Publication of JPS6345658B2 publication Critical patent/JPS6345658B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain an unsaturated acid in high yield, by calcining a catalyst containing P, Mo and O packed in a reaction tube at a specific temperature while feeding air from one end of the reaction tube, and feeding a raw material gas contianing an unsaturated aldehyde and molecular oxygen from the other end of the reaction tube. CONSTITUTION:An unsaturated aldehyde, e.g. acrolein, in the vapor phase is catalytically oxidized to give the corresponding unsaturated acid, e.g. acrylic acid. In the process, a catalyst containing P, Mo O and an alkali metal, Al, Si, Fe, etc. is packed in a reaction tube, and the catalyst is calcined at 300- 500 deg.C while feeding air or air containing ammonia and/or steam thereto, and a raw material gas is then fed from the other end and reacted in the reaction tube. EFFECT:The catalytic activity is high in the inlet part of the air and gradually reduced to the outlet. However, the raw material gas proceeds in the reverse direction to balance the amount of the reacted raw material in all the catalytic layer.

Description

【発明の詳細な説明】 本発明は不飽和アルデヒドと分子状酸素から相当する不
飽和カルボン酸を製造する方法に閃する◎更に詳しくは
アク胃しンまたはメタクリル酸と分子状酸素を含む混合
ガスを触媒と高温で気相接触酸化させてアクリノ・頷又
はメタクリル酸な製造する方法に関する◎ 従来不飽和アルデヒドの気相接触酸化用触媒として種々
のものが提案されているが1リン1モリブデンおよび酸
素、を含む触媒が比較的すぐれた性能を示している。本
発明者らの一部も特公昭jO−λJ O/ j s同!
0−コsoi亭などでリン、モリブデンおよび酸素を含
む触媒を提案した@ 本発明者らの研究によるとリン、そリブデンおよび酸素
を含む触媒は特に空気流透下焼成した場合、流通しない
で焼成した触媒に比べて着しく高い活性を示す。しかし
ながら、焼成を工業的規模で行なうと空気流通下の焼成
では流通ガス人口部の触媒と出口部触媒に活性の違いを
生じる。即ち、人口部が高活性であれば出口部が低活性
となり、出口部を適当な活性になるようにすると入口部
の触媒は焼成が過剰となって失活してしまい\いずれに
してもこのような不均一な活性を有する触媒は工業的規
模の場合には使用に耐えないものとなることが判づた。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for producing the corresponding unsaturated carboxylic acid from an unsaturated aldehyde and molecular oxygen. ◎ Conventionally, various catalysts have been proposed for the gas phase catalytic oxidation of unsaturated aldehydes, including 1 phosphorus 1 molybdenum and oxygen. , catalysts have shown relatively good performance. Some of the inventors also worked with Tokko ShojO-λJO/js!
0-Kosoi Tei and others proposed a catalyst containing phosphorus, molybdenum, and oxygen. According to research by the present inventors, catalysts containing phosphorus, molybdenum, and oxygen can be fired without circulation, especially when fired under air flow. It exhibits significantly higher activity than other catalysts. However, when calcination is carried out on an industrial scale, a difference in activity occurs between the catalyst in the flowing gas section and the catalyst in the outlet section when the calcination is carried out under air circulation. In other words, if the population part has high activity, the outlet part will have low activity, and if the outlet part is set to have an appropriate activity, the catalyst in the inlet part will be over-calcined and deactivated. It has been found that catalysts with such non-uniform activity cannot be used on an industrial scale.

これは触媒調製時に行なう焼成の際、触媒中より水蒸気
、アンモニア窒素酸化物、その他ガスあるいはガス状物
質が発生するので焼成中の触媒組成物がガス流通の入口
部から出口部にわたって一様でない雰凹気にさらされる
ためである。
This is because water vapor, ammonia nitrogen oxide, and other gases or gaseous substances are generated from the catalyst during calcination during catalyst preparation. This is because they are exposed to concave air.

活性が異なる触媒を工業的に大規模で使用する場合は、
一般的には該触媒粒を混合して触媒粒の集合体としては
見かけ1均−となるような方法が採用されている・との
ような方法で触媒を混合する操作は非常に煩雑であり、
かり旭強度の翁いリン、モリブデンを含む触tI&の場
合には該操作法の採用は実用上不可能である〇本発明者
らはリン、モリブデンおよび酸素を含む触媒を工業的に
使用可能にする方法について研究した結果、触媒を反応
管に充填し1一方の端より空気あるいはアンモニアおよ
び/または水蒸気を含んだ空気を供給しながら300〜
5oocの温度で焼成した後、不飽和アルデヒドと分子
状酸素を含む原料ガスを該反応管の他端より供給する反
応方式を採用することにより、工業的規模で不飽和酸の
製造を高収率で長期にわたって使用可能であることを見
い出し1本発明を完成するに到った0 本発明の方決では触媒を反応管に充填した後1空気を供
給しながら焼成Tるため焼成後の触媒11L 活性は入口部が大きく、出口方向に順次小さい分布とな
っている0不飽和アルデヒドと分子状酸素を含む原料ガ
スは焼成時の空気とは逆方向であるために不飽和アルデ
ヒド濃度の高い原料ガスが比較的低い活性の部分で接触
酸化され1不飽和アルデヒドの濃度が小さくなりつつ順
次高活性部の触媒と接触酸化されることに′なり反応量
が平均化される・このため活性の異なる触媒粒を混合し
て均一化した場合のような高活性な触媒粒が特に厳しい
条件となるようなことはなく1触媒層全域にわたって平
均して反応するため、収率の向上あるいは長期使用に対
して好結果をもたらす〇 本発明の第二の特徴は反応器で焼成することである・反
応器で焼成が可能であることは焼成によって強度が低下
する触媒系では強度の大きい焼成前に充填出来るため触
媒の粉末化が防止され、その効果は非常に大きい・ 本発明の方法では蒸発あるいは分解によって飛散する原
料に帰因する成分を含んでいる未焼成成形触媒を用いる
ことができる。焼成触媒粒子内の拡散抵抗を小さくする
ために、蒸発、分解あるいは焼燃によって除去出来る物
質な添加して成形し・反応器に充填し加熱又は焼成する
ことによって1工業的規模へ拡大した場合の目的生成物
の収率低下を小さくすることもできる〇本発明の対象と
し得る触媒はリン、モリブデンおよび酸素を含む不飽和
アルデヒドを酸化して相当てる不飽和酸製造用の触媒で
ありナトリウム、カリウム、セシウム、リチウムなどの
ア)v 力9金属1マグネシウム、カルシウム、ストロ
ンチウム、バリウム、亜鉛、カドミウムなどの周期律表
第■族金属、アルミニウム、タリウム、インジウム、ケ
イ素、チタン、バナジウムクロム1マンガン、鉄、コバ
ルト、ニッケル、アルミニウム、ヒ素、セレン、ジルコ
ニウム、ニオブ10ジウム、パラジウム、スズ、アンチ
モン1テルル1タンタル、タングステン、銅、銀1鉛な
どから選ばれる711以上の元素を含むものにも適用さ
れる〇 原料物質は水酸化物、酸化物、塩、塩化物、遊離酸のい
ずれでもよい・これらの例としてはリン酸、モリブデン
酸、リンモリブデン酸、モリプデン酸アンモニウム、リ
ンモリブデン酸アンモニウム1三酸化モリブデン等が挙
げられる。
When using catalysts with different activities on an industrial scale,
Generally, a method is adopted in which the catalyst particles are mixed so that the aggregate of the catalyst particles appears to be uniform.The operation of mixing catalysts in this way is extremely complicated. ,
In the case of catalysts containing strong phosphorus and molybdenum, it is practically impossible to adopt this operating method. The present inventors have made it possible to industrially use catalysts containing phosphorus, molybdenum, and oxygen. As a result of research on a method of
By adopting a reaction method in which a raw material gas containing unsaturated aldehyde and molecular oxygen is supplied from the other end of the reaction tube after firing at a temperature of 5 ooc, unsaturated acids can be produced in high yield on an industrial scale. They discovered that the catalyst can be used for a long period of time and completed the present invention.In the method of the present invention, after the catalyst is filled into a reaction tube, it is fired while supplying air. The activity is large at the inlet, and the distribution gradually decreases toward the outlet.The raw material gas containing unsaturated aldehyde and molecular oxygen is in the opposite direction to the air during firing, resulting in a raw material gas with a high concentration of unsaturated aldehyde. is catalytically oxidized in the relatively low activity part, and as the concentration of monounsaturated aldehyde decreases, it is sequentially catalytically oxidized with the catalyst in the high activity part, and the reaction amount is averaged.For this reason, catalysts with different activities Unlike when particles are mixed and homogenized, highly active catalyst particles are not subjected to particularly severe conditions and react evenly over the entire area of one catalyst layer, so it is useful for improving yields and long-term use. Produces good results〇The second feature of the present invention is that it is fired in a reactor.The fact that firing is possible in a reactor is because the catalyst system, whose strength decreases with firing, can be filled before firing, which has a high strength. Powderization of the catalyst is prevented, and the effect is very large. In the method of the present invention, an unfired shaped catalyst containing components attributable to raw materials that are scattered by evaporation or decomposition can be used. In order to reduce the diffusion resistance within the calcined catalyst particles, substances that can be removed by evaporation, decomposition, or combustion are added, molded, filled into a reactor, and heated or calcined. It is also possible to reduce the decrease in the yield of the target product. The catalyst that can be used in the present invention is a catalyst for producing an unsaturated acid by oxidizing an unsaturated aldehyde containing phosphorus, molybdenum, and oxygen. , cesium, lithium, etc. 9 metals 1 Group II metals of the periodic table such as magnesium, calcium, strontium, barium, zinc, cadmium, aluminum, thallium, indium, silicon, titanium, vanadium chromium 1 manganese, iron , cobalt, nickel, aluminum, arsenic, selenium, zirconium, niobium 10 dium, palladium, tin, antimony 1 tellurium 1 tantalum, tungsten, copper, silver 1 lead, etc. 〇The raw material may be hydroxide, oxide, salt, chloride, or free acid. Examples of these are phosphoric acid, molybdic acid, phosphomolybdic acid, ammonium molybdate, ammonium phosphomolybdate monomolybdenum trioxide etc.

vAIIIlI法の一例を挙げると次の通りである0バ
ラモリブデン酸アンモン水溶液にリン酸水継液を添加し
、必要であれば他の元素の化合物、例えばと酸、硝酸銅
、メタバナジン酸アンモンー鹸化ゲルマニウム、コ!イ
ダル〃シリカなど添加した後1加熱、攪拌しながら蒸発
乾固し乾燥する0ケークを粉砕した後成形する@必要と
あれば乾燥粉末あるいはその前のスラリーに担体を加え
てもさしつかえない0更に、ステアリン酸などのように
焼成工程で除去出来る物質を添加することも出来る◎ このようにして得られた触媒を反応−に充填した後1一
方の端より空気を供給しながら焼成する〇 本発明で使用する空気は乾燥空気でも良い〇しかし、反
応器に充填した触媒の充填長が大きく、焼成ガスの出口
側の触媒の活性と入口曽の活性の相違が大きすぎると1
本発明の効果が充分に発揮されないことがあるので、こ
の場合は焼成ガスに5%以下のアンモニアおよび/また
は水蒸気を含む空気を使用すると好ましい結果が得られ
る。
An example of the vAIIII method is as follows: a phosphoric acid water joint solution is added to an aqueous solution of ammonium molybdate, and if necessary, compounds of other elements, such as acid, copper nitrate, ammonium metavanadate and saponified germanium are added. ,Ko! Idal: After adding silica, etc. 1 Heat, evaporate to dryness while stirring and dry. After crushing the cake, mold it. If necessary, a carrier can be added to the dry powder or the slurry before that. 0 In addition, It is also possible to add a substance that can be removed during the calcination process, such as stearic acid. ◎ After filling the catalyst obtained in this way into the reaction chamber, calcination is carried out while supplying air from one end. 〇 In the present invention The air used may be dry air. However, if the packing length of the catalyst packed in the reactor is large and the difference between the activity of the catalyst on the outlet side of the firing gas and the activity on the inlet side is too large, 1
Since the effects of the present invention may not be fully exhibited, in this case, preferable results can be obtained by using air containing 5% or less ammonia and/or water vapor as the firing gas.

空気の量は広い範囲で変えることが出来るが空間速度1
00〜10000  //H1−が適当である@焼成温
度は触媒組成によって若干異なるがsoo N5ooC
,好ましくk13!rON1720Cである。焼成にl
’Tる時間は/ N30時間1とくに7〜30時間が好
ましい。
The amount of air can be varied over a wide range, but the space velocity is 1.
00~10000 //H1- is suitable @The firing temperature varies slightly depending on the catalyst composition, but soo N5ooC
, preferably k13! It is rON1720C. For firing
The time required is preferably 7 to 30 hours.

本発明の方法で不飽和酸を製造するに当って管の他端よ
り供給する。原料ガスとしてはアクロレンまたは一メタ
ク四しンと分子状酸素、例えば空気との混合ガスが使用
される。希釈剤として水蒸気1炭酸ガス等を導入しても
よい。特に水蒸気の存在は不飽和アルデヒド転化率およ
び不飽和酸選択率の向上に好ましい影響を与えるO 原料ガス中′か・不飽和アルデヒド漉度は1NJOvo
1% が適当であり1とくに奸ましくにJ〜が好ましい
。反応圧は常圧から数気圧まで変えることが出来る0反
応器度はコ41IONJ90CとくにJjO〜3jtO
Cが適当である。ガス空間速度は反応圧と反応温度によ
って変るがJOO〜/ Q 000 //Hrが適当で
ある6以下に実施例および比較例を挙げて本発明の方法
を更に詳しく説明する0転化率および趨択率は次の通り
である〇 尚、部は重置部を示す。
When producing an unsaturated acid by the method of the present invention, it is supplied from the other end of the tube. As the raw material gas, a mixed gas of acrolene or monomethane and molecular oxygen, such as air, is used. Water vapor, carbon dioxide gas, etc. may be introduced as a diluent. In particular, the presence of water vapor has a positive effect on improving the unsaturated aldehyde conversion rate and unsaturated acid selectivity.
1% is appropriate, and 1 is particularly preferable. The reaction pressure can be changed from normal pressure to several atmospheres.
C is appropriate. The gas hourly space velocity varies depending on the reaction pressure and reaction temperature, but JOO~/Q000//Hr is suitable.6 Below, examples and comparative examples are given to explain the method of the present invention in more detail. The ratio is as follows. In addition, the part indicates the overlapping part.

実施例 l 117部のメタバナジン酸アンモニウムを加えて溶解し
た後−l!襲リすI!l!794部、次いで二酸化ケル
マ;ウム736部を添加した0更に硝酸カリウムl亭3
部と純水/ 700部に、硝酸第二鉄7741部を純水
1000部にそれぞれ溶解した後1順に加え、混合液を
攪拌しながら蒸発枠面した0/JOC%/A時間乾燥し
た後粉砕した□この粉末に滑剤を混合した後、加圧成形
した〇 供給しながら4’ 07C/Hで、yttocまで昇温
してそのまま1時間保持した。
Example 1 After adding and dissolving 117 parts of ammonium metavanadate -l! Attack I! l! 794 parts of kelma dioxide, then 736 parts of potassium nitrate and 3
7,741 parts of ferric nitrate was dissolved in 1,000 parts of pure water and 700 parts of pure water were added one after another, and the mixture was stirred while drying on the evaporation frame for 0/JOC%/A hours and then pulverized. A lubricant was mixed with this powder, which was then pressure-molded.〇While being supplied, the temperature was raised to yttoc at 4'07C/H and maintained for 1 hour.

焼悴終了後反応器の温度をコクocまで降温した◎容量
でメタクロレン13%、空%4t’Zf弾、水蒸気10
%、窒素a&7%の組成の原料ガスを空間速度100/
/Hrで焼成時の空気供給とは逆の向きに供給した後、
徐々にコ90cm5mした0メタクロレン転化率11/
%、メタクリル緩選択率74亭−、メタクリル酸単流収
率4よ0%の成績が得られた。
After baking, the temperature of the reactor was lowered to OC. ◎Capacity: 13% methachlorene, % empty: 4t'Zf bomb, 10% water vapor.
%, nitrogen a & 7% raw material gas at a space velocity of 100/
/Hr after supplying air in the opposite direction to that during firing,
Gradually increased to 90 cm 5 m 0 methachlorolene conversion rate 11/
%, a slow methacrylic selectivity of 74%, and a single stream yield of methacrylic acid of 4.0%.

比較例 l 実施例1に於いて焼成時の乾燥空気供給と同じ向きに原
料ガスを供給した以外は実施例と同様にした。その結果
原料ガス入口部分に近い触媒層の温度が與常に高くなり
、触媒の劣化および反応器の損傷の恐れがあったので直
ちに反応を中止した〇 比較例 コ 実施例1で得た未焼成触媒を焼成炉で乾m空気を空間速
度/ 000  //Hとなるように供給しなから亭O
C/Hで昇温した後、JIOTCで5時間焼成した0焼
成終了後取り員し反応(至)に充填した。反応温度コ9
0Cで実施例1と同様な原料ガスを供給したOしかし圧
力を増加して応条件にすることが出来なかった0反応器
より触媒を取り出したところ細かく破損した触媒が非常
に多かった□ 実施例 コ バラそリブデン酸アンモニウム、? 0005f、を4
DCの純水72000部に浴解し、これにJrj囁リン
酸/94部と30%に:、酸水溶液l基O部を添加し、
次いでメタバナジン酸アンモニウム317部を投入した
。更に硝酸銅Itよjsと硝酸セシウムコク6部を溶解
した水溶液を加え攪拌しながら1θCで一時間保持後、
鹸化スズ10?部を投入し、得られたスラリーを蒸発乾
固した□1Jocで74時間乾燥後1粉砕し・加圧成形
した。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the raw material gas was supplied in the same direction as the dry air supply during firing in Example 1. As a result, the temperature of the catalyst layer near the raw material gas inlet became constantly high, and there was a risk of deterioration of the catalyst and damage to the reactor, so the reaction was immediately stopped. Comparative Example - Unfired catalyst obtained in Example 1 In the firing furnace, dry air is supplied at a space velocity of /000//H.
After raising the temperature with C/H, it was fired for 5 hours in JIOTC.After the firing was completed, it was taken out and charged into the reaction. Reaction temperature 9
The same raw material gas as in Example 1 was supplied at 0C. However, when the catalyst was taken out from the O reactor which could not be adjusted to the appropriate conditions by increasing the pressure, there were a large number of catalysts that were broken into small pieces □ Example Kobala ammonium tholybdate,? 0005f, 4
It was dissolved in 72,000 parts of DC pure water, and to this was added 94 parts of Jr.
Then, 317 parts of ammonium metavanadate was added. Further, an aqueous solution containing 6 parts of copper nitrate and cesium nitrate was added, and the mixture was kept at 1θC for 1 hour with stirring.
Saponified tin 10? The resulting slurry was evaporated to dryness, dried in □1 Joc for 74 hours, and then pulverized and pressure molded.

得られた成形品を内径コクk 1117m s長さ6m
の反応管に充填し、水蒸気13%含んだ空気を空間速度
/!00//Hで供給しながらJOC/Hの速度で昇温
、JEICで70時間焼成した0焼成終了後降湿して容
量でメタクロレンロ]、空気亭2S襲、水蒸気41よ7
%の原料ガス【空間速度100//Hで焼成時に供給し
た空気と逆方向に供給したところ1反応器度5oocで
メタク四しン転化率Sり1%、メタクリル峻遥択率t1
0%、メタクリル酸収率り@6襲の結果が得られた〇 比較例 J 実施例−に於いて焼成時に供給したガスと同じ向きに原
料ガスを供給した以外は実施例−と同様にした。その結
果メタタ四し゛ン転化111よ0−、メタクリル酸選択
率429%、メタクリル酸単流収率S73%の成績が得
られた・この時の触媒層の温度を測定した結果12図1
に示した〇図/(F’)縦軸は湿度を示し1矢印の方向
が高温側を表わす。横軸41反応管に充填された触媒層
の長さ方向を表わす。A%が触媒充填部の一端・8部が
同他端を表わす0焼成ガスはA−4Bの向きに供給され
、原料ガスも同じA −4B (Fl向きに供給された
・実1IAaは幽゛媒層の湿度・実、@bはその時の反
応器浴温を示している・このように比較例Jの反応方法
で番は原料ガスの入口部分に充填された触媒部で主に反
応しており・、触媒全部が均等に利用されていないこと
がわかる6実施例 J パラモリブデン酸アンモンJooo部をりOCに加湿し
た純水1000部に溶解した後1メタバナジン酸アンモ
ンIJ、1sを投入し溶解した。次いでl!f%リン酸
/ 439.を混合した後4θ%ヒ酸10/都、硝酸銅
/?/部と硝酸カリウム/IIJg、の混合水溶液、二
酸化チタン344部を順に混合する◎りOCの温度で3
時間攪拌しながら保持した後、蒸発乾固した◎得られた
ケークrt/30Cで16時間乾燥した後粉砕して加圧
成形した。
The obtained molded product has an inner diameter of 1117 m and a length of 6 m.
The reaction tube was filled with air containing 13% water vapor at a space velocity of /! The temperature was raised at the rate of JOC/H while being supplied at 00//H, and fired for 70 hours at JEIC.After the firing, it became humid and the volume was increased to 20% by volume.
% raw material gas [When the air was supplied at a space velocity of 100//H in the opposite direction to the air supplied during calcination, the methacrylate conversion rate S was 1% and the methacrylic selectivity was 1% at 5 oocc per reactor.
0%, methacrylic acid yield @ 6 times was obtained 〇Comparative example J The same procedure as in Example- was carried out except that the raw material gas was supplied in the same direction as the gas supplied during firing in Example-. . As a result, results were obtained with methacrylic acid conversion of 111% to 0%, methacrylic acid selectivity of 429%, and methacrylic acid single flow yield of S73%.The temperature of the catalyst layer at this time was measured 12 Figure 1
Figure ○/(F') The vertical axis indicates humidity, and the direction of the arrow 1 indicates the high temperature side. The horizontal axis 41 represents the length direction of the catalyst layer filled in the reaction tube. A% represents one end of the catalyst filling part and 8 parts represents the same end. The firing gas is supplied in the direction of A-4B, and the raw material gas is also the same as A-4B (supplied in the direction of Fl. Actual 1IAa is The humidity of the medium layer and @b indicate the reactor bath temperature at that time.In this way, in the reaction method of Comparative Example J, the reaction is mainly in the catalyst section filled at the inlet of the raw material gas. Example 6: It can be seen that the entire catalyst is not used equally. J: After dissolving part of ammonium paramolybdate in 1000 parts of pure water humidified with OC, 1 s of ammonium metavanadate was added and dissolved. Next, after mixing l!f% phosphoric acid/439., 4θ% arsenic acid 10/part, a mixed aqueous solution of copper nitrate/?/part and potassium nitrate/IIJg, and 344 parts titanium dioxide were mixed in order. at a temperature of 3
After holding for an hour with stirring, the resulting cake was evaporated to dryness. The resulting cake was dried at rt/30C for 16 hours, then ground and pressure molded.

得られた成形品を内径J′X!I!I/m、長さ6mの
反応管に充填し乾燥空気を空間速度s、o o 。
The inner diameter of the obtained molded product is J′X! I! I/m, a reaction tube with a length of 6 m was filled with dry air at a space velocity of s, o o.

//Hrで供給しながら/ IC/Hの速度でコjOC
まで昇温し、た後コ時間保持した◎次いで氷島%aq%
及びアンモニアaO4%I含んだ空気を空間速度/ 0
00  //Hr  で供給しながら JjC/Hrの
速度で昇温%J l OCで11時間焼成した6 コク0Cに降温して容量で月1、空気*’zg外、水蒸
気亭より襲の組成の原料ガスを空間速度II 00  
//Hr  で焼成時に供給した空気と逆方向に供給し
ながら徐々に昇湿して29kCO)温度でメタクロレン
転化率S4り襲、メタタリル酸選択率SユS%1メタク
リルsm率ylz外の値が得られた□引き続き反応を継
続してtao時nlJ後に、メタク四しンに化率zAJ
%、メタクリル醗選択率f 41%1同収率114%が
得られた□ 実施例 亭 バラモリブデン酸アンモン5oooHeりOCに加温し
た純水zoooW1に溶解した0次いでzs%リン酸/
43部を混合した後、40%ヒ酸水溶液/41部を添加
した0更に硝酸銅AJE参部、硝酸タリウム//J%、
硝鹸゛カリウムク16部および硝酸セシウムlユl邪の
混合水溶液を添加した後1メタバナジン酸アンモン3J
L15%次いで三酸化アンチモン*1J8ISを投入し
て攪拌しながら蒸発乾固した〇 得られたケークを粉砕してシリカ−アルミナ担体に相持
した0得られた触媒を長さJmの反応管に充填した後a
S%の水蒸気を含む空気を空間速度900  //Hr
で供給しながらコ!rc/Hrで昇温53110Cで1
0時間焼成した・反応温度を3−〇〇としたはかは実施
例3と同じように反゛応したところメタク四しン転化率
!10%%メタクリル酸過択率S五0%、メタクリル酸
収率7賃l襲が得られた◎ 実施例 S バラモリブデン鹸アンモン3000部をりOCに加温し
た純水1000部に溶解したvI!%S!襲リン醗/4
すW&、40襲ヒ酸コ0/部を添加した□充分に攪拌し
た後1更に硝酸銅ZS、Z部と硝酸カリウム714部の
水溶液を添加して攪拌しながら蒸発乾固した口得られた
ケークを粉砕し滑剤を添加混合した後、加圧成形し′た
。得られた成形品を内径コ’2 j Wv’m s長さ
jmの反応管に充填して乾燥空気を空間速度JOOOy
5.。
//while supplying at Hr/ at the rate of IC/H
◎Then, ice island% aq%
and air containing ammonia aO4%I at space velocity/0
00//Hr while increasing the temperature at a rate of JjC/Hr %J l Baked in OC for 11 hours, cooling down to 0C, volume of 1 month, air*'zg outside, and the composition of the attack from the steam room. Space velocity of raw material gas II 00
//Hr While supplying air in the opposite direction to the air supplied during calcination, the humidity was gradually raised to 29 kCO). At a temperature of The obtained □Continue the reaction and after tao time nlJ, the conversion rate to methacine zAJ
%, methacrylic acid selectivity f 41% 1 Same yield 114% was obtained □ Example Ammonium molybdate 5oooHe and 0 then zs% phosphoric acid dissolved in pure water zoooW1 heated to OC
After mixing 43 parts, 40% arsenic acid aqueous solution/41 parts was added.
After adding a mixed aqueous solution of 16 parts of potassium salt and cesium nitrate, 3 J of ammonium metavanadate was added.
L15% Then, antimony trioxide*1J8IS was added and evaporated to dryness while stirring.The resulting cake was pulverized and supported on a silica-alumina carrier.The resulting catalyst was packed into a reaction tube with a length of Jm. After a
Air containing S% water vapor at a space velocity of 900 //Hr
While supplying it! 1 at 53110C with rc/Hr
When the reaction was carried out in the same manner as in Example 3 and the reaction temperature was 3-00 after calcination for 0 hours, the conversion rate of methacrysene was obtained! A 10%% methacrylic acid selectivity S of 50% and a methacrylic acid yield of 7% were obtained ◎ Example S VI in which 3000 parts of rose molybdenum and ammonium was dissolved in 1000 parts of pure water heated to OC ! %S! Assault/4
Added 40 parts of arsenic acid and stirred thoroughly. 1. Added an aqueous solution of copper nitrate ZS, part Z and 714 parts of potassium nitrate and evaporated to dryness while stirring. The resulting cake After pulverizing and mixing with a lubricant, the material was press-molded. The obtained molded product was filled into a reaction tube with an inner diameter of 2.
5. .

で供給しながら/ OC/Hr  の昇温速度で一フ0
Cまで昇湿し参時間保持した。次いで乾燥空気の供給を
空間速度/ j 00  //Hrに減じて昇温速度コ
!tU/HでJlOCに昇温1同i1度で8時間焼成し
た0反応湿度を一1OCとしたほかは実施例Iと同じよ
うに反応したところ、メタク’Oレン転化率tよi%s
メタクリルea遣択率g&1%、同収率り30%が得ら
れた。
While supplying at
The humidity was raised to C and held for an hour. Then, the supply of drying air is reduced to the space velocity / j 00 //Hr and the heating rate is reduced! The reaction was carried out in the same manner as in Example I, except that the temperature was raised to JlOC at tU/H and the temperature was increased to 1°C for 8 hours.
A methacrylic ea selection rate of g&1% and a yield of 30% were obtained.

実施例 4 パラモリブデン酸アンモン!00都を純水iooomに
溶解した後メタバナジン酸アンモン4ム一部を投入溶解
した・更に硝酸第二鉄qよ4I81Sの水溶液を添加1
次に水ガラス3.14部を添加した・攪拌しながら速や
かに蒸発乾固に担持した□ 得られた触媒を内径コ2 j m/m %長さ3mの反
応管に充填した後・水蒸気aOZ%を誉む空気を空間速
度コ00//Hで通じながら1゜r/Hの昇温速度で3
40cまで昇温−%一時間保持した。
Example 4 Ammonium paramolybdate! After dissolving 00 in pure water iooom, add a portion of ammonium metavanadate and dissolve it.Furthermore, add an aqueous solution of ferric nitrate qyo4I81S1
Next, 3.14 parts of water glass was added. The catalyst was quickly evaporated to dryness while stirring. After filling the obtained catalyst into a reaction tube with an inner diameter of 2 j m/m% and a length of 3 m, water vapor aOZ was added. % at a heating rate of 1°r/H while passing air at a space velocity of 00//H.
The temperature was raised to 40°C and maintained for 1 hour.

以下1実施例Sと同じようにして反応した・但し、メタ
ク四しンの代りにアク四しンを使用し1反応温度はコ4
3C1空聞速度は200//Hとした0 その結果、ア
ク四しン転化率939%、アクリル酸選択率Sム01&
、アクリル鯛収率watt%の数値が得られた◎
The following reaction was carried out in the same manner as in Example 1. However, methacrysene was used instead of methacrysene, and the reaction temperature was
The aerial velocity of 3C1 was set to 200//H. As a result, the acrylic acid conversion rate was 939%, and the acrylic acid selectivity was Smu01&
, the numerical value of acrylic sea bream yield watt% was obtained◎

【図面の簡単な説明】[Brief explanation of the drawing]

図面は比較例Jの反応における触媒層の温度分布を示し
たもので縦軸は温度1横軸は触媒層の長さを表わすOa
は触媒層の温度%bは反応器浴湿を示す0
The drawing shows the temperature distribution of the catalyst layer in the reaction of Comparative Example J, where the vertical axis is temperature and the horizontal axis is Oa, which represents the length of the catalyst layer.
is the temperature of the catalyst layer %b is the reactor bath humidity 0

Claims (1)

【特許請求の範囲】 (1)不飽和アルデヒドを気相接触酸化して相当する不
飽和酸を製造するに際し、リン、モリブデンおよび#I
嵩を含む触媒を反応管に充填し、−万の端より空気を供
給しながら300〜!r00cで焼成した後1不飽和ア
ルデヒドと分子状酸素を含む原料ガスを該反応管の他端
より供給することを特徴とする不飽和酸σ1製造法〇 (コ) 焼成の際に供給する空気がアンモニアおよび/
または水蒸気を含むものであることf:特許とする特許
請求の範囲第1項の製造法。 (3)  触媒がリン、モリブデン%酸素およびアルカ
リ金属、周期律表第■族金属、アル1ニウム、タリウム
、インジウム、ケイ素、チタン、バナジウム、り四ム、
マンガン、鉄、コバルト、ニッケル、ゲルマニウム、ヒ
素、セレン、ジルコニウム、ニオブ、四ジウム、パラジ
ウム、スズ、アンチモン、テルル、タンタル1タングス
テン、銅1銀、鉛から選ばれる少く゛とも1種とからな
る触媒である特許請求の範囲第1項又は第一項記載の製
造法O
[Claims] (1) When producing a corresponding unsaturated acid by vapor phase catalytic oxidation of an unsaturated aldehyde, phosphorus, molybdenum and #I
Fill the reaction tube with a bulky catalyst and supply air from the end of the tube to 300~! A method for producing an unsaturated acid σ1 characterized by supplying a raw material gas containing an unsaturated aldehyde and molecular oxygen from the other end of the reaction tube after firing at r00c. Ammonia and/or
or containing water vapor f: The manufacturing method according to claim 1. (3) The catalyst is phosphorus, molybdenum% oxygen and alkali metals, metals from group Ⅰ of the periodic table, aluminum, thallium, indium, silicon, titanium, vanadium, lithium,
A catalyst consisting of at least one selected from manganese, iron, cobalt, nickel, germanium, arsenic, selenium, zirconium, niobium, tetradium, palladium, tin, antimony, tellurium, tantalum, one tungsten, one copper, one silver, and lead. The manufacturing method O according to claim 1 or 1, which is
JP56164756A 1981-10-15 1981-10-15 Preparation of unsaturated acid Granted JPS5867643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164756A JPS5867643A (en) 1981-10-15 1981-10-15 Preparation of unsaturated acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164756A JPS5867643A (en) 1981-10-15 1981-10-15 Preparation of unsaturated acid

Publications (2)

Publication Number Publication Date
JPS5867643A true JPS5867643A (en) 1983-04-22
JPS6345658B2 JPS6345658B2 (en) 1988-09-12

Family

ID=15799319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164756A Granted JPS5867643A (en) 1981-10-15 1981-10-15 Preparation of unsaturated acid

Country Status (1)

Country Link
JP (1) JPS5867643A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986001797A1 (en) * 1984-09-20 1986-03-27 Mitsubishi Rayon Co., Ltd. Process for producing unsaturated carboxylic acids
JPS62153243A (en) * 1985-12-27 1987-07-08 Mitsubishi Rayon Co Ltd Production of methacrylic acid
WO1995011081A1 (en) * 1993-10-21 1995-04-27 Basf Aktiengesellschaft METHOD FOR THE PRODUCTION OF CATALYTICALLY ACTIVE MULTI-METAL OXIDE COMPOSITIONS CONTAINING THE ELEMENTS V AND Mo IN OXIDE FORM AS THEIR MAIN COMPONENTS
KR20200026933A (en) 2017-07-10 2020-03-11 미쯔비시 케미컬 주식회사 Method for producing catalyst, Method for producing unsaturated carboxylic acid, Method for producing unsaturated aldehyde and unsaturated carboxylic acid, and Method for producing unsaturated carboxylic ester

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986001797A1 (en) * 1984-09-20 1986-03-27 Mitsubishi Rayon Co., Ltd. Process for producing unsaturated carboxylic acids
JPS62153243A (en) * 1985-12-27 1987-07-08 Mitsubishi Rayon Co Ltd Production of methacrylic acid
WO1995011081A1 (en) * 1993-10-21 1995-04-27 Basf Aktiengesellschaft METHOD FOR THE PRODUCTION OF CATALYTICALLY ACTIVE MULTI-METAL OXIDE COMPOSITIONS CONTAINING THE ELEMENTS V AND Mo IN OXIDE FORM AS THEIR MAIN COMPONENTS
KR20200026933A (en) 2017-07-10 2020-03-11 미쯔비시 케미컬 주식회사 Method for producing catalyst, Method for producing unsaturated carboxylic acid, Method for producing unsaturated aldehyde and unsaturated carboxylic acid, and Method for producing unsaturated carboxylic ester

Also Published As

Publication number Publication date
JPS6345658B2 (en) 1988-09-12

Similar Documents

Publication Publication Date Title
JP3883755B2 (en) Catalyst production method
US7132384B2 (en) Process for producing composite oxide catalyst
JP2011074085A (en) Method for catalytic gas-phase oxidation of propene to acrylic acid
JPH08299797A (en) Catalyst and its production
JP2010515564A (en) Method for producing multi-element oxide material containing iron element in oxidized form
JP2008212779A (en) Method for producing molybdenum-, bismuth-, iron-, and silica-containing composite oxide catalyst
WO2004004900A1 (en) Process for producing catalysts for the production of methacrylic acid
CN100393406C (en) Method for the thermal treatment of an active catalytic mass
JPS5867643A (en) Preparation of unsaturated acid
JP2742413B2 (en) Catalyst for synthesizing methacrolein and its production method with excellent reproducibility
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JP2005169311A (en) Production method for complex oxide catalyst
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP4745653B2 (en) Method for producing methacrylic acid
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP4951230B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst
JP2004268027A (en) Method of producing methacrylic acid production catalyst
JP2903317B2 (en) Preparation of molybdenum-containing ammoxidation catalyst
JPH09299802A (en) Manufacture of oxidation catalyst and preparation of methacrylic acid
JP4606897B2 (en) Method for producing composite oxide catalyst for fluidized bed ammoxidation process
JPH05253480A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH0215255B2 (en)