JP4606897B2 - Method for producing composite oxide catalyst for fluidized bed ammoxidation process - Google Patents

Method for producing composite oxide catalyst for fluidized bed ammoxidation process Download PDF

Info

Publication number
JP4606897B2
JP4606897B2 JP2005037987A JP2005037987A JP4606897B2 JP 4606897 B2 JP4606897 B2 JP 4606897B2 JP 2005037987 A JP2005037987 A JP 2005037987A JP 2005037987 A JP2005037987 A JP 2005037987A JP 4606897 B2 JP4606897 B2 JP 4606897B2
Authority
JP
Japan
Prior art keywords
mass
particle size
particles
catalyst
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005037987A
Other languages
Japanese (ja)
Other versions
JP2006223941A (en
Inventor
元男 柳田
聖午 渡辺
浩一 水谷
健一 宮氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Nitrix Co Ltd
Original Assignee
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Nitrix Co Ltd filed Critical Dia Nitrix Co Ltd
Priority to JP2005037987A priority Critical patent/JP4606897B2/en
Publication of JP2006223941A publication Critical patent/JP2006223941A/en
Application granted granted Critical
Publication of JP4606897B2 publication Critical patent/JP4606897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アクリロニトリル等の製造に用いられる流動層アンモ酸化プロセスにおいて使用される複合酸化物触媒の製造方法に関する。   The present invention relates to a method for producing a composite oxide catalyst used in a fluidized bed ammoxidation process used for producing acrylonitrile and the like.

アンモ酸化プロセスは、プロピレン等のオレフィンや、パラフィン、アルキル置換芳香族化合物等をアンモニアおよび分子状酸素(空気)とともに触媒と接触(気相接触)させ、反応させる方法で、現在、アクリロニトリル、メタクリロニトリル等のニトリル類の工業的合成に広く用いられている。
アンモ酸化プロセスに用いる触媒としては、これまで数多くの提案がされており、主に、2種以上の元素の酸化物を含む複合酸化物触媒が用いられている。たとえば特許文献1〜6等には、モリブデンおよびビスマスを主成分とする複合酸化物触媒が開示されている。これらの提案は、主に活性、選択性等のいわゆる触媒特性を向上させるための技術に関するものであり、主にアクリロニトリル収率の高い触媒を得るために、複合酸化物触媒の構成元素および組成比を規定したものである。
The ammoxidation process is a method in which olefins such as propylene, paraffins, alkyl-substituted aromatic compounds, etc. are brought into contact with a catalyst (gas phase contact) together with ammonia and molecular oxygen (air) and reacted. Currently, acrylonitrile, methacrylo It is widely used for industrial synthesis of nitriles such as nitriles.
As a catalyst used for the ammoxidation process, many proposals have been made so far, and a composite oxide catalyst containing oxides of two or more elements is mainly used. For example, Patent Documents 1 to 6 disclose composite oxide catalysts mainly composed of molybdenum and bismuth. These proposals mainly relate to technologies for improving so-called catalytic properties such as activity and selectivity. Mainly, in order to obtain a catalyst with a high acrylonitrile yield, the constituent elements and composition ratio of the composite oxide catalyst Is specified.

アンモ酸化プロセスの1つとして、装置内で粒子状の触媒(触媒粒子)を流動化状態として反応を行う流動層(流動床)アンモ酸化プロセスが知られている。
流動層アンモ酸化プロセスでは、反応中の触媒ロスを抑制するために、または触媒粒子の良好な流動化状態を実現するために、触媒粒子の粒径について様々な提案がなされている。たとえば特許文献7には、アンチモンを主成分とする流動層アンモ酸化反応用触媒の製造方法において、20μm未満の粒径を有する粒子を5質量%以下に、また200μm以上の粒径を有する粒子を15質量%以下に調整する方法が開示されている。また、特許文献8には、目的とするニトリル類を高い収率で得ることができ、かつ触媒ロスを小さくできる方法として、5〜150μmの粒径を有する粒子の含有率が95質量%以上であり、かつ20〜30μmの粒径を有する粒子の含有率が3〜30質量%である触媒が開示されている。また、特許文献9には、触媒粒子の粒径を調整する際に発生する所望粒径範囲以外の粒子を無駄なく再利用できる方法として、モリブデン−ビスマス−鉄含有金属酸化物流動層触媒の製法において、触媒成分を含有するスラリーを噴霧乾燥して触媒粒子を得る工程で発生した所望粒径範囲以外の乾燥品を粉砕し、噴霧乾燥前のスラリーに混合したのち、再度噴霧乾燥する方法が提案されている。
これらの提案は、粒径の小さな触媒粒子、特に20μm未満の粒径を有する粒子はその質量が小さいため、反応ガスに同伴されて反応器外へ飛散し易く、触媒反応に有効に使われ難いこと、および粒径の大きな触媒粒子、特に150μm以上または200μm以上の粒径を有する粒子はその質量が大きいため、反応器内で流動し難く、触媒反応に有効に使われ難いという知見に基づいたものである。
これらの提案においては、後工程において、分級等により粒径調整して所望の粒径範囲以外の粒子を分離することにより、所望の粒径範囲を有する触媒粒子を得ている。
特公昭61−13701号公報 特開昭59−204163号公報 特開平1−228950号公報 特開平10−43595号公報 特開平10−156185号公報 米国特許第5688739号明細書 特開昭52−140490号公報 特開2002−233768号公報 特開2001−29788号公報
As one of the ammoxidation processes, there is known a fluidized bed (fluidized bed) ammoxidation process in which a particulate catalyst (catalyst particles) is reacted in a fluidized state in an apparatus.
In the fluidized bed ammoxidation process, various proposals have been made regarding the particle size of the catalyst particles in order to suppress catalyst loss during the reaction or to achieve a good fluidized state of the catalyst particles. For example, Patent Document 7 discloses that in a method for producing a fluidized bed ammoxidation reaction catalyst containing antimony as a main component, particles having a particle size of less than 20 μm are 5 mass% or less, and particles having a particle size of 200 μm or more. A method of adjusting to 15% by mass or less is disclosed. Patent Document 8 discloses a method in which the target nitriles can be obtained in a high yield and the catalyst loss can be reduced, and the content of particles having a particle size of 5 to 150 μm is 95% by mass or more. There is disclosed a catalyst in which the content of particles having a particle diameter of 20 to 30 μm is 3 to 30% by mass. Patent Document 9 discloses a method for producing a molybdenum-bismuth-iron-containing metal oxide fluidized bed catalyst as a method for reusing particles outside the desired particle size range generated when adjusting the particle size of the catalyst particles without waste. Proposed a method of spray drying the slurry containing the catalyst component to pulverize the dried product outside the desired particle size range generated in the step of obtaining catalyst particles, mixing it with the slurry before spray drying, and then spray drying again Has been.
According to these proposals, catalyst particles having a small particle size, particularly particles having a particle size of less than 20 μm, have a small mass, so that they are easily entrained by the reaction gas and scattered outside the reactor, and are difficult to be used effectively for the catalytic reaction. In addition, the catalyst particles having a large particle diameter, particularly those having a particle diameter of 150 μm or more or 200 μm or more, have a large mass, so that they do not flow easily in the reactor and are difficult to be used effectively for the catalytic reaction. Is.
In these proposals, catalyst particles having a desired particle size range are obtained by adjusting the particle size by classification or the like and separating particles outside the desired particle size range in a subsequent step.
Japanese Patent Publication No. 61-13701 JP 59-204163 A JP-A-1-228950 JP-A-10-43595 JP-A-10-156185 US Pat. No. 5,688,739 Japanese Patent Laid-Open No. 52-140490 JP 2002-233768 A JP 2001-29788 A

流動床アンモ酸化プロセスにおける触媒粒子の流動化状態に着目した場合には、これらの方法は確かに有効である。しかし、触媒製造時に発生する所望粒径範囲以外の触媒粒子、特に20μm未満の粒径を有する触媒粒子を分離する工程や、分離した触媒粒子を再利用する工程を必要とすることは、触媒製造における歩留まりの悪化や工程数の増加により触媒製造コストの増加を招くことから、経済性の面から改善が求められている。   These methods are certainly effective when focusing on the fluidized state of the catalyst particles in the fluidized bed ammoxidation process. However, it is necessary to separate the catalyst particles outside the desired particle size range generated during catalyst production, particularly the catalyst particles having a particle size of less than 20 μm, and the step of reusing the separated catalyst particles. Therefore, improvement of the production cost is demanded from the viewpoint of an increase in catalyst production cost due to a deterioration in yield and an increase in the number of processes.

本発明は、前記課題を解決するためになされたものであって、アクリロニトリル製造等に用いられている流動層アンモ酸化プロセスにおいて使用される複合酸化物触媒を、流動層アンモ酸化プロセス用として好ましい粒径分布で、特に粒径20μm未満の粒子の含有率を低減させて製造することができ、かつ経済的にも有利な流動層アンモ酸化プロセス用複合酸化物触媒の製造方法の提供を目的とする。   The present invention has been made to solve the above-mentioned problems, and a composite oxide catalyst used in a fluidized bed ammoxidation process used for acrylonitrile production or the like is preferably used for a fluidized bed ammoxidation process. An object of the present invention is to provide a method for producing a composite oxide catalyst for a fluidized bed ammoxidation process that can be produced by reducing the content of particles having a diameter distribution, particularly less than 20 μm, and that is economically advantageous. .

本発明者らは、まず、触媒成分のすべての原料を含有するスラリーを噴霧乾燥して得られる粒子の粒径分布をレーザー回折法により測定したときに、40〜100μmの範囲に頂点を有する大きな粒径分布のピークとは別に、20μm未満の範囲に頂点を有する小さな粒径分布のピークが存在することに着目した。理論的には、後者のピークの出現は不自然であることから、噴霧乾燥工程において噴霧口から噴霧されたスラリー液滴が乾燥するまでにたどる履歴(接触、衝突等)により、液滴が一部微細化され、後者のピークを出現させているものと考察した。この考察に基づき、さらに検討を行った結果、噴霧乾燥の際に用いる各種条件のうち、前記スラリーを噴霧乾燥機乾燥室内に噴霧吐出する際の噴霧吐出速度と、該噴霧乾燥機乾燥室内の有効断面積1m当たりの風量とを特定範囲内に調節することにより上記課題が解決されることを見出し、本発明に到達した。
すなわち、本発明は、流動層アンモ酸化プロセスにおいて使用される複合酸化物触媒の製造方法であって、触媒成分のすべての原料を含有するスラリーを噴霧乾燥する工程を有し、前記スラリーを噴霧乾燥機乾燥室内に噴霧吐出する噴霧吐出速度が50〜110m/sであり、かつ該噴霧乾燥機乾燥室内の有効断面積1m当たりの風量が400〜600m/hであることを特徴とする流動層アンモ酸化プロセス用複合酸化物触媒の製造方法である。
First, when the particle size distribution of particles obtained by spray-drying a slurry containing all the raw materials of the catalyst component is measured by a laser diffraction method, the present inventors have a large apex in the range of 40 to 100 μm. In addition to the particle size distribution peak, attention was paid to the presence of a small particle size distribution peak having a peak in the range of less than 20 μm. Theoretically, the appearance of the latter peak is unnatural, so that the droplets are identified by the history (contact, collision, etc.) of the slurry droplets sprayed from the spray port in the spray drying process. It was considered that the latter peak was developed and the latter peak appeared. As a result of further investigation based on this consideration, among various conditions used for spray drying, the spray discharge speed when spraying the slurry into the spray dryer drying chamber, and the effectiveness in the spray dryer drying chamber The present inventors have found that the above problem can be solved by adjusting the air volume per 1 m 2 of the cross-sectional area within a specific range, and have reached the present invention.
That is, the present invention is a method for producing a composite oxide catalyst used in a fluidized bed ammoxidation process, comprising a step of spray drying a slurry containing all raw materials of a catalyst component, and the slurry is spray dried. A flow characterized by having a spray discharge speed of 50 to 110 m / s for spraying and discharging into the dryer drying chamber, and an air volume per 1 m 2 of effective sectional area in the spray dryer drying chamber of 400 to 600 m 3 / h. It is a manufacturing method of the composite oxide catalyst for a layer ammoxidation process.

本発明の製造方法によれば、流動層アンモ酸化プロセス用として好ましい粒径分布を有する複合酸化物触媒、すなわち20〜120μmの粒径を有する粒子の割合が85質量%以上であり、20〜44μmの粒径を有する粒子の割合が25〜40質量%であり、かつ20μm未満の粒径を有する粒子の割合が5質量%以下である複合酸化物触媒を、容易に製造できる。
そのため、改めて分級等による粒径調整操作を行う必要がなく、工業用流動層反応装置にて、触媒ロスの少ない安定運転が実現できる。
According to the production method of the present invention, the ratio of the composite oxide catalyst having a preferable particle size distribution for the fluidized bed ammoxidation process, that is, the particle having a particle size of 20 to 120 μm is 85% by mass or more, and 20 to 44 μm. A composite oxide catalyst in which the proportion of particles having a particle size of 25 to 40% by mass and the proportion of particles having a particle size of less than 20 μm is 5% by mass or less can be easily produced.
Therefore, it is not necessary to perform a particle size adjustment operation again by classification or the like, and a stable operation with little catalyst loss can be realized in an industrial fluidized bed reactor.

以下、本発明をより詳細に説明する。
本発明は、流動層アンモ酸化プロセスにおいて使用される複合酸化物触媒の製造方法であって、触媒成分のすべての原料を含有するスラリーを噴霧乾燥する工程を有し、前記スラリーを噴霧乾燥機乾燥室内に噴霧吐出する噴霧吐出速度が50〜110m/sであり、かつ該噴霧乾燥機乾燥室内の有効断面積1m当たりの風量が400〜600m/hであることを要件とし、これらの構成要因のうちのいずれかが欠けた場合には本発明の目的を達成することはできない。
上記本発明の効果が発現する機構については未だ明らかではないが、噴霧乾燥工程において、噴霧口から噴霧乾燥機乾燥室内に噴霧されたスラリー液滴のうち、乾燥するまでにたどる接触や衝突等の履歴によって微細化される割合が、スラリーの噴霧吐出速度および噴霧乾燥機乾燥室内の有効断面積1m当たりの風量を特定範囲に調節することにより、著しく低減されたことに起因していると考えられる。
Hereinafter, the present invention will be described in more detail.
The present invention is a method for producing a composite oxide catalyst used in a fluidized bed ammoxidation process, comprising a step of spray drying a slurry containing all raw materials of the catalyst component, and the slurry is spray dryer dried The spray discharge speed for spraying and discharging into the room is 50 to 110 m / s, and the air volume per 1 m 2 of the effective sectional area in the spray dryer drying chamber is 400 to 600 m 3 / h. If any of the factors is missing, the object of the present invention cannot be achieved.
The mechanism of the effect of the present invention is not yet clear, but in the spray drying process, out of the slurry droplets sprayed from the spray port into the spray dryer drying chamber, such as contact or collision followed until drying. It is considered that the ratio of refinement due to the history is significantly reduced by adjusting the slurry spray discharge speed and the air volume per 1 m 2 of the effective sectional area in the spray dryer drying chamber to a specific range. It is done.

本発明の製造方法は、たとえば以下のようにして行うことができる。
まず、触媒成分のすべての原料を含有するスラリーを調製するスラリー調製工程を行う。
ここで、「触媒成分」とは、当該複合酸化物触媒を構成する酸素以外の元素を意味し、本発明において製造される流動層アンモ酸化プロセス用複合酸化物触媒は、触媒成分として、少なくとも2種の元素を含有するものである。触媒成分としては、特に限定されず、従来流動層アンモ酸化プロセス用の触媒に含有されている元素から任意に選択できる。
The production method of the present invention can be performed, for example, as follows.
First, a slurry preparation step for preparing a slurry containing all the raw materials of the catalyst component is performed.
Here, the “catalyst component” means an element other than oxygen constituting the composite oxide catalyst, and the composite oxide catalyst for a fluidized bed ammoxidation process produced in the present invention has at least 2 as a catalyst component. It contains seed elements. It does not specifically limit as a catalyst component, It can select arbitrarily from the elements contained in the catalyst for conventional fluidized bed ammoxidation processes.

スラリーの調製に用いる触媒成分の原料としては、特に限定はなく、一般的に複合酸化物触媒の製造に用いられている原料の中から、製造しようとする流動層アンモ酸化プロセス用複合酸化物触媒の組成に応じて適宜選択すればよい。
このような触媒成分の原料としては、触媒成分の酸化物、および強熱することにより酸化物となり得る化合物が挙げられ、該化合物としては、触媒成分の塩化物、硫酸塩、硝酸塩、アンモニウム塩、炭酸塩、水酸化物、有機酸塩、酸素酸、酸素酸塩、ヘテロポリ酸、ヘテロポリ酸塩またはそれらの混合物等が挙げられる。
The raw material of the catalyst component used for the preparation of the slurry is not particularly limited, and the composite oxide catalyst for the fluidized bed ammoxidation process to be manufactured from the raw materials generally used for the manufacture of the composite oxide catalyst. What is necessary is just to select suitably according to a composition.
Examples of the raw material for the catalyst component include an oxide of the catalyst component, and a compound that can be converted into an oxide by igniting, and as the compound, chloride, sulfate, nitrate, ammonium salt of the catalyst component, Examples thereof include carbonates, hydroxides, organic acid salts, oxyacids, oxyacid salts, heteropolyacids, heteropolyacid salts, and mixtures thereof.

本発明においては、流動層アンモ酸化プロセス用複合酸化物触媒が、触媒成分として、少なくともモリブデン、ビスマス、鉄および珪素を含む組成を有するか、または少なくともアンチモン、鉄および珪素を含む組成を有することが好ましく、特に、下記一般式(1)または(2)のいずれかで表される組成を有することが好ましい。   In the present invention, the composite oxide catalyst for a fluidized bed ammoxidation process has a composition containing at least molybdenum, bismuth, iron and silicon as a catalyst component, or a composition containing at least antimony, iron and silicon. In particular, it is preferable to have a composition represented by either of the following general formulas (1) or (2).

Mo12BiFe(SiO (1)
(式中、Aはナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を表し;Bはコバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、タングステン、銀、アルミニウム、リン、ホウ素、スズ、鉛、ガリウム、ゲルマニウム、ヒ素、アンチモン、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ホルミウム、エルビウム、ツリウムおよびイッテルビウムからなる群より選ばれる少なくとも1種の元素を表し;a、b、c、d、eおよびfは各元素の原子比を表し、aは0.1〜5、bは0.1〜10、cは0.01〜3、dは0〜20、fは10〜200の範囲内であり、eは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
Fe10SbTe(SiO (2)
(式中、Cはバナジウム、モリブデン、およびタングステンからなる群より選ばれる少なくとも一種の元素を表し;Dはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、銀、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、リン、ヒ素、およびビスマスからなる群より選ばれる少なくとも一種の元素を表し;Eはリチウム、ナトリウム、カリウム、ルビジウム、およびセシウムからなる群より選ばれる少なくとも一種の元素を表し;g、h、k、m、n、xおよびyは各元素の原子比を表し、gは3〜100、hは0.1〜12、kは0.1〜15、mは0〜50、nは0〜5、yは10〜200の範囲内であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
Mo 12 Bi a Fe b A c B d O e (SiO 2) f (1)
(Wherein, A represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium; B represents cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium) , Chromium, manganese, tungsten, silver, aluminum, phosphorus, boron, tin, lead, gallium, germanium, arsenic, antimony, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum, cerium, praseodymium, neodymium, samarium Represents at least one element selected from the group consisting of europium, gadolinium, terbium, holmium, erbium, thulium and ytterbium; a, b, c, d, e and f represent the atomic ratio of each element; 0.1 5, b is 0.1 to 10, c is 0.01 to 3, d is 0 to 20, f is within the range of 10 to 200, and e is necessary to satisfy the valence of each component. (The atomic ratio of oxygen.)
Fe 10 Sb g Te h C k D m E n O x (SiO 2) y (2)
(Wherein C represents at least one element selected from the group consisting of vanadium, molybdenum, and tungsten; D represents magnesium, calcium, strontium, barium, titanium, zirconium, niobium, chromium, manganese, cobalt, nickel, copper Represents at least one element selected from the group consisting of silver, zinc, boron, aluminum, gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, and bismuth; E represents lithium, sodium, potassium, rubidium, And at least one element selected from the group consisting of cesium; g, h, k, m, n, x and y represent the atomic ratio of each element, g is 3 to 100, and h is 0.1 to 12 , K is 0.1 to 15, m is 0 to 50, n is 0 to 5, and y is within the range of 10 to 200. Ri, x is an atomic ratio of oxygen required to satisfy the valence of each component.)

一般式(1)で表される組成を有する複合酸化物触媒は、モリブデン、ビスマス、鉄、Aで表される少なくとも1種の元素、およびシリカの形で珪素を必須の触媒成分として含有する複合酸化物であって、任意にBで表される少なくとも1種の元素を含有していてもよい。
式(1)中、Aとしては、カリウム、ルビジウムおよびセシウムが好ましい。
Bとしては、コバルト、ニッケル、亜鉛、マグネシウム、バナジウム、クロム、マンガン、ジルコニウム、テルル、ランタン、セリウム、プラセオジム、ネオジムおよびサマリウムが好ましい。
Aとして2種以上の元素を含む場合、cは、各元素の原子比の合計を表す。
Bとして2種以上の元素を含む場合、dは、各元素の原子比の合計を表す。
A composite oxide catalyst having a composition represented by the general formula (1) is a composite containing molybdenum, bismuth, iron, at least one element represented by A, and silicon as an essential catalyst component in the form of silica. It may be an oxide and optionally contain at least one element represented by B.
In formula (1), as A, potassium, rubidium and cesium are preferable.
B is preferably cobalt, nickel, zinc, magnesium, vanadium, chromium, manganese, zirconium, tellurium, lanthanum, cerium, praseodymium, neodymium and samarium.
When A contains two or more elements, c represents the total atomic ratio of each element.
When B contains two or more elements, d represents the sum of the atomic ratios of the elements.

一般式(2)で表される組成を有する複合酸化物触媒は、鉄、アンチモン、テルル、Cで表される少なくとも1種の元素、およびシリカの形で珪素を必須の触媒成分として含有する複合酸化物であって、任意にDで表される少なくとも1種の元素および/またはEで表される少なくとも1種の元素を含有していてもよい。
式(2)中、Dとしては、マグネシウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ホウ素およびリンが好ましい。
Cとして2種以上の元素を含む場合、kは、各元素の原子比の合計を表す。
Dとして2種以上の元素を含む場合、mは、各元素の原子比の合計を表す。
Eとして2種以上の元素を含む場合、nは、各元素の原子比の合計を表す。
A composite oxide catalyst having a composition represented by the general formula (2) is a composite containing iron, antimony, tellurium, at least one element represented by C, and silicon as an essential catalyst component in the form of silica. The oxide may optionally contain at least one element represented by D and / or at least one element represented by E.
In the formula (2), as D, magnesium, niobium, chromium, manganese, cobalt, nickel, copper, zinc, boron and phosphorus are preferable.
When C contains two or more elements, k represents the total atomic ratio of each element.
When D contains two or more elements, m represents the total atomic ratio of each element.
When E contains two or more elements, n represents the total atomic ratio of each element.

たとえば、モリブデン原料としては、三酸化モリブデン等の酸化物、モリブデン酸、パラモリブデン酸アンモニウム、メタモリブデン酸アンモニウム等のモリブデン酸またはその塩、リンモリブデン酸、ケイモリブデン酸等の、モリブデンを含むヘテロポリ酸またはその塩等を用いることができる。
ビスマス原料としては、たとえば硝酸ビスマス、炭酸ビスマス、硫酸ビスマス、酢酸ビスマス等のビスマス塩、三酸化ビスマス、金属ビスマス等を用いることができる。ビスマスの原料は固体のままあるいは水溶液や硝酸水溶液、それらの水溶液から生じるビスマス化合物のスラリーとして用いることができるが、硝酸塩、或いはその溶液、またはその溶液から生じるスラリーを用いることが好ましい。
鉄原料としては、たとえば酸化第一鉄、酸化第二鉄、硝酸第一鉄、硝酸第二鉄、硫酸鉄、塩化鉄、鉄有機酸塩および水酸化鉄等を用いることができるほか、金属鉄を加熱した硝酸に溶解して用いてもよい。鉄原料を含む溶液を用いる場合は、該溶液をアンモニア水等でpH調整して用いてもよい。
珪素原料としては、シリカ(SiO)が挙げられ、コロイダルシリカが好ましく用いられる。コロイダルシリカとしては、市販のものから適宜選択して用いることができる。コロイダルシリカは、コロイド粒径が5〜80nmであることが好ましく、10〜40nmがより好ましい。また、コロイダルシリカにおけるシリカ含量は、特に限定はなく、10〜50質量%が特に好ましい。また、コロイド粒径および/またはシリカ含量の異なる複数種のコロイダルシリカを混合したものを用いてもよい。
For example, molybdenum raw materials include oxides such as molybdenum trioxide, molybdenum acids such as molybdic acid, ammonium paramolybdate, and ammonium metamolybdate or salts thereof, heteropolyacids containing molybdenum such as phosphomolybdic acid and silicomolybdic acid Alternatively, a salt thereof or the like can be used.
As the bismuth raw material, for example, bismuth salts such as bismuth nitrate, bismuth carbonate, bismuth sulfate, bismuth acetate, bismuth trioxide, metal bismuth and the like can be used. The raw material of bismuth can be used as a solid or as an aqueous solution, an aqueous nitric acid solution, or a slurry of a bismuth compound generated from these aqueous solutions, but it is preferable to use nitrate, a solution thereof, or a slurry generated from the solution.
Examples of the iron raw material include ferrous oxide, ferric oxide, ferrous nitrate, ferric nitrate, iron sulfate, iron chloride, iron organic acid salt, and iron hydroxide. May be used by dissolving in heated nitric acid. When using a solution containing an iron raw material, the pH of the solution may be adjusted with aqueous ammonia or the like.
Examples of the silicon raw material include silica (SiO 2 ), and colloidal silica is preferably used. As colloidal silica, it can select from a commercially available thing suitably and can be used. The colloidal silica preferably has a colloidal particle size of 5 to 80 nm, more preferably 10 to 40 nm. Moreover, the silica content in colloidal silica is not particularly limited, and is preferably 10 to 50% by mass. Further, a mixture of a plurality of colloidal silicas having different colloidal particle diameters and / or silica contents may be used.

スラリーは、これらの触媒成分のすべての原料から公知の任意の方法により調製できる。
スラリーの固形分濃度としては10〜40質量%、好ましくは15〜30質量%が用いられる。なお、ここで言うスラリーの固形分濃度とは、「スラリー全体の質量」に対する「該スラリーを構成する成分を触媒の最終形態である安定な酸化物に換算した質量」の割合のことを言う。
本発明においては、スラリーに対し、必要に応じて、pH調整してもよい。また、スラリーに対し、必要に応じて、70〜105℃の範囲において熟成、濃縮等のための加熱処理を施してもよい。
The slurry can be prepared by any known method from all raw materials of these catalyst components.
The solid content concentration of the slurry is 10 to 40% by mass, preferably 15 to 30% by mass. The solid content concentration of the slurry referred to here refers to the ratio of “mass in which the component constituting the slurry is converted to a stable oxide as the final form of the catalyst” with respect to “mass of the entire slurry”.
In the present invention, the pH of the slurry may be adjusted as necessary. Moreover, you may heat-process for aging, concentration, etc. in the range of 70-105 degreeC with respect to a slurry as needed.

次に、得られたスラリーを噴霧乾燥機で乾燥する噴霧乾燥工程を行う。
スラリーの乾燥方法としては、一般的に噴霧乾燥に用いられている噴霧乾燥機を用いることができ、たとえば回転円盤型噴霧乾燥機、ノズル式噴霧乾燥機等を用いることができる。特に、回転円盤型噴霧乾燥機を用いることが好ましい。
Next, the spray drying process which dries the obtained slurry with a spray dryer is performed.
As a method for drying the slurry, a spray dryer generally used for spray drying can be used. For example, a rotary disk type spray dryer, a nozzle type spray dryer, or the like can be used. In particular, it is preferable to use a rotary disk type spray dryer.

図1に、噴霧乾燥機の一例の概略構成図を示す。この噴霧乾燥機10は、噴霧乾燥機乾燥室(以下、乾燥室ということがある。)11と、乾燥室11内にスラリーを噴霧吐出するアトマイザー(回転円盤式噴霧乾燥機のディスク、ノズル式噴霧乾燥機のノズル等)12と、ガス状流体を加熱する加熱器13とを備えている。乾燥室11は、その上部にガス状流体が供給される入口21、底部にガス状流体および乾燥物が排出される出口22を有している。加熱器13には、加熱器13にガス状流体を供給する配管31、32および33が接合されており、入口21には、加熱器13で加熱されたガス状流体を乾燥室11内に送り込む配管34が接合されており、出口22には、乾燥室11内のガス状流体および乾燥物を排出する配管35が接合されている。
アトマイザー12には、アトマイザー12にスラリーを供給する配管36が接合されており、該配管36には、スラリー供給弁37および送液ポンプ38が設けられている。
また、配管31には風量計41が設けられ、配管32には風量計42が設けられ、配管33には風量計または流量計43が設けられ、配管34にはガス供給弁44および噴霧乾燥機乾燥室入口温度計45が設けられ、配管35には噴霧乾燥機乾燥室出口温度計46が設けられている。
In FIG. 1, the schematic block diagram of an example of a spray dryer is shown. The spray dryer 10 includes a spray dryer dryer chamber (hereinafter also referred to as a drying chamber) 11 and an atomizer (a disk of a rotary disk spray dryer, a nozzle spray) that sprays slurry into the dryer chamber 11. A nozzle of the dryer, etc.) 12 and a heater 13 for heating the gaseous fluid. The drying chamber 11 has an inlet 21 through which a gaseous fluid is supplied and an outlet 22 through which a gaseous fluid and a dried product are discharged at the bottom. Pipes 31, 32 and 33 for supplying a gaseous fluid to the heater 13 are joined to the heater 13, and the gaseous fluid heated by the heater 13 is fed into the drying chamber 11 into the inlet 21. A pipe 34 is joined, and a pipe 35 for discharging the gaseous fluid and the dried matter in the drying chamber 11 is joined to the outlet 22.
A pipe 36 for supplying slurry to the atomizer 12 is joined to the atomizer 12, and a slurry supply valve 37 and a liquid feed pump 38 are provided in the pipe 36.
The pipe 31 is provided with an air flow meter 41, the pipe 32 is provided with an air flow meter 42, the pipe 33 is provided with an air flow meter or a flow meter 43, and the pipe 34 is provided with a gas supply valve 44 and a spray dryer. A drying chamber inlet thermometer 45 is provided, and a spray dryer drying chamber outlet thermometer 46 is provided in the pipe 35.

本発明においては、噴霧乾燥の際、スラリーを噴霧乾燥機乾燥室内に噴霧吐出する噴霧吐出速度を50〜110m/sとし、かつ該噴霧乾燥機乾燥室内の有効断面積1m当たりの風量を400〜600m/hとする必要がある。該スラリーの噴霧吐出速度が50m/sより小さい場合、あるいは噴霧乾燥機乾燥室内の有効断面積1m当たりの風量が600m/hより多い場合は、20μm未満の粒径を有する粒子は少ないものの、20〜44μmの粒径を有する粒子が少なくなり、工業的な使用に際して20〜44μmの粒径を有する粒子を増加されるために分級する作業が必要となり、好ましくない。また、該スラリーの噴霧吐出速度が110m/sより大きい場合、あるいは噴霧乾燥機乾燥室内の有効断面積1m当たりの風量が400m/hより少ない場合は、20μm未満の粒径を有する粒子が多くなり、工業的な使用に際して20μm未満の粒径を有する粒子を分級除去する作業が必要となり、好ましくない。
噴霧吐出速度の下限は60m/s以上であることが好ましく、上限は90m/s以下であることが好ましい。
噴霧乾燥機乾燥室内の有効断面積1m当たりの風量の下限は440m/hであることが好ましく、上限は560m/h以下であることが好ましい。
In the present invention, at the time of spray drying, the spray discharge speed for spraying and discharging the slurry into the spray dryer drying chamber is set to 50 to 110 m / s, and the air volume per 1 m 2 of the effective sectional area in the spray dryer drying chamber is set to 400. It is necessary to set it to -600m < 3 > / h. When the spray discharge speed of the slurry is less than 50 m / s, or when the air volume per 1 m 2 of the effective sectional area in the spray dryer drying chamber is more than 600 m 3 / h, the number of particles having a particle size of less than 20 μm is small. The number of particles having a particle size of 20 to 44 μm is reduced, and in order to increase the number of particles having a particle size of 20 to 44 μm for industrial use, classification work is required, which is not preferable. When the spray discharge speed of the slurry is larger than 110 m / s, or when the air volume per 1 m 2 of the effective sectional area in the spray dryer drying chamber is less than 400 m 3 / h, particles having a particle size of less than 20 μm are obtained. The number of particles having a particle size of less than 20 μm is required for industrial use, which is not preferable.
The lower limit of the spray discharge speed is preferably 60 m / s or more, and the upper limit is preferably 90 m / s or less.
The lower limit of the air volume per effective area of 1 m 2 in the spray dryer drying chamber is preferably 440 m 3 / h, and the upper limit is preferably 560 m 3 / h or less.

ここで言う噴霧吐出速度とは、回転円盤式噴霧乾燥機を用いてスラリーを噴霧する場合は下式(A)より算出した値のことであり、ノズル式噴霧乾燥機を用いてスラリーを噴霧する場合は下式(B)により算出した値のことであり、単位はm/sを用いる。
式(A):スラリー噴霧吐出速度(m/s)=円周率×ディスク直径(m)×{回転数(rpm)/60}
式(B):スラリー噴霧吐出速度(m/s)=スラリー供給速度(m/s)/{円周率×ノズル半径(m)×ノズル半径(m)×ノズル数}
The spray discharge speed here is a value calculated from the following formula (A) when the slurry is sprayed using a rotary disk spray dryer, and the slurry is sprayed using a nozzle spray dryer. The case is a value calculated by the following formula (B), and the unit is m / s.
Formula (A): Slurry spray discharge speed (m / s) = circularity × disk diameter (m) × {rotation speed (rpm) / 60}
Formula (B): Slurry spray discharge speed (m / s) = slurry supply speed (m 3 / s) / {circumference ratio × nozzle radius (m) × nozzle radius (m) × nozzle number}

また、ここで言う噴霧乾燥機乾燥室内の有効断面積1m当たりの風量とは、該乾燥室内の水平方向の有効断面積1m当たりを、該乾燥室入口温度下で、1時間あたりに通過するガス状流体の量のことを言い、単位はm/hを用いる。
ここで言うガス状流体には、噴霧乾燥機乾燥室内に導入されるすべてのガス状流体が含まれる。具体的には、乾燥用加熱空気、燃料燃焼用空気、アトマイザー冷却用空気等のすべての空気、および燃料燃焼ガス等が例示できる。
さらに、ここで言う噴霧乾燥機乾燥室入口温度とは、該乾燥室内にガス状流体を導入する配管の該乾燥室への接合部分において計測した温度のことを言う。なお、該温度の計測箇所は、好ましくは当該配管と噴霧乾燥機乾燥室の接合部分であるが、その部分での計測が難しい場合は、当該配管と噴霧乾燥機乾燥室との接合部分から配管側へ0〜50cmの範囲内にある配管に接する箇所で計測すればよい。
風量は、噴霧乾燥機乾燥室内に導入されるガス状流体が乾燥用加熱空気や燃料燃焼用空気などの空気の場合においては、加熱する前に計測した当該空気の風量を、別途計測した噴霧乾燥機乾燥室入口温度における風量に温度補正することにより算出(X)し、噴霧乾燥機乾燥室内に導入されるガス状流体が燃料燃焼ガスの場合においては、燃焼する前に当該燃料の形態に応じて当該燃料の風量または流量を計測し、当該燃料が完全燃焼したと仮定して算出された風量を、別途計測した噴霧乾燥機乾燥室入口温度における風量に温度補正することにより算出(Y)し、それらの算出された値を合算することにより算出(X+Y)できる。
In addition, the air volume per 1 m 2 of the effective sectional area in the spray dryer drying chamber referred to here passes through the horizontal effective sectional area of 1 m 2 in the drying chamber per hour under the inlet temperature of the drying chamber. The amount of gaseous fluid to be used, and the unit is m 3 / h.
The gaseous fluid mentioned here includes all gaseous fluids introduced into the spray dryer drying chamber. Specifically, all air such as heating air for drying, air for fuel combustion, air for atomizer cooling, and fuel combustion gas can be exemplified.
Furthermore, the spray dryer drying chamber inlet temperature mentioned here refers to the temperature measured at the joint portion of the piping for introducing the gaseous fluid into the drying chamber to the drying chamber. The temperature measurement point is preferably a joint portion between the pipe and the spray dryer drying chamber. However, if measurement at that portion is difficult, the pipe is connected from the joint portion between the pipe and the spray dryer drying chamber. What is necessary is just to measure in the location which touches the piping which exists in the range of 0-50 cm to the side.
When the gaseous fluid introduced into the spray dryer drying chamber is air such as heating air for drying or air for fuel combustion, the air volume is measured by separately measuring the air volume measured before heating. When the gaseous fluid introduced into the spray dryer drying chamber is a fuel combustion gas, it is calculated (X) by correcting the air flow at the inlet temperature of the dryer drying chamber, and in accordance with the form of the fuel before combustion. The air volume or flow rate of the fuel is measured, and the air volume calculated on the assumption that the fuel has completely combusted is calculated (Y) by correcting the temperature to the air volume at the spray dryer drying chamber inlet temperature measured separately. These values can be calculated (X + Y) by adding them.

噴霧乾燥は、噴霧乾燥機乾燥室内に熱したガス状流体を流通させることにより行うことができ、該ガス状流体の温度は、乾燥室内への導入口付近における温度が130〜450℃であることが好ましく、140〜400℃がさらに好ましい。さらに、乾燥室出口付近における温度は100〜250℃が好ましく、110〜230℃がさらに好ましい。   Spray drying can be performed by circulating a heated gaseous fluid in the spray dryer drying chamber, and the temperature of the gaseous fluid is 130 to 450 ° C. near the inlet to the drying chamber. Is preferable, and 140-400 degreeC is further more preferable. Furthermore, the temperature in the vicinity of the drying chamber outlet is preferably 100 to 250 ° C, more preferably 110 to 230 ° C.

本発明においては、噴霧乾燥工程に続いて、該工程で得られた乾燥物を450〜1000℃の範囲の温度で焼成することにより、望ましい触媒活性構造が形成される。焼成温度は、より好ましくは500〜900℃である。
焼成の時間については特に限定はないが、良好な活性を有する触媒が得られることから、少なくとも1時間以上焼成することが好ましい。焼成時間の上限としては、特に限定はないが、必要以上に長時間処理しても、得られる効果は同程度であるので、20時間以内が好ましい。
焼成の方法についても特に制限はなく、汎用の焼成炉を用いることができる。工業的にはロータリーキルン、流動焼成炉等が好ましく用いられる。
また、焼成に際しては、乾燥物をそのまま450〜1000℃に加熱して焼成してもよいが、250〜450℃程度の温度で焼成する1〜2段の予備焼成を行ってから、450〜1000℃で焼成する方法がより好ましい。
In the present invention, a desired catalytically active structure is formed by calcining the dried product obtained in the step subsequent to the spray drying step at a temperature in the range of 450 to 1000 ° C. The firing temperature is more preferably 500 to 900 ° C.
Although there is no particular limitation on the firing time, it is preferable to perform firing for at least 1 hour or more because a catalyst having good activity can be obtained. The upper limit of the firing time is not particularly limited, but even if the treatment is performed for a longer time than necessary, the obtained effect is almost the same, so it is preferably within 20 hours.
There is no restriction | limiting in particular also about the method of baking, A general purpose baking furnace can be used. Industrially, a rotary kiln, a fluidized firing furnace or the like is preferably used.
In firing, the dried product may be baked by heating to 450 to 1000 ° C. as it is, but after performing one- or two-stage pre-baking at a temperature of about 250 to 450 ° C., 450 to 1000 is performed. A method of baking at 0 ° C. is more preferable.

上述した本発明の製造方法により、以下の要件1〜3を満たす粒径分布を有する複合酸化物触媒を製造できる。
(要件1)20〜120μmの粒径を有する粒子の割合が85質量%以上であり、かつ20〜44μmの粒径を有する粒子の割合が25〜40質量%である。
(要件2)20μm未満の粒径を有する粒子の割合が5質量%以下である。
(要件3)120μmを超える粒径を有する粒子の割合が10質量%以下である。
すなわち、一般に、複合酸化物触媒を流動層アンモ酸化プロセス用として工業的に使用する場合、触媒粒子の大きさとしては、20〜120μmの粒径を有する粒子の割合が85質量%以上であり、かつ20〜44μmの粒径を有する粒子の割合が25〜40%であることが重要である。
そして、20μm未満の粒径を有する粒子は、その質量が小さいため、反応中に反応ガスに同伴されて反応器外に飛散し易く、いわゆる触媒ロスを招き、触媒ロスは、プロピレン等の原料の反応率(転化率)の低下につながるため、20μm未満の粒径を有する粒子の割合は少ないほど好ましく、5質量%以下、さらには3質量%以下がより好ましい。
また、120μmを超える粒径を有する粒子は、その質量が大きいため、流動層反応器内で良好に流動化し難い。そのため、120μmを超える粒径を有する粒子の割合が多すぎると、流動化状態の悪化を招き、それがアクリロニトリル等の目的生成物の収率の低下を招く。したがって、120μmを超える粒径を有する粒子の割合は少ないほど好ましく、10質量%以下、さらには5質量%以下がより好ましい。
さらには、触媒ロスを抑えつつ良好な流動化状態を実現するためには、20〜120μmの粒径を有する粒子が有効であるが、このうち特に20〜44μmの粒径を有する粒子の割合が重要であり、この割合が25〜40質量%、さらには28〜38質量%がより好ましい。
これらの要件1〜3を満たす複合酸化物触媒は、流動層アンモ酸化プロセス用として好適に用いることができる。
アンモ酸化の具体例としては、プロピレンからのアクリロニトリルの合成、イソブテンやターシャリーブタノールからのメタクリロニトリルの合成、トルエンからのベンゾニトリルの合成、メタノールからの青酸の合成等が挙げられる。
By the production method of the present invention described above, a composite oxide catalyst having a particle size distribution satisfying the following requirements 1 to 3 can be produced.
(Requirement 1) The ratio of particles having a particle diameter of 20 to 120 μm is 85% by mass or more, and the ratio of particles having a particle diameter of 20 to 44 μm is 25 to 40% by mass.
(Requirement 2) The proportion of particles having a particle size of less than 20 μm is 5% by mass or less.
(Requirement 3) The ratio of particles having a particle size exceeding 120 μm is 10% by mass or less.
That is, in general, when the composite oxide catalyst is industrially used for a fluidized bed ammoxidation process, the size of the catalyst particles is 85% by mass or more of particles having a particle size of 20 to 120 μm, It is important that the proportion of particles having a particle size of 20 to 44 μm is 25 to 40%.
And since the particle | grains which have a particle size of less than 20 micrometers are small in mass, they are easily accompanied by reaction gas during reaction, and are scattered outside a reactor, so-called catalyst loss is caused. In order to reduce the reaction rate (conversion rate), the proportion of particles having a particle size of less than 20 μm is preferably as small as possible, and more preferably 5% by mass or less, and even more preferably 3% by mass or less.
Moreover, since the particle | grains which have a particle size exceeding 120 micrometers are large in mass, it is hard to fluidize well in a fluidized bed reactor. Therefore, if the ratio of particles having a particle size exceeding 120 μm is too large, the fluidized state is deteriorated, which leads to a decrease in the yield of the target product such as acrylonitrile. Therefore, the proportion of particles having a particle size exceeding 120 μm is preferably as small as possible, more preferably 10% by mass or less, and even more preferably 5% by mass or less.
Furthermore, in order to achieve a good fluidized state while suppressing catalyst loss, particles having a particle size of 20 to 120 μm are effective, and among these, the proportion of particles having a particle size of 20 to 44 μm is particularly high. It is important, and this ratio is more preferably 25 to 40% by mass, and further preferably 28 to 38% by mass.
A composite oxide catalyst satisfying these requirements 1 to 3 can be suitably used for a fluidized bed ammoxidation process.
Specific examples of ammoxidation include synthesis of acrylonitrile from propylene, synthesis of methacrylonitrile from isobutene and tertiary butanol, synthesis of benzonitrile from toluene, synthesis of hydrocyanic acid from methanol, and the like.

本発明の製造方法により製造される流動層アンモ酸化プロセス用複合酸化物触媒を用いた流動層アンモ酸化プロセスは、流動層反応器を用いて行うことができる。
具体的には、たとえばプロピレンを分子状酸素およびアンモニアにより気相接触アンモ酸化してアクリロニトリルを合成する場合、流動層反応器に複合酸化物触媒を充填し、プロピレンを酸素およびアンモニアを含む原料ガスを流動層反応器内に供給して気固接触させることにより行うことができる。
原料ガス中のプロピレンの濃度は広い範囲で変えることができ、1〜20容量%が適当であり、特に3〜15容量%が好ましい。
気相接触アンモ酸化を行う際の酸素源としては、空気を用いるのが工業的には有利であるが、必要に応じて純酸素で富化した空気も使用できる。
原料ガス中のプロピレン対酸素のモル比は1:1.5〜1:3、プロピレン対アンモニアのモル比は1:1〜1:1.5が好ましい。
また、原料ガスは不活性ガス、水蒸気等で希釈して用いることができる。
気相接触アンモ酸化を行う際の反応圧力は、常圧ないし数気圧まで用いることができる。反応温度は400〜500℃の範囲が好ましい。
The fluidized bed ammoxidation process using the composite oxide catalyst for fluidized bed ammoxidation process produced by the production method of the present invention can be performed using a fluidized bed reactor.
Specifically, for example, when acrylonitrile is synthesized by vapor-phase catalytic ammoxidation of propylene with molecular oxygen and ammonia, a fluidized bed reactor is filled with a composite oxide catalyst, and propylene is supplied with a source gas containing oxygen and ammonia. It can carry out by supplying in a fluidized bed reactor and making it gas-solid contact.
The concentration of propylene in the raw material gas can be varied within a wide range, 1 to 20% by volume is appropriate, and 3 to 15% by volume is particularly preferable.
It is industrially advantageous to use air as an oxygen source when performing vapor phase ammoxidation, but if necessary, air enriched with pure oxygen can also be used.
The molar ratio of propylene to oxygen in the raw material gas is preferably 1: 1.5 to 1: 3, and the molar ratio of propylene to ammonia is preferably 1: 1 to 1: 1.5.
The source gas can be diluted with an inert gas, water vapor or the like.
The reaction pressure for carrying out the gas phase catalytic ammoxidation can be from normal pressure to several atmospheres. The reaction temperature is preferably in the range of 400 to 500 ° C.

以下、本発明について、実施例を用いて更に詳細に説明するが、本特許の趣旨を超えない限り、この範囲に限定されるものではない。
以下の実施例および比較例において製造される複合酸化物触媒(以下、単に触媒ということがある)の代表サンプルは、二分割器を用いて採取した。また、触媒の粒径分布の測定は、レーザー回折式粒度分布測定装置を用いて行った。
また、ここでは、噴霧乾燥機乾燥室入口温度の計測箇所を、当該配管と噴霧乾燥機乾燥室との接合部分から配管側へ10cmの位置の配管に接する箇所とした。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this range as long as the gist of the present patent is not exceeded.
A representative sample of the composite oxide catalyst (hereinafter sometimes simply referred to as catalyst) produced in the following Examples and Comparative Examples was collected using a two-divider. The particle size distribution of the catalyst was measured using a laser diffraction particle size distribution measuring device.
Here, the measurement location of the spray dryer drying chamber inlet temperature was a location in contact with the piping 10 cm from the joint between the piping and the spray dryer drying chamber to the piping side.

[実施例1]
シリカ含量30質量%のコロイダルシリカ4956.7質量部および純水3000質量部の混合液に、パラモリブデン酸アンモニウム1248.3質量部を溶解した(A液)。
別に、17質量%硝酸水溶液1300質量部に、硝酸鉄(III)476.1質量部、硝酸ニッケル685.2質量部、硝酸マグネシウム226.6質量部、硝酸コバルト171.4質量部、硝酸クロム94.3質量部、硝酸セリウム127.9質量部、硝酸ビスマス142.9質量部、硝酸ルビジウム5.2質量部および硝酸カリウム4.2質量部を溶解させた(B液)。
A液をよく撹拌しながら、そこにB液を混合し、水性スラリーを得た。このときの水性スラリーの固形分濃度は24.1質量%であった。
得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径120mmφ、回転数14,000rpm、入口温度250℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量495m/hの条件にて噴霧乾燥し、乾燥粉を得た。
このときの該スラリーの噴霧吐出速度は、下記算出式より88m/sと算出された。
[算出式]スラリー噴霧吐出速度(m/s)=円周率×ディスク直径(m)×{回転数(rpm)/60}
得られた乾燥粉を250℃で2時間、次いで450℃で3時間静置焼成した後、590℃で5時間静置焼成し、触媒1を得た。
得られた触媒1の組成は、原料仕込み量から以下のように算出される。
Mo12Bi0.5FeCe0.5Cr0.4NiMg1.5Co0.07Rb0.06(SiO42
(ここで、eは、上記組成中の他の各元素の原子価を満足するのに必要な酸素の原子比である。)
触媒1の粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は1.6質量%、20〜44μmの粒径を有する粒子の粒子の割合は36.0質量%、20〜120μmの粒径を有する粒子の割合は97.4質量%であった。
[Example 1]
In a mixed solution of 4956.7 parts by mass of colloidal silica having a silica content of 30% by mass and 3000 parts by mass of pure water, 1248.3 parts by mass of ammonium paramolybdate was dissolved (solution A).
Separately, to 1300 parts by mass of a 17% by mass nitric acid aqueous solution, 476.1 parts by mass of iron (III) nitrate, 685.2 parts by mass of nickel nitrate, 226.6 parts by mass of magnesium nitrate, 171.4 parts by mass of cobalt nitrate, 94% of chromium nitrate .3 parts by mass, 127.9 parts by mass of cerium nitrate, 142.9 parts by mass of bismuth nitrate, 5.2 parts by mass of rubidium nitrate, and 4.2 parts by mass of potassium nitrate were dissolved (Liquid B).
While the liquid A was well stirred, the liquid B was mixed there to obtain an aqueous slurry. The solid content concentration of the aqueous slurry at this time was 24.1% by mass.
Using the rotary disk type spray dryer, the obtained aqueous slurry was subjected to a disk diameter of 120 mmφ, a rotational speed of 14,000 rpm, an inlet temperature of 250 ° C., and an air flow rate of 495 m 3 / h per 1 m 2 of an effective sectional area in the spray dryer drying chamber. The dried powder was obtained by spray drying under the following conditions.
The spray discharge speed of the slurry at this time was calculated as 88 m / s from the following calculation formula.
[Calculation Formula] Slurry spray discharge speed (m / s) = circularity × disk diameter (m) × {rotation speed (rpm) / 60}
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 450 ° C. for 3 hours, and then calcined at 590 ° C. for 5 hours to obtain Catalyst 1.
The composition of the obtained catalyst 1 is calculated from the raw material charge as follows.
Mo 12 Bi 0.5 Fe 2 Ce 0.5 Cr 0.4 Ni 4 Mg 1.5 Co 1 K 0.07 Rb 0.06 O e (SiO 2 ) 42
(Here, e is the atomic ratio of oxygen necessary to satisfy the valence of each of the other elements in the composition.)
As a result of examining the particle size distribution of the catalyst 1, the proportion of particles having a particle size of less than 20 μm was 1.6% by mass, and the proportion of particles having a particle size of 20 to 44 μm was 36.0% by mass, 20 to 20%. The proportion of particles having a particle size of 120 μm was 97.4% by mass.

[実施例2]
実施例1と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径120mmφ、回転数12,000rpm、入口温度230℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量442m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例1で示した算出式により75m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで450℃で3時間静置焼成した後、590℃で5時間静置焼成し、触媒2を得た。
触媒2の粒径分布を調べた結果、20μm以下の粒径を有する粒子の割合は1.9質量%、20〜44μmの粒径を有する粒子の割合は34.4質量%、20〜120μmの粒径を有する粒子の割合は97.0質量%であった。
[Example 2]
The aqueous slurry obtained by preparing in the same manner as in Example 1, using a rotary disk spray dryer, has a disk diameter of 120 mmφ, a rotational speed of 12,000 rpm, an inlet temperature of 230 ° C., and an effective cross-sectional area in the spray dryer drying chamber. Spray drying was carried out under the condition of an air volume per 1 m 2 of 442 m 3 / h to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated as 75 m / s by the calculation formula shown in Example 1.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 450 ° C. for 3 hours, and then calcined at 590 ° C. for 5 hours to obtain Catalyst 2.
As a result of examining the particle size distribution of the catalyst 2, the proportion of particles having a particle size of 20 μm or less was 1.9% by mass, and the proportion of particles having a particle size of 20 to 44 μm was 34.4% by mass, 20 to 120 μm. The proportion of particles having a particle size was 97.0% by mass.

[実施例3]
実施例1と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径120mmφ、回転数15,000rpm、入口温度300℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量552m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例1で示した算出式により94m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで450℃で3時間静置焼成した後、590℃で5時間静置焼成し、触媒3を得た。
触媒3の粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は2.5質量%、20〜44μmの粒径を有する粒子の割合は39.8質量%、20〜120μmの粒径を有する粒子の割合は97.5質量%であった。
[Example 3]
The aqueous slurry obtained by preparing in the same manner as in Example 1, using a rotary disk spray dryer, has a disk diameter of 120 mmφ, a rotational speed of 15,000 rpm, an inlet temperature of 300 ° C., and an effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume of 552 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated as 94 m / s by the calculation formula shown in Example 1.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 450 ° C. for 3 hours, and then calcined at 590 ° C. for 5 hours to obtain Catalyst 3.
As a result of examining the particle size distribution of the catalyst 3, the proportion of particles having a particle size of less than 20 μm was 2.5 mass%, and the proportion of particles having a particle size of 20 to 44 μm was 39.8 mass%, 20 to 120 μm. The proportion of particles having a particle size was 97.5% by mass.

[実施例4]
実施例1と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径120mmφ、回転数10,000rpm、入口温度300℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量586m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例1で示した算出式により63m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで450℃で3時間静置焼成した後、590℃で5時間静置焼成し、触媒4を得た。
触媒4の粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は0.8質量%、20〜44μmの粒径を有する粒子の割合は27.9質量%、20〜120μmの粒径を有する粒子の割合は97.7質量%であった。
[Example 4]
The aqueous slurry obtained by preparing in the same manner as in Example 1, using a rotary disk spray dryer, has a disk diameter of 120 mmφ, a rotation speed of 10,000 rpm, an inlet temperature of 300 ° C., and an effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume of 586 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated as 63 m / s by the calculation formula shown in Example 1.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 450 ° C. for 3 hours, and then calcined at 590 ° C. for 5 hours to obtain Catalyst 4.
As a result of examining the particle size distribution of the catalyst 4, the proportion of particles having a particle size of less than 20 μm was 0.8% by mass, and the proportion of particles having a particle size of 20 to 44 μm was 27.9% by mass, 20 to 120 μm. The proportion of particles having a particle size was 97.7% by mass.

[実施例5]
実施例1と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径120mmφ、回転数9,000rpm、入口温度270℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量420m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例1で示した算出式により57m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで450℃で3時間静置焼成した後、590℃で5時間静置焼成し、触媒5を得た。
触媒5の粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は3.6質量%、20〜44μmの粒径を有する粒子の割合は29.9質量%、20〜120μmの粒径を有する粒子の割合は95.4質量%であった。
[Example 5]
The aqueous slurry obtained by preparing in the same manner as in Example 1, using a rotary disk spray dryer, has a disk diameter of 120 mmφ, a rotation speed of 9,000 rpm, an inlet temperature of 270 ° C., and an effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume of 420 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated as 57 m / s by the calculation formula shown in Example 1.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 450 ° C. for 3 hours, and then calcined at 590 ° C. for 5 hours to obtain Catalyst 5.
As a result of examining the particle size distribution of the catalyst 5, the proportion of particles having a particle size of less than 20 μm is 3.6% by mass, the proportion of particles having a particle size of 20 to 44 μm is 29.9% by mass, and 20 to 120 μm. The proportion of particles having a particle size was 95.4% by mass.

[実施例6]
63質量%硝酸761質量部に銅粉末13.6質量部を溶解した。この溶液に純水740質量部を添加してから該溶液を60℃に加熱し、電解鉄粉59.8質量部およびテルル粉末20.5質量部を少量ずつ添加し、溶解した。溶解確認後、ホウ酸3.3質量部、および硝酸コバルト62.3質量部を順次添加し、溶解した(C液)。
別途、純水680質量部にパラタングステン酸アンモニウム14.0質量部を溶解した(D液)。
別途、純水130質量部にパラモリブデン酸アンモニウム22.7質量部とテルル粉末20.5質量部とを縣濁させ、80℃に加熱した後、35質量%過酸化水素水62質量部を滴下し、溶解した(E液)。
攪拌しながら、C液に、シリカ含量20質量%のシリカゾル1929.5質量部、三酸化アンチモン粉末390.1質量部、およびD液を順次添加した。このスラリーに15質量%アンモニア水を滴下し、pHを2.0に調整した。pH調整後のスラリーに対して、還流下99℃で3時間加熱処理を行った。加熱処理後のスラリーを80℃まで冷却し、E液を添加した。このときの水性スラリーの固形分濃度は18.2質量%であった。
得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径100mmφ、回転数14,000rpm、入口温度300℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量553m/hの条件にて噴霧乾燥し、乾燥粉を得た。
このときの該スラリーの噴霧吐出速度は、下記算出式より73m/sと算出された。
[算出式]スラリー噴霧吐出速度(m/s)=円周率×ディスク直径(m)×{回転数(rpm)/60}
得られた乾燥粉を250℃で2時間、次いで400℃で2時間静置焼成した後、700℃で3時間流動焼成し、触媒6を得た。
得られた触媒6の組成は、原料仕込み量から以下のように算出される。
Fe10Sb25Te0.5Mo1.2CoCu0.5(SiO60
(ここで、xは、上記組成中の他の各元素の原子価を満足するのに必要な酸素の原子比である。)
触媒6の粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は1.2質量%、20〜44μmの粒径を有する粒子の割合は30.8質量%、20〜120μmの粒径を有する粒子の割合は97.6質量%であった。
[Example 6]
13.6 parts by mass of copper powder was dissolved in 761 parts by mass of 63% by mass nitric acid. After adding 740 parts by mass of pure water to this solution, the solution was heated to 60 ° C., and 59.8 parts by mass of electrolytic iron powder and 20.5 parts by mass of tellurium powder were added and dissolved little by little. After confirmation of dissolution, 3.3 parts by mass of boric acid and 62.3 parts by mass of cobalt nitrate were sequentially added and dissolved (solution C).
Separately, 14.0 parts by mass of ammonium paratungstate was dissolved in 680 parts by mass of pure water (Liquid D).
Separately, 22.7 parts by mass of ammonium paramolybdate and 20.5 parts by mass of tellurium powder were suspended in 130 parts by mass of pure water, heated to 80 ° C., and then 62 parts by mass of 35% by mass hydrogen peroxide solution was dropped. And dissolved (solution E).
While stirring, 1929.5 parts by mass of silica sol having a silica content of 20% by mass, 390.1 parts by mass of antimony trioxide powder, and D liquid were sequentially added to C liquid. 15 mass% ammonia water was dripped at this slurry, and pH was adjusted to 2.0. The slurry after pH adjustment was heat-treated at 99 ° C. for 3 hours under reflux. The slurry after the heat treatment was cooled to 80 ° C., and solution E was added. The solid content concentration of the aqueous slurry at this time was 18.2% by mass.
Using the rotary disk type spray dryer, the obtained aqueous slurry was subjected to a disk diameter of 100 mmφ, a rotational speed of 14,000 rpm, an inlet temperature of 300 ° C., and an air flow rate of 553 m 3 / h per 1 m 2 of an effective sectional area in the spray dryer drying chamber. The dried powder was obtained by spray drying under the following conditions.
The spraying speed of the slurry at this time was calculated as 73 m / s from the following calculation formula.
[Calculation Formula] Slurry spray discharge speed (m / s) = circularity × disk diameter (m) × {rotation speed (rpm) / 60}
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 400 ° C. for 2 hours, and then fluidly calcined at 700 ° C. for 3 hours to obtain Catalyst 6.
The composition of the obtained catalyst 6 is calculated from the raw material charge as follows.
Fe 10 Sb 25 Te 3 W 0.5 Mo 1.2 Co 2 Cu 2 B 0.5 O x (SiO 2 ) 60
(Here, x is the atomic ratio of oxygen necessary to satisfy the valence of each of the other elements in the composition.)
As a result of examining the particle size distribution of the catalyst 6, the proportion of particles having a particle size of less than 20 μm is 1.2% by mass, and the proportion of particles having a particle size of 20 to 44 μm is 30.8% by mass, 20 to 120 μm. The ratio of particles having a particle size was 97.6% by mass.

[実施例7]
実施例6と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径100mmφ、回転数16,000rpm、入口温度230℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量448m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例6に示した算出式により84m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで400℃で3時間静置焼成した後、700℃で3時間流動焼成し、触媒7を得た。
触媒7の粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は2.0質量%、20〜44μmの粒径を有する粒子の割合は37.8質量%、20〜120μmの粒径を有する粒子の割合は98.0質量%であった。
[Example 7]
The aqueous slurry obtained in the same manner as in Example 6 was prepared using a rotary disk spray dryer, the disk diameter was 100 mmφ, the rotational speed was 16,000 rpm, the inlet temperature was 230 ° C., and the effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume of 448 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated as 84 m / s by the calculation formula shown in Example 6.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 400 ° C. for 3 hours, and then fluidly calcined at 700 ° C. for 3 hours to obtain Catalyst 7.
As a result of examining the particle size distribution of the catalyst 7, the proportion of particles having a particle size of less than 20 μm is 2.0 mass%, and the proportion of particles having a particle size of 20 to 44 μm is 37.8 mass%, 20 to 120 μm. The ratio of the particles having a particle size was 98.0% by mass.

[実施例8]
実施例6と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径100mmφ、回転数18,000rpm、入口温度270℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量490m/hの条件にて噴霧乾燥し、乾燥粉8を得た。このときの該スラリーの噴霧吐出速度は、実施例6に示した算出式により94m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで400℃で3時間静置焼成した後、700℃で3時間流動焼成し、触媒8を得た。
触媒8の粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は2.8質量%、20〜44μmの粒径を有する粒子の割合は39.5質量%、20〜120μmの粒径を有する粒子の割合は97.2質量%であった。
[Example 8]
The aqueous slurry obtained in the same manner as in Example 6 was prepared using a rotary disk spray dryer, the disk diameter was 100 mmφ, the rotational speed was 18,000 rpm, the inlet temperature was 270 ° C., and the effective cross-sectional area in the spray dryer drying chamber. The dried powder 8 was obtained by spray-drying under conditions of an air volume of 490 m 3 / h per 1 m 2 . The spray discharge speed of the slurry at this time was calculated as 94 m / s by the calculation formula shown in Example 6.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 400 ° C. for 3 hours, and then fluidly calcined at 700 ° C. for 3 hours to obtain Catalyst 8.
As a result of examining the particle size distribution of the catalyst 8, the proportion of particles having a particle size of less than 20 μm was 2.8% by mass, and the proportion of particles having a particle size of 20 to 44 μm was 39.5% by mass, 20 to 120 μm. The proportion of particles having a particle size was 97.2% by mass.

[実施例9]
実施例6と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径100mmφ、回転数12,000rpm、入口温度250℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量414m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例6に示した算出式により63m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで400℃で3時間静置焼成した後、700℃で3時間流動焼成し、触媒9を得た。
触媒9の粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は3.1質量%、20〜44μmの粒径を有する粒子の割合は31.2質量%、20〜120μmの粒径を有する粒子の割合は96.3質量%であった。
[Example 9]
The aqueous slurry obtained in the same manner as in Example 6 was prepared using a rotary disk spray dryer, the disk diameter was 100 mmφ, the rotational speed was 12,000 rpm, the inlet temperature was 250 ° C., and the effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume of 414 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated to be 63 m / s by the calculation formula shown in Example 6.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 400 ° C. for 3 hours, and then fluidly calcined at 700 ° C. for 3 hours to obtain Catalyst 9.
As a result of examining the particle size distribution of the catalyst 9, the proportion of particles having a particle size of less than 20 μm is 3.1% by mass, and the proportion of particles having a particle size of 20 to 44 μm is 31.2% by mass, 20 to 120 μm. The proportion of particles having a particle size was 96.3% by mass.

[実施例10]
実施例6と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径100mmφ、回転数10,000rpm、入口温度350℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量577m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例6に示した算出式により52m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで400℃で3時間静置焼成した後、700℃で3時間流動焼成し、触媒10を得た。
触媒10の粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は1.2質量%、20〜44μmの粒径を有する粒子の割合は25.9質量%、20〜120μmの粒径を有する粒子の割合は96.9質量%であった。
[Example 10]
The aqueous slurry obtained in the same manner as in Example 6 was prepared using a rotary disk spray dryer, the disk diameter was 100 mmφ, the rotation speed was 10,000 rpm, the inlet temperature was 350 ° C., and the effective sectional area in the spray dryer drying chamber. Spray drying was performed under conditions of an air volume of 577 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated as 52 m / s by the calculation formula shown in Example 6.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 400 ° C. for 3 hours, and then fluidly calcined at 700 ° C. for 3 hours to obtain catalyst 10.
As a result of examining the particle size distribution of the catalyst 10, the proportion of particles having a particle size of less than 20 μm is 1.2% by mass, and the proportion of particles having a particle size of 20 to 44 μm is 25.9% by mass, 20 to 120 μm. The proportion of particles having a particle size was 96.9% by mass.

[比較例1]
実施例1と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径120mmφ、回転数14,000rpm、入口温度230℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量383m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例1に示した算出式により88m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで450℃で3時間静置焼成した後、590℃で5時間静置焼成し、触媒Aを得た。
触媒Aの粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は7.7質量%、20〜44μmの粒径を有する粒子の割合は35.6質量%、20〜120μmの粒径を有する粒子の割合は92.3質量%であった。
[Comparative Example 1]
The aqueous slurry obtained by preparing in the same manner as in Example 1 was measured using a rotary disk spray dryer, the disk diameter was 120 mmφ, the rotational speed was 14,000 rpm, the inlet temperature was 230 ° C., and the effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume per 1 m 2 of 383 m 3 / h to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated as 88 m / s by the calculation formula shown in Example 1.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 450 ° C. for 3 hours, and then calcined at 590 ° C. for 5 hours to obtain Catalyst A.
As a result of examining the particle size distribution of the catalyst A, the proportion of particles having a particle size of less than 20 μm was 7.7% by mass, and the proportion of particles having a particle size of 20 to 44 μm was 35.6% by mass, 20 to 120 μm. The proportion of particles having a particle size was 92.3% by mass.

[比較例2]
実施例1と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径120mmφ、回転数7,000rpm、入口温度270℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量453m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例1に示した算出式により44m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで450℃で3時間静置焼成した後、590℃で5時間静置焼成し、触媒Bを得た。
触媒Bの粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は2.6質量%、20〜44μmの粒径を有する粒子の割合は20.3質量%、20〜120μmの粒径を有する粒子の割合は92.8質量%であった。
[Comparative Example 2]
The aqueous slurry obtained by preparing in the same manner as in Example 1, using a rotary disk spray dryer, has a disk diameter of 120 mmφ, a rotational speed of 7,000 rpm, an inlet temperature of 270 ° C., and an effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume of 453 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated to be 44 m / s by the calculation formula shown in Example 1.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 450 ° C. for 3 hours, and then calcined at 590 ° C. for 5 hours to obtain Catalyst B.
As a result of examining the particle size distribution of the catalyst B, the proportion of particles having a particle size of less than 20 μm is 2.6% by mass, and the proportion of particles having a particle size of 20 to 44 μm is 20.3% by mass, 20 to 120 μm. The proportion of particles having a particle size was 92.8% by mass.

[比較例3]
実施例1と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径120mmφ、回転数18,000rpm、入口温度250℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量464m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例1に示した算出式により113m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで450℃で3時間静置焼成した後、590℃で5時間静置焼成し、触媒Cを得た。
触媒Cの粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は5.6質量%、20〜44μmの粒径を有する粒子の割合は51.5質量%、20〜120μmの粒径を有する粒子の割合は94.4質量%であった。
[Comparative Example 3]
The aqueous slurry obtained by preparing in the same manner as in Example 1, using a rotary disk spray dryer, has a disk diameter of 120 mmφ, a rotational speed of 18,000 rpm, an inlet temperature of 250 ° C., and an effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume per 1 m 2 of 464 m 3 / h to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated as 113 m / s by the calculation formula shown in Example 1.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 450 ° C. for 3 hours, and then calcined at 590 ° C. for 5 hours to obtain Catalyst C.
As a result of examining the particle size distribution of the catalyst C, the proportion of particles having a particle size of less than 20 μm was 5.6% by mass, and the proportion of particles having a particle size of 20 to 44 μm was 51.5% by mass, 20 to 120 μm. The proportion of particles having a particle size was 94.4% by mass.

[比較例4]
実施例6と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径100mmφ、回転数10,000rpm、入口温度250℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量608m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例6に示した算出式により52m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで400℃で2時間静置焼成した後、700℃で3時間流動焼成し、触媒Dを得た。
触媒Dの粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は0.8質量%、20〜44μmの粒径を有する粒子の割合は23.6質量%、20〜120μmの粒径を有する粒子の割合は96.3質量%であった。
[Comparative Example 4]
The aqueous slurry obtained in the same manner as in Example 6 was prepared using a rotary disk spray dryer, disk diameter 100 mmφ, rotation speed 10,000 rpm, inlet temperature 250 ° C., effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume of 608 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated as 52 m / s by the calculation formula shown in Example 6.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 400 ° C. for 2 hours, and then fluidly calcined at 700 ° C. for 3 hours to obtain Catalyst D.
As a result of examining the particle size distribution of the catalyst D, the proportion of particles having a particle size of less than 20 μm was 0.8 mass%, and the proportion of particles having a particle size of 20 to 44 μm was 23.6 mass%, 20 to 120 μm. The proportion of particles having a particle size was 96.3% by mass.

[比較例5]
実施例6と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径100mmφ、回転数8,000rpm、入口温度320℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量639m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例6に示した算出式により42m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで400℃で2時間静置焼成した後、700℃で3時間流動焼成し、触媒Eを得た。
触媒Eの粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は0.0質量%、20〜44μmの粒径を有する粒子の割合は18.0質量%、20〜120μmの粒径を有する粒子の割合は93.0質量%であった。
[Comparative Example 5]
The aqueous slurry obtained in the same manner as in Example 6 was prepared using a rotary disk spray dryer, the disk diameter was 100 mmφ, the rotation speed was 8,000 rpm, the inlet temperature was 320 ° C., and the effective sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume of 639 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated to be 42 m / s by the calculation formula shown in Example 6.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 400 ° C. for 2 hours, and then fluidly calcined at 700 ° C. for 3 hours to obtain Catalyst E.
As a result of examining the particle size distribution of the catalyst E, the proportion of particles having a particle size of less than 20 μm is 0.0 mass%, and the proportion of particles having a particle size of 20 to 44 μm is 18.0 mass%, 20 to 120 μm. The ratio of the particles having a particle size was 93.0% by mass.

[比較例6]
実施例6と同様に調製して得られた水性スラリーを、回転円盤式噴霧乾燥機を用いて、ディスク直径100mmφ、回転数20,000rpm、入口温度250℃、噴霧乾燥機乾燥室内の有効断面積1m当たりの風量358m/hの条件にて噴霧乾燥し、乾燥粉を得た。このときの該スラリーの噴霧吐出速度は、実施例6に示した算出式により105m/sと算出された。
得られた乾燥粉を250℃で2時間、次いで400℃で2時間静置焼成した後、700℃で3時間流動焼成し、触媒Fを得た。
触媒Fの粒径分布を調べた結果、20μm未満の粒径を有する粒子の割合は8.3質量%、20〜44μmの粒径を有する粒子の割合は45.5質量%、20〜120μmの粒径を有する粒子の割合は91.7質量%であった。
[Comparative Example 6]
The aqueous slurry obtained in the same manner as in Example 6 was prepared using a rotary disk spray dryer, the disk diameter was 100 mmφ, the rotational speed was 20,000 rpm, the inlet temperature was 250 ° C., and the effective cross-sectional area in the spray dryer drying chamber. Spray drying was performed under the condition of an air volume of 358 m 3 / h per 1 m 2 to obtain a dry powder. The spray discharge speed of the slurry at this time was calculated to be 105 m / s by the calculation formula shown in Example 6.
The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 400 ° C. for 2 hours, and then fluidly calcined at 700 ° C. for 3 hours to obtain Catalyst F.
As a result of examining the particle size distribution of the catalyst F, the proportion of particles having a particle size of less than 20 μm was 8.3 mass%, the proportion of particles having a particle size of 20 to 44 μm was 45.5 mass%, and 20 to 120 μm. The proportion of particles having a particle size was 91.7% by mass.

上記実施例および比較例で用いた製造条件および得られた触媒の粒径分布を表1に示す。   The production conditions used in the above Examples and Comparative Examples and the particle size distribution of the obtained catalyst are shown in Table 1.

Figure 0004606897
Figure 0004606897

上記結果から明らかなように、噴霧吐出速度が50〜110m/sであり、かつ噴霧乾燥機乾燥室内の有効断面積1m当たりの風量が400〜600m/hであった実施例1〜10で得られた触媒は、上記に示した要件1〜3を満たす粒径分布を有していた。中でも、噴霧吐出速度が60〜90m/sの範囲内である実施例1,2,4,6,7,9、および風量が440〜560m/hの範囲内である実施例1〜3,6〜8は良好な粒径分布を有しており、特にこれらの条件を両方満たす実施例1,2,6,7は、20μm未満の粒径を有する粒子の割合が3質量%以下であり、かつ20〜44μmの粒径を有する粒子の割合が28〜38質量%の範囲内であり、非常に優れていた。
一方、上記噴霧吐出速度および風量の範囲を、一方または両方とも満たさなかった比較例1〜6で得られた触媒は、20μm未満の粒径を有する粒子の割合が5質量%を越えていたり、20〜44μmの粒径を有する粒子の割合が25〜40質量%の範囲をはずれていた。たとえば風量が少なかったり噴霧吐出速度が速かった比較例1,3,6は、20μm未満の粒径を有する粒子の割合が高かった。また、風量が多かったり噴霧吐出速度が遅かった比較例2,4,5は、20〜44μmの粒径を有する粒子の割合が低かった。
As is clear from the above results, Examples 1 to 10 in which the spray discharge speed was 50 to 110 m / s and the air volume per 1 m 2 of the effective sectional area in the spray dryer drying chamber was 400 to 600 m 3 / h. The catalyst obtained in (1) had a particle size distribution satisfying the requirements 1 to 3 described above. Among them, Examples 1, 2, 4, 6, 7, and 9 in which the spray discharge speed is in the range of 60 to 90 m / s, and Examples 1 to 3 in which the air volume is in the range of 440 to 560 m 3 / h. Nos. 6 to 8 have a good particle size distribution, and in Examples 1, 2, 6, and 7 that satisfy both of these conditions, the proportion of particles having a particle size of less than 20 μm is 3% by mass or less. In addition, the ratio of particles having a particle diameter of 20 to 44 μm was in the range of 28 to 38% by mass, which was excellent.
On the other hand, the catalyst obtained in Comparative Examples 1 to 6 that did not satisfy one or both of the spray discharge speed and the air volume range had a ratio of particles having a particle diameter of less than 20 μm exceeding 5% by mass, The proportion of particles having a particle size of 20 to 44 μm was out of the range of 25 to 40% by mass. For example, in Comparative Examples 1, 3, and 6 in which the air volume was small and the spray discharge speed was fast, the ratio of particles having a particle diameter of less than 20 μm was high. In Comparative Examples 2, 4 and 5 in which the air volume was large or the spray discharge speed was slow, the ratio of particles having a particle diameter of 20 to 44 μm was low.

噴霧乾燥機の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a spray dryer.

符号の説明Explanation of symbols

10…噴霧乾燥機、11…乾燥室、12…アトマイザー、13…加熱器、21…入口、22…出口、31…配管、32…配管、33…配管、34…配管、35…配管、36…配管、37…スラリー供給弁、38…送液ポンプ、41…風量計、42…風量計、43…風量計、44…ガス供給弁、45…噴霧乾燥機乾燥室入口温度計、46…噴霧乾燥機乾燥室出口温度計

DESCRIPTION OF SYMBOLS 10 ... Spray dryer, 11 ... Drying chamber, 12 ... Atomizer, 13 ... Heater, 21 ... Inlet, 22 ... Outlet, 31 ... Pipe, 32 ... Pipe, 33 ... Pipe, 34 ... Pipe, 35 ... Pipe, 36 ... Piping, 37 ... Slurry supply valve, 38 ... Liquid feed pump, 41 ... Air flow meter, 42 ... Air flow meter, 43 ... Air flow meter, 44 ... Gas supply valve, 45 ... Spray dryer drying chamber inlet thermometer, 46 ... Spray drying Dryer outlet thermometer

Claims (1)

流動層アンモ酸化プロセスにおいて使用される複合酸化物触媒の製造方法であって、
触媒成分のすべての原料を含有するスラリーを噴霧乾燥する工程を有し、
前記スラリーを噴霧乾燥機乾燥室内に噴霧吐出する噴霧吐出速度が50〜110m/sであり、かつ該噴霧乾燥機乾燥室内の有効断面積1m当たりの風量が400〜600m/hであることを特徴とする流動層アンモ酸化プロセス用複合酸化物触媒の製造方法。

A method for producing a composite oxide catalyst used in a fluidized bed ammoxidation process, comprising:
Having a step of spray drying a slurry containing all raw materials of the catalyst component;
The spray discharge speed for spraying and discharging the slurry into the spray dryer drying chamber is 50 to 110 m / s, and the air volume per 1 m 2 of the effective sectional area in the spray dryer drying chamber is 400 to 600 m 3 / h. A method for producing a composite oxide catalyst for a fluidized bed ammoxidation process characterized by the above.

JP2005037987A 2005-02-15 2005-02-15 Method for producing composite oxide catalyst for fluidized bed ammoxidation process Active JP4606897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037987A JP4606897B2 (en) 2005-02-15 2005-02-15 Method for producing composite oxide catalyst for fluidized bed ammoxidation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037987A JP4606897B2 (en) 2005-02-15 2005-02-15 Method for producing composite oxide catalyst for fluidized bed ammoxidation process

Publications (2)

Publication Number Publication Date
JP2006223941A JP2006223941A (en) 2006-08-31
JP4606897B2 true JP4606897B2 (en) 2011-01-05

Family

ID=36985763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037987A Active JP4606897B2 (en) 2005-02-15 2005-02-15 Method for producing composite oxide catalyst for fluidized bed ammoxidation process

Country Status (1)

Country Link
JP (1) JP4606897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378041B2 (en) * 2009-04-07 2013-12-25 三菱レイヨン株式会社 Method for producing composite oxide catalyst for acrylonitrile synthesis
KR102118534B1 (en) * 2017-05-19 2020-06-03 아사히 가세이 가부시키가이샤 Catalyst for ammoxidation and method for producing same, and method for producing acrylonitrile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141401A (en) * 1994-11-17 1996-06-04 Mitsubishi Chem Corp Catalyst for production of nitrile
JPH1043595A (en) * 1996-07-31 1998-02-17 Asahi Chem Ind Co Ltd Catalyst composition for ammoxidation
JP2002292284A (en) * 2001-04-03 2002-10-08 Mitsubishi Chemicals Corp Compound metal oxide catalyst and method for gaseous phase catalytic oxidizing reaction using the same
JP2003117397A (en) * 2001-10-11 2003-04-22 Daiyanitorikkusu Kk Production method of catalyst for ammoxidation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141401A (en) * 1994-11-17 1996-06-04 Mitsubishi Chem Corp Catalyst for production of nitrile
JPH1043595A (en) * 1996-07-31 1998-02-17 Asahi Chem Ind Co Ltd Catalyst composition for ammoxidation
JP2002292284A (en) * 2001-04-03 2002-10-08 Mitsubishi Chemicals Corp Compound metal oxide catalyst and method for gaseous phase catalytic oxidizing reaction using the same
JP2003117397A (en) * 2001-10-11 2003-04-22 Daiyanitorikkusu Kk Production method of catalyst for ammoxidation

Also Published As

Publication number Publication date
JP2006223941A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP5483818B2 (en) Fluid bed catalyst for acrylonitrile production and process for producing acrylonitrile
JP5227176B2 (en) Mixed oxide catalysts for catalytic gas phase oxidation of olefins and methods for their production
US7132384B2 (en) Process for producing composite oxide catalyst
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP5919870B2 (en) Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst
JP4242197B2 (en) Catalyst for acrylonitrile synthesis
KR20160032037A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2010172851A (en) Catalyst for producing acrylonitrile, and method of producing acrylonitrile
JP5011167B2 (en) Catalyst for producing acrylonitrile and method for producing acrylonitrile
JP6683708B2 (en) Improved mixed metal oxide ammoxidation catalyst
JP2009285581A (en) Ammoxidation catalyst for fluidized-beds and manufacturing method of acrylonitrile or methacrylonitrile using it
JP5210834B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP6526062B2 (en) Improved selective ammoxidation catalyst
KR20180029031A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP5011178B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP2006326440A (en) Catalyst for acrylonitrile synthesis
EP1526123A1 (en) Catalytic gas phase oxidation reaction
JP4606897B2 (en) Method for producing composite oxide catalyst for fluidized bed ammoxidation process
JP5210835B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP5378041B2 (en) Method for producing composite oxide catalyst for acrylonitrile synthesis
JP4823950B2 (en) Method for producing catalyst for acrylonitrile production
JP5011177B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
CN109311805A (en) The manufacturing method of unsaturated nitrile
JP3682211B2 (en) Preparation of mixed oxide fluidized bed catalyst for acrylonitrile production
WO2022145394A1 (en) Catalyst for vapor-phase catalytic ammoxidation reaction and method for producing catalyst for vapor-phase catalytic ammoxidation reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Ref document number: 4606897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250