JP3682211B2 - Preparation of mixed oxide fluidized bed catalyst for acrylonitrile production - Google Patents
Preparation of mixed oxide fluidized bed catalyst for acrylonitrile production Download PDFInfo
- Publication number
- JP3682211B2 JP3682211B2 JP2000240087A JP2000240087A JP3682211B2 JP 3682211 B2 JP3682211 B2 JP 3682211B2 JP 2000240087 A JP2000240087 A JP 2000240087A JP 2000240087 A JP2000240087 A JP 2000240087A JP 3682211 B2 JP3682211 B2 JP 3682211B2
- Authority
- JP
- Japan
- Prior art keywords
- fluidized bed
- bed catalyst
- component
- catalyst
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はアクリロニトリル製造に用いる複合酸化物流動層触媒の調製法に関し、詳しくはプロピレンのアンモ酸化反応によるアクリロニトリル製造に用いるモリブデン−ビスマス−鉄−セリウム含有複合酸化物流動層触媒の調製法に関する。
【0002】
【従来の技術】
プロピレンのアンモ酸化によるアクリロニトリルの製造に適する触媒としては、これまでにも種々の触媒組成が開示されており、目的生成物の収率向上が続けれられている。一方、調製法の改良によっても触媒の性能向上を図る試みが行われており、種々の方法が提案されている。
【0003】
このようななか、近年、セリウムを必須成分として含む触媒が数多く提案されている。特開平7−289901号公報にはモリブデン、ビスマス、セリウム、鉄およびコバルトを必須成分とする触媒が、特開平7−303836号公報にはモリブデン、ビスマス、セリウム、鉄に加えて亜鉛を必須成分とする触媒が、特開平7−328441号公報にはモリブデン、ビスマス、セリウム、鉄およびニッケルを必須成分とする触媒が、特開平10−43595号公報にはモリブデン、ビスマス、セリウム、鉄に加えてニッケル、コバルトから選ばれる1種以上の元素を含み、さらに、マグネシウム、カルシウム、ストロンチウム、バリウム、亜鉛およびマンガンから選ばれる1種以上の元素、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれる1種以上の元素、タングステン、バナジウム、ニオブ、タンタル、アンチモン、レニウムおよびテルルから選ばれる1種以上の元素を含む触媒がそれぞれ開示されている。
【0004】
また、特公昭51−33888号公報、特開平8−266899号公報、特開平11−169715号公報、特開2000−5603号公報等において、セリウムを含む元素群より選ばれる1種以上の元素を必須成分として含有する触媒がそれぞれ開示されている。しかしながら、これらの一連のセリウムを必須成分とする触媒の調製法において、触媒原料の1つであるセリウム化合物の種類と触媒性能向上に関する検討は知られていない。
【0005】
【発明が解決しようとする課題】
これら従来技術による触媒は、それなりにアクリロニトリル収率の改善という面で効果があったり、長時間にわたる反応成績の維持という面で効果があったが、これらの両面を満たす触媒という意味では未だ十分ではなく、さらに高位なアクリロニトリル収率で且つその経時的な低下をより小さく抑えることができる触媒を開発することが工業的に強くが求められていた。
【0006】
本発明は上記の課題を解決するためになされたものであり、特にプロピレンのアンモ酸化によるアクリロニトリルの製造方法において使用する触媒の調製法の改良を目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意検討した結果、(i)モリブデン、(ii)ビスマス、(iii)鉄、(iv)マグネシウム等から選ばれた成分、(v)セリウム、(vi)アルカリ金属成分および(vii)珪素を必須成分として含有する触媒において、必須成分の1つであるセリウムの原料として四価のセリウム化合物を使用することにより、三価のセリウム化合物を使用したときに比べ、アクリロニトリル収率の経時的な低下を十分小さく抑えることができることを見い出し、且つ本法を反応初期のアクリロニトリル収率は高位であるがその経時的な低下が比較的大きい触媒系に適用した場合にも、アクリロニトリル収率の経時的な低下を十分小さく抑えることができることを見い出し本発明に到達した。
【0008】
すなわち、本発明は、触媒成分として(i)モリブデン、(ii)ビスマス、(iii)鉄、(iv)マグネシウム、カルシウム、ストロンチウム、バリウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛およびカドミウムからなる群より選ばれた少なくとも一種の元素、(v)セリウム、(vi)アルカリ金属元素より選ばれた少なくとも一種の元素および(vii)珪素を必須成分として含むアクリロニトリル製造用複合酸化物流動層触媒を調製する方法において、前記成分(v)の原料として四価のセリウム化合物を使用することを特徴とする複合酸化物流動層触媒の調製法に関する。
【0009】
【発明の実施の形態】
本発明は、プロピレンのアンモ酸化によりアクリロニトリルを製造する方法において、触媒を構成するセリウム成分の原料として四価のセリウム化合物を使用することを特徴とし、これによりアクリロニトリル収率の経時的な低下を小さく抑える効果を発現する。本効果が発現する機構については明らかではないが、セリウム成分の原料として四価のセリウム化合物を使用することで、硝酸セリウム(III)等の三価のセリウム化合物を用いたときに比べ、触媒スラリー中に存在するセリウムがpKaのより小さい四価の状態で存在するため、セリウムを含有する触媒前駆体の沈殿生成反応が促進されることにより、より好ましい触媒構造が形成されることに起因すると考えられる。
【0010】
本発明が適用される触媒としては、必須成分として(i)モリブデン、(ii)ビスマス、(iii)鉄、(iv)マグネシウム、カルシウム、ストロンチウム、バリウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛およびカドミウムからなる群より選ばれた少なくとも一種の元素、(v)セリウム、(vi)アルカリ金属元素より選ばれた少なくとも一種の元素および(vii)珪素を含む複合酸化物流動層触媒で有ればよいが、特に下記一般式で示される組成の触媒に好ましく適用される。
MoaBibFecHdLeMfNgCehXiYjSikOx
(式中、Mo、Bi、Fe、Ce、SiおよびOはそれぞれモリブデン、ビスマス、鉄、セリウム、珪素および酸素を表し、Hはマグネシウム、カルシウム、ストロンチウム、バリウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛およびカドミウムからなる群より選ばれた少なくとも一種の元素、Lはイットリウム、ランタン、プラセオジム、ネオジム、サマリウム、アルミニウム、ガリウムおよびインジウムからなる群より選ばれた少なくとも一種の元素、Mはチタン、ジルコニウム、バナジウム、ニオブ、タンタル、タングステン、ゲルマニウム、錫、鉛およびアンチモンからなる群より選ばれた少なくとも一種の元素、Nはルテニウム、ロジウム、パラジウム、レニウム、オスミウム、イリジウム、白金および銀からなる群より選ばれた少なくとも一種の元素、Xはリン、ホウ素、砒素、タリウムおよびテルルからなる群より選ばれた少なくとも一種の元素、Yはリチウム、ナトリウム、カリウム、ルビジウム、セシウムからなる群から選ばれた少なくとも一種の元素を表す。ただし、添字a、b、c、d、e、f、g、h、i、j、kおよびxは各元素の原子比を表し、a=10のとき、b=0.1〜1.5、好ましくは0.3〜1.2、 c=0.5〜2.0、好ましくは0.6〜1.8、d=3〜10、好ましくは5〜8、e=0〜2、好ましくは0〜1.5、f=0〜3、好ましくは0〜2、g=0〜1、好ましくは0〜0.5、h=0.1〜1、好ましくは0.2〜0.8、0.25<h/c<0.5、b/h≧1、i=0〜3、好ましくは0〜2、j=0.05〜1.5、好ましくは0.1〜1.0、k=20〜200であり、xは前記各成分の原子価を満足するのに必要な酸素原子数である。)
【0011】
モリブデン、ビスマス、鉄、H成分、セリウム、Y成分および珪素は必須成分であり、それぞれ前記組成範囲にあるとき、本発明の目的は特に良好に達成される。本発明の方法によれば、モリブデン成分に対し鉄成分が比較的少ない組成領域で良好な触媒性能を発揮することができる。一般に鉄成分が少ない組成領域では反応初期のアクリロニトリル収率は高くなるものの経時安定性が悪化する傾向にあるが、セリウム成分の原料として四価のセリウム化合物を用い、且つセリウム/鉄の比を好ましくは0.25より大きく0.5より小さくすることにより、反応初期のアクリロニトリル収率を高位なまま、経時的なアクリロニトリル収率の低下を大きく改善することができる。セリウム/鉄の比が0.25以下の時は反応初期のアクリロニトリル収率は良好であるものの、経時的な反応成績の維持という点では効果の程度がやや小さい場合がある。セリウム/鉄の比が0.5以上の時は経時的な反応成績の維持という点では効果は大きいものの、反応初期のアクリロニトリル収率の向上幅がやや少ない場合がある。また、この効果を良好に発現するためにはビスマス/セリウムの比が1以上が好ましい。H成分としてはマグネシウム、クロム、マンガン、コバルト、ニッケルが好ましい。Y成分はカリウム、ルビジウム、セシウムが好ましい。これらの成分の添加量範囲は重要であり、前記の範囲内にある時、効果は著しく向上する。
【0012】
本触媒を構成するセリウム成分の原料としては四価であれば特に限定されないが、酸化第二セリウム(IV)、ヘキサニトラトセリウム(IV)酸アンモニウム、水酸化第二セリウム(IV)および硫酸第二セリウム(IV)等の四価のセリウム化合物またはそれらの混合物が挙げられ、特に好ましくはヘキサニトラトセリウム(IV)酸アンモニウムが用いられる。本化合物は容易に水に溶解し、水溶液中で四価のセリウムとして存在し得るため、本発明における触媒原料成分として用いるのに特に好ましい。
【0013】
セリウム以外の各元素の出発原料としては特に限定されるものではないが、例えばモリブデン成分の原料としては三酸化モリブデンのようなモリブデン酸化物、モリブデン酸、パラモリブデン酸アンモニウム、メタモリブデン酸アンモニウムのようなモリブデン酸またはその塩、リンモリブデン酸、ケイモリブデン酸のようなモリブデンを含むヘテロポリ酸またはその塩などを用いることができる。
【0014】
ビスマス成分の原料としては硝酸ビスマス、炭酸ビスマス、硫酸ビスマス、酢酸ビスマスなどのビスマス塩、三酸化ビスマス、金属ビスマスなどを用いることができる。これらの原料は固体のままあるいは水溶液や硝酸水溶液、それらの水溶液から生じるビスマス化合物のスラリーとして用いることができるが、硝酸塩、あるいはその溶液、またはその溶液から生じるスラリーを用いることが好ましい。
【0015】
鉄成分の原料としては酸化第一鉄、酸化第二鉄、四三酸化鉄、硝酸第一鉄、硝酸第二鉄硫酸鉄、塩化鉄、鉄有機酸塩および水酸化鉄等を用いることができるほか、金属鉄を加熱した硝酸に溶解して用いてもよい。
【0016】
珪素の原料としてはシリカゾル、ヒュームド・シリカ等が用いられるが、特にシリカゾルが好ましい。シリカゾルとしてはナトリウム含量の低いものを用いるのがよい。
【0017】
その他の元素の原料としては通常は酸化物あるいは強熱することにより酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物等またはそれらの混合物が用いられる。
【0018】
本発明による触媒は、触媒原料を混合し、噴霧乾燥、焼成することにより調製されるが、少なくともモリブデン成分の原料、ビスマス成分の原料、およびセリウム成分の原料を含む溶液もしくはスラリーのpHを2〜5の範囲に調整し、ついでこの溶液もしくはスラリーを噴霧乾燥、焼成することが好ましい。pHが5より大きいとスラリーは粘度が高くなり、またはゲル状となるため、スラリーの攪拌が困難となり均一なスラリーが得られにくい。また触媒スラリー中に存在するセリウムを含有する触媒前駆体の沈殿生成反応を促進させること、およびこのことによりスラリー性状の安定性を向上させるため、pHを2以上にすることが好ましい。
【0019】
pH調整が比較的高い、例えば4ないし5で調製するときは特許2747920号公報記載の方法に準じてスラリーのゲル化抑制のためキレート剤、例えばエチレンジアミン四酢酸、乳酸、クエン酸、酒石酸、グルコン酸等を共存させる方法を併用することができる。これらキレート剤は、pH調整が比較的低い、例えば2ないし3で調製するときにも少量加えると効果を示すことがある。また鉄成分を含む溶液に前記キレート剤を共存させることで鉄成分が沈殿するのを防ぐことができ、高活性な触媒が得られる。キレート剤の添加量は製造される完成触媒の酸化物重量当り0.1〜10%の範囲で用いるのが好ましい。
【0020】
本発明の方法においてはスラリーの加熱処理は必ずしも必要ではないが、触媒原料を含む溶液もしくはスラリーを、温度50〜120℃、好ましくは60〜110℃の範囲で少なくとも10分以上加熱処理することはスラリーの性状を安定化する上で、あるいは最終的に得られる触媒の性能を改善する上で望ましい。
【0021】
得られた触媒スラリーを噴霧乾燥する。噴霧乾燥装置としては、回転円盤式、ノズル式等一般的なものでよい。乾燥温度としては80〜350℃の範囲が好ましい。
【0022】
得られた乾燥物を焼成する。その際の焼成炉の形式およびその方法については特に限定はされず、例えば、通常の箱型焼成炉、トンネル型焼成炉等を用いて乾燥物を静置した状態で焼成してもよいし、また、ロータリーキルン焼成炉等を用いて乾燥物を流動させながら焼成してもよい。
【0023】
焼成温度は400〜800℃、好ましくは500〜700℃の範囲である。この範囲外の温度で焼成を行うと高性能な触媒が得られないことがある。また、所定の温度に達してから熱処理を持続する時間については特に限定はされないが、熱処理時間が短すぎると高性能な触媒が得られないことがあるため、1〜20時間の範囲で行うのが好ましい。焼成雰囲気は、酸素含有ガスが好ましい。空気中で行うのが便利であるが、酸素と窒素、炭酸ガス、水蒸気等とを混合して用いることもできる。
【0024】
このようにして製造される流動層触媒の粒径は、5〜200μmとするのがよい。
【0025】
本発明中の触媒は、プロピレンのアンモ酸化反応に適用することにより、特に好ましい結果が得られる。プロピレンのアンモ酸化は、通常、プロピレン:アンモニア:酸素が1:0.9〜1.3:1.6〜2.5(モル比)の組成範囲の供給ガスを用い、反応温度370〜500℃、反応圧力常圧〜500kPaで行う。見掛け接触時間は0.1〜20秒である。酸素源としては、空気を用いるのが便利であるが、これを水蒸気、窒素、炭酸ガス、飽和炭化水素等で希釈して用いてもよいし、酸素を富化して用いるのもよい。
【0026】
【実施例】
以下、実施例により本発明の効果を更に具体的に示す。触媒の活性試験はプロピレンのアンモ酸化反応により次のように行った。
【0027】
触媒を内径25mmφ、高さ400mmの流動層反応器に所定の接触時間になるように充填し、この反応器中にプロピレン:アンモニア:酸素:水のモル比が1:1.2:1.89:0.5であるプロピレン、アンモニア、空気および水蒸気の混合ガスをガス線速度4.5cm/sで供給した。反応圧力は200kPa、反応温度440℃になるように保持した。このような活性試験条件下、下記の実施例および比較例で調製した触媒を用いて評価した結果を表1に纏めた。表中のアクリロニトリル収率は下記の式により定義される。
アクリロニトリル収率(%)=(生成したアクリロニトリルの炭素重量)/(供給されたプロピレンの炭素重量)×100
【0028】
実施例1
組成がMo10Bi0.4Fe1.1Ni6.0Cr0.8Ce0.4K0.2P0.1B0.1Ox−(SiO2)35(xは他の元素の原子価により自然に決まる値であるので以下酸素の記載を省略する)で表される触媒を以下の方法で調製した。
純水1000gにパラモリブデン酸アンモニウム408.6gを溶解し、ついで85%燐酸2.7gおよび無水硼酸1.4gをそれぞれ加えた。攪拌下、この液へ3.3%硝酸270gに硝酸ビスマス44.9g、硝酸カリウム4.7g、硝酸ニッケル403.8g、硝酸クロム74.1g、ヘキサニトラトセリウム(IV)酸アンモニウム50.7gおよびクエン酸25gを溶解した液を混合した。ついでこの液へ20%シリカゾル2433.4gを加えた後、15%アンモニア水を加えてpH5に調整した。このスラリーを還流下98℃、1.5時間加熱処理した。ついで純水270gにクエン酸25gおよび硝酸第二鉄102.9gを溶解した溶液を加えた。得られたスラリーを回転円盤型噴霧乾燥機で入口温度320℃、出口温度160℃にコントロールし、噴霧乾燥した。得られた球状粒子を250℃で加熱処理し、続いて400℃で2.5時間、さらに640℃で3時間焼成した。
【0029】
比較例1
ヘキサニトラトセリウム(IV)酸アンモニウムを硝酸セリウム(III)に変更した以外は実施例1と同様の方法で、実施例1と同一組成の触媒を調製した。
【0030】
実施例2
組成がMo10Bi0.5Fe0.9Ni5.0Co1.0Cr0.8Ce0.3Pr0.2K0.15−(SiO2)35で表される触媒を実施例1と同様の方法で調製し、表1記載の条件で焼成した。ただし、Co、Pr原料は硝酸塩を用いた。
【0031】
比較例2
ヘキサニトラトセリウム(IV)酸アンモニウムを硝酸セリウム(III)に変更した以外は実施例2と同様の方法で、実施例2と同一組成の触媒を調製した。
【0032】
実施例3
組成がMo10Bi0.5Fe1.1Ni5.5Mn0.5Cr0.6Ce0.5Pd0.01K0.15Rb0.05P0.2B0.2−(SiO2)40で表される触媒を実施例1と同様の方法で調製し、表1記載の条件で焼成した。ただし、Mn、Pd、Rb原料は硝酸塩を用いた。
【0033】
実施例4
組成がMo10Bi0.6Fe1.3Ni4.0Mg2.0Cr0.4Ce0.4Nd0.2K0.15Cs0.05−(SiO2)35で表される触媒を以下の方法で調製した。
純水1000gにパラモリブデン酸アンモニウム409.4gを溶解し、攪拌下、この液へ3.3%硝酸270gに硝酸ビスマス67.5g、硝酸カリウム3.5g、硝酸セシウム2.3g、硝酸ニッケル269.8g、硝酸マグネシウム118.9g、硝酸クロム37.1g、ヘキサニトラトセリウム(IV)酸アンモニウム50.8g、硝酸ネオジウム20.3gおよびクエン酸25gを溶解した液を混合した。ついでこの液へ20%シリカゾル2438.4gを加えた後、純水270gにクエン酸25gおよび硝酸第二鉄121.8gを溶解した溶液を加えた。15%アンモニア水を加えてpH2.5に調整した。ついでこのスラリーを還流下98℃、1.5時間加熱処理した。得られたスラリーを回転円盤型噴霧乾燥機で入口温度320℃、出口温度160℃にコントロールし、噴霧乾燥した。得られた球状粒子を250℃で加熱処理し、続いて400℃で2.5時間、さらに640℃で3時間焼成した。
【0034】
比較例3
ヘキサニトラトセリウム(IV)酸アンモニウムを硝酸セリウム(III)に変更した以外は実施例4と同様の方法で、実施例4と同一組成の触媒を調製した。
【0035】
実施例5
組成がMo10W0.5Bi0.8Fe1.5Mg2.0Co4.0Cr0.4Ce0.6K0.2P0.3−(SiO2)60で表される触媒を実施例4と同様の方法で調製し、表1記載の条件で焼成した。ただし、W原料はパラタングステン酸アンモニウムを用い、Mg、Co原料は硝酸塩を用いた。
【0036】
実施例6
組成がMo10Bi0.6Fe1.1Ni6.0Cr0.8Ce0.2K0.2P0.1B0.1−(SiO2)35で表される触媒を実施例1と同様の方法で調製した。
【0037】
実施例7
組成がMo10Bi0.2Fe1.3Ni4.0Mg2.0Cr0.4Ce0.8Nd0.2K0.15Cs0.05−(SiO2)35で表される触媒を実施例4と同様の方法で調製した。
【0038】
【表1】
【0039】
【発明の効果】
本発明の方法により調製されるアクリロニトリル製造用複合酸化物流動層触媒は長時間にわたり高位な反応成績を維持することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preparing a composite oxide fluidized bed catalyst used for acrylonitrile production, and more particularly to a method for preparing a molybdenum-bismuth-iron-cerium-containing composite oxide fluidized bed catalyst used for acrylonitrile production by ammoxidation of propylene.
[0002]
[Prior art]
As catalysts suitable for the production of acrylonitrile by ammoxidation of propylene, various catalyst compositions have been disclosed so far, and the yield of target products has been continuously improved. On the other hand, attempts have been made to improve the performance of the catalyst by improving the preparation method, and various methods have been proposed.
[0003]
Under such circumstances, in recent years, many catalysts containing cerium as an essential component have been proposed. JP-A-7-289901 discloses a catalyst containing molybdenum, bismuth, cerium, iron and cobalt as essential components, and JP-A-7-303836 discloses zinc as an essential component in addition to molybdenum, bismuth, cerium and iron. JP-A-7-328441 discloses a catalyst having molybdenum, bismuth, cerium, iron and nickel as essential components, and JP-A-10-43595 discloses nickel in addition to molybdenum, bismuth, cerium and iron. One or more elements selected from cobalt, one or more elements selected from magnesium, calcium, strontium, barium, zinc and manganese, one or more elements selected from sodium, potassium, rubidium and cesium , Tungsten, vanadium, niobium, tantalum, anti Emissions, the catalyst comprising one or more elements selected from rhenium and tellurium are disclosed respectively.
[0004]
Further, in Japanese Patent Publication No. 51-33888, Japanese Patent Application Laid-Open No. 8-266899, Japanese Patent Application Laid-Open No. 11-169715, Japanese Patent Application Laid-Open No. 2000-5603, etc., one or more elements selected from an element group containing cerium are used. Each catalyst contained as an essential component is disclosed. However, in these methods for preparing a catalyst containing cerium as an essential component, there is no known study on the kind of cerium compound, which is one of the catalyst raw materials, and improvement in catalyst performance.
[0005]
[Problems to be solved by the invention]
These prior art catalysts were effective in terms of improving the acrylonitrile yield as they were and in maintaining the reaction results over a long period of time. Therefore, there has been a strong industrial demand to develop a catalyst that can achieve a higher acrylonitrile yield and suppress the decrease over time.
[0006]
The present invention has been made to solve the above-mentioned problems, and in particular, it aims to improve the preparation method of a catalyst used in a method for producing acrylonitrile by ammoxidation of propylene.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that (i) molybdenum, (ii) bismuth, (iii) iron, (iv) magnesium, and other components selected from (v) cerium, In a catalyst containing (vi) an alkali metal component and (vii) silicon as an essential component, a trivalent cerium compound was used by using a tetravalent cerium compound as a raw material for cerium, which is one of the essential components. We found that the decrease in acrylonitrile yield over time was sufficiently small compared to the case, and this method was applied to a catalyst system in which the acrylonitrile yield at the initial stage of the reaction was high, but the decrease over time was relatively large. In this case, it was found that the decrease in acrylonitrile yield with time can be suppressed to a sufficiently low level, and the present invention has been achieved.
[0008]
That is, the present invention comprises (i) molybdenum, (ii) bismuth, (iii) iron, (iv) magnesium, calcium, strontium, barium, chromium, manganese, cobalt, nickel, copper, zinc and cadmium as catalyst components. Preparation of a mixed oxide fluidized bed catalyst for acrylonitrile production comprising at least one element selected from the group, (v) cerium, (vi) at least one element selected from alkali metal elements, and (vii) silicon as essential components And a method for preparing a mixed oxide fluidized bed catalyst, wherein a tetravalent cerium compound is used as a raw material of the component (v).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is characterized in that a tetravalent cerium compound is used as a raw material of the cerium component constituting the catalyst in a method for producing acrylonitrile by ammoxidation of propylene, thereby reducing a decrease in acrylonitrile yield over time. Expresses the suppressive effect. Although the mechanism of this effect is not clear, a catalyst slurry is obtained by using a tetravalent cerium compound as a raw material for the cerium component, compared to when a trivalent cerium compound such as cerium (III) nitrate is used. The cerium present in the catalyst is present in a tetravalent state having a smaller pKa, so that it is considered that a more preferable catalyst structure is formed by promoting the precipitation generation reaction of the catalyst precursor containing cerium. It is done.
[0010]
The catalyst to which the present invention is applied includes (i) molybdenum, (ii) bismuth, (iii) iron, (iv) magnesium, calcium, strontium, barium, chromium, manganese, cobalt, nickel, copper, zinc as essential components. And at least one element selected from the group consisting of cadmium, (v) cerium, (vi) at least one element selected from alkali metal elements, and (vii) a composite oxide fluidized bed catalyst containing silicon Particularly, it is preferably applied to a catalyst having a composition represented by the following general formula.
MoaBibFecHdLeMfNgCehXiYjSikOx
(In the formula, Mo, Bi, Fe, Ce, Si and O represent molybdenum, bismuth, iron, cerium, silicon and oxygen, respectively, H represents magnesium, calcium, strontium, barium, chromium, manganese, cobalt, nickel and copper. At least one element selected from the group consisting of zinc and cadmium, L is at least one element selected from the group consisting of yttrium, lanthanum, praseodymium, neodymium, samarium, aluminum, gallium and indium, and M is titanium, zirconium At least one element selected from the group consisting of vanadium, niobium, tantalum, tungsten, germanium, tin, lead and antimony, N is a group consisting of ruthenium, rhodium, palladium, rhenium, osmium, iridium, platinum and silver At least one element selected, X is at least one element selected from the group consisting of phosphorus, boron, arsenic, thallium and tellurium, Y is at least selected from the group consisting of lithium, sodium, potassium, rubidium and cesium Represents an element, where the subscripts a, b, c, d, e, f, g, h, i, j, k, and x represent the atomic ratio of each element, and when a = 10, b = 0 0.1-1.5, preferably 0.3-1.2, c = 0.5-2.0, preferably 0.6-1.8, d = 3-10, preferably 5-8, e = 0 to 2, preferably 0 to 1.5, f = 0 to 3, preferably 0 to 2, g = 0 to 1, preferably 0 to 0.5, h = 0.1 to 1, preferably 0 .2 to 0.8, 0.25 <h / c <0.5, b / h ≧ 1, i = 0 to 3, preferably 0 to 2, j = 0.05 -1.5, preferably 0.1-1.0, k = 20-200, and x is the number of oxygen atoms necessary to satisfy the valence of each component.
[0011]
Molybdenum, bismuth, iron, H component, cerium, Y component and silicon are essential components, and the object of the present invention is achieved particularly well when each is within the above composition range. According to the method of the present invention, good catalytic performance can be exhibited in a composition region in which the iron component is relatively small relative to the molybdenum component. In general, in the composition region where the iron component is low, the acrylonitrile yield at the beginning of the reaction is high, but the temporal stability tends to deteriorate, but a tetravalent cerium compound is used as a raw material for the cerium component, and the ratio of cerium / iron is preferred. Is larger than 0.25 and smaller than 0.5, it is possible to greatly improve the decrease in the acrylonitrile yield over time while keeping the acrylonitrile yield at the initial stage of the reaction high. When the ratio of cerium / iron is 0.25 or less, the acrylonitrile yield at the initial stage of the reaction is good, but the effect may be slightly small in terms of maintaining the reaction performance over time. When the ratio of cerium / iron is 0.5 or more, although the effect is great in terms of maintaining the reaction performance over time, the improvement in the acrylonitrile yield at the initial stage of the reaction may be slightly small. Moreover, in order to express this effect satisfactorily, the ratio of bismuth / cerium is preferably 1 or more. As the H component, magnesium, chromium, manganese, cobalt, and nickel are preferable. The Y component is preferably potassium, rubidium or cesium. The addition amount range of these components is important, and the effect is remarkably improved when it is within the above range.
[0012]
The raw material of the cerium component constituting the catalyst is not particularly limited as long as it is tetravalent, but ceric oxide (IV), ammonium hexanitratocerium (IV), ceric hydroxide (IV) and sulfuric acid Examples thereof include tetravalent cerium compounds such as dicerium (IV) or a mixture thereof, and ammonium hexanitratocerium (IV) is particularly preferably used. Since this compound is easily dissolved in water and can exist as tetravalent cerium in an aqueous solution, it is particularly preferred for use as a catalyst raw material component in the present invention.
[0013]
The starting material for each element other than cerium is not particularly limited. For example, the molybdenum component material may be molybdenum oxide such as molybdenum trioxide, molybdic acid, ammonium paramolybdate, or ammonium metamolybdate. Molybdic acid or a salt thereof, phosphomolybdic acid, heteropolyacid containing molybdenum such as silicomolybdic acid or a salt thereof can be used.
[0014]
As raw materials for the bismuth component, bismuth salts such as bismuth nitrate, bismuth carbonate, bismuth sulfate, bismuth acetate, bismuth trioxide, metal bismuth, and the like can be used. These raw materials can be used in the form of a solid or as an aqueous solution, an aqueous nitric acid solution, or a slurry of a bismuth compound generated from the aqueous solution, but it is preferable to use nitrate, a solution thereof, or a slurry generated from the solution.
[0015]
Ferrous oxide, ferric oxide, ferric tetroxide, ferrous nitrate, ferric nitrate, ferrous sulfate, iron chloride, iron organic acid salt, iron hydroxide, etc. can be used as raw materials for the iron component In addition, metallic iron may be dissolved in heated nitric acid.
[0016]
Silica sol, fumed silica or the like is used as a raw material of silicon, and silica sol is particularly preferable. A silica sol having a low sodium content is preferably used.
[0017]
As raw materials for other elements, usually oxides, nitrates, carbonates, organic acid salts, hydroxides, and the like, which can be converted into oxides when ignited, or mixtures thereof are used.
[0018]
The catalyst according to the present invention is prepared by mixing catalyst raw materials, spray drying, and calcining. The pH of a solution or slurry containing at least a molybdenum component raw material, a bismuth component raw material, and a cerium component raw material is 2 to 2. It is preferable to adjust to a range of 5 and then spray-dry and fire this solution or slurry. If the pH is higher than 5, the slurry becomes highly viscous or gelled, so that stirring of the slurry becomes difficult and it is difficult to obtain a uniform slurry. Further, in order to promote the precipitation generation reaction of the catalyst precursor containing cerium present in the catalyst slurry, and thereby improve the stability of the slurry properties, the pH is preferably set to 2 or more.
[0019]
When the pH is adjusted to a relatively high value, for example, 4 to 5, a chelating agent such as ethylenediaminetetraacetic acid, lactic acid, citric acid, tartaric acid, gluconic acid is used to suppress gelation of the slurry according to the method described in Japanese Patent No. 2747920. Etc. can be used together. These chelating agents may have an effect when added in a small amount even when prepared at a relatively low pH adjustment, for example, 2 to 3. Further, by allowing the chelating agent to coexist in a solution containing an iron component, the iron component can be prevented from precipitating, and a highly active catalyst can be obtained. The addition amount of the chelating agent is preferably in the range of 0.1 to 10% based on the weight of the oxide of the finished catalyst to be produced.
[0020]
In the method of the present invention, the heat treatment of the slurry is not necessarily required, but the solution or slurry containing the catalyst raw material is heat-treated at a temperature of 50 to 120 ° C., preferably 60 to 110 ° C. for at least 10 minutes or more. It is desirable to stabilize the properties of the slurry or to improve the performance of the finally obtained catalyst.
[0021]
The resulting catalyst slurry is spray dried. The spray drying device may be a general device such as a rotary disk type or a nozzle type. The drying temperature is preferably in the range of 80 to 350 ° C.
[0022]
The obtained dried product is fired. There are no particular limitations on the type and method of the firing furnace at that time, for example, a normal box-type firing furnace, a tunnel-type firing furnace, or the like may be used for firing in a state where the dried product is left standing, Moreover, you may bake, making a dried material flow, using a rotary kiln baking furnace.
[0023]
The firing temperature is in the range of 400 to 800 ° C, preferably 500 to 700 ° C. When calcination is performed at a temperature outside this range, a high-performance catalyst may not be obtained. Further, the time for which the heat treatment is continued after reaching the predetermined temperature is not particularly limited. However, if the heat treatment time is too short, a high-performance catalyst may not be obtained. Is preferred. The firing atmosphere is preferably an oxygen-containing gas. Although it is convenient to carry out in the air, oxygen and nitrogen, carbon dioxide, water vapor, etc. can be mixed and used.
[0024]
The particle size of the fluidized bed catalyst thus produced is preferably 5 to 200 μm.
[0025]
By applying the catalyst in the present invention to the ammoxidation reaction of propylene, particularly preferable results can be obtained. Ammoxidation of propylene is usually carried out using a feed gas having a composition range of propylene: ammonia: oxygen of 1: 0.9 to 1.3: 1.6 to 2.5 (molar ratio), and a reaction temperature of 370 to 500 ° C. The reaction pressure is from normal pressure to 500 kPa. Apparent contact time is 0.1 to 20 seconds. As the oxygen source, it is convenient to use air. However, it may be diluted with water vapor, nitrogen, carbon dioxide, saturated hydrocarbon or the like, or enriched with oxygen.
[0026]
【Example】
Hereinafter, the effects of the present invention will be described more specifically by way of examples. The activity test of the catalyst was carried out by the ammoxidation reaction of propylene as follows.
[0027]
The catalyst was packed in a fluidized bed reactor having an inner diameter of 25 mmφ and a height of 400 mm so as to have a predetermined contact time, and the molar ratio of propylene: ammonia: oxygen: water was 1: 1.28: 1.89. : A mixed gas of propylene, ammonia, air and water vapor of 0.5 was supplied at a gas linear velocity of 4.5 cm / s. The reaction pressure was maintained at 200 kPa and the reaction temperature was 440 ° C. Table 1 summarizes the results of evaluation using the catalysts prepared in the following Examples and Comparative Examples under such activity test conditions. The acrylonitrile yield in the table is defined by the following formula.
Acrylonitrile yield (%) = (carbon weight of produced acrylonitrile) / (carbon weight of supplied propylene) × 100
[0028]
Example 1
The composition is Mo10Bi0.4Fe1.1Ni6.0Cr0.8Ce0.4K0.2P0.1B0.1Ox- (SiO2) 35 (since x is a value naturally determined by the valence of other elements, the description of oxygen is omitted below) The represented catalyst was prepared in the following manner.
408.6 g of ammonium paramolybdate was dissolved in 1000 g of pure water, and then 2.7 g of 85% phosphoric acid and 1.4 g of boric anhydride were added. Under stirring, 270 g of 3.3% nitric acid, 44.9 g of bismuth nitrate, 4.7 g of potassium nitrate, 403.8 g of nickel nitrate, 74.1 g of chromium nitrate, 50.7 g of ammonium hexanitratocerium (IV) and citric acid were added to this solution. A solution in which 25 g of acid was dissolved was mixed. Next, 2433.4 g of 20% silica sol was added to this liquid, and then adjusted to pH 5 by adding 15% aqueous ammonia. This slurry was heat-treated at 98 ° C. under reflux for 1.5 hours. Then, a solution in which 25 g of citric acid and 102.9 g of ferric nitrate were dissolved in 270 g of pure water was added. The obtained slurry was spray dried by controlling the inlet temperature at 320 ° C. and the outlet temperature at 160 ° C. with a rotary disk type spray dryer. The obtained spherical particles were heat-treated at 250 ° C., followed by baking at 400 ° C. for 2.5 hours and further at 640 ° C. for 3 hours.
[0029]
Comparative Example 1
A catalyst having the same composition as in Example 1 was prepared in the same manner as in Example 1 except that ammonium hexanitratocerium (IV) was changed to cerium (III) nitrate.
[0030]
Example 2
A catalyst having a composition represented by Mo10Bi0.5Fe0.9Ni5.0Co1.0Cr0.8Ce0.3Pr0.2K0.15- (SiO2) 35 was prepared in the same manner as in Example 1, and calcined under the conditions described in Table 1. However, nitrates were used as Co and Pr raw materials.
[0031]
Comparative Example 2
A catalyst having the same composition as in Example 2 was prepared in the same manner as in Example 2, except that ammonium hexanitratocerium (IV) was changed to cerium (III) nitrate.
[0032]
Example 3
A catalyst having a composition represented by Mo10Bi0.5Fe1.1Ni5.5Mn0.5Cr0.6Ce0.5Pd0.01K0.15Rb0.05P0.2B0.2- (SiO2) 40 was prepared in the same manner as in Example 1 and described in Table 1. It baked on the conditions of this. However, nitrates were used as raw materials for Mn, Pd, and Rb.
[0033]
Example 4
A catalyst having a composition represented by Mo10Bi0.6Fe1.3Ni4.0Mg2.0Cr0.4Ce0.4Nd0.2K0.15Cs0.05- (SiO2) 35 was prepared by the following method.
Dissolve 409.4 g of ammonium paramolybdate in 1000 g of pure water, and with stirring, 270 g of 3.3% nitric acid, 67.5 g of bismuth nitrate, 3.5 g of potassium nitrate, 2.3 g of cesium nitrate, 269.8 g of nickel nitrate Then, 118.9 g of magnesium nitrate, 37.1 g of chromium nitrate, 50.8 g of ammonium hexanitratocerium (IV), 20.3 g of neodymium nitrate, and 25 g of citric acid were mixed. Next, 2438.4 g of 20% silica sol was added to this solution, and then a solution in which 25 g of citric acid and 121.8 g of ferric nitrate were dissolved in 270 g of pure water was added. The pH was adjusted to 2.5 by adding 15% aqueous ammonia. The slurry was then heat-treated at 98 ° C. under reflux for 1.5 hours. The obtained slurry was spray dried by controlling the inlet temperature at 320 ° C. and the outlet temperature at 160 ° C. with a rotary disk type spray dryer. The obtained spherical particles were heat-treated at 250 ° C., followed by baking at 400 ° C. for 2.5 hours and further at 640 ° C. for 3 hours.
[0034]
Comparative Example 3
A catalyst having the same composition as in Example 4 was prepared in the same manner as in Example 4 except that ammonium hexanitratocerium (IV) was changed to cerium (III) nitrate.
[0035]
Example 5
A catalyst represented by Mo10W0.5Bi0.8Fe1.5Mg2.0Co4.0Cr0.4Ce0.6K0.2P0.3- (SiO2) 60 was prepared in the same manner as in Example 4, and calcined under the conditions shown in Table 1. did. However, ammonium paratungstate was used as the W raw material, and nitrate was used as the Mg and Co raw materials.
[0036]
Example 6
A catalyst having a composition represented by Mo10Bi0.6Fe1.1Ni6.0Cr0.8Ce0.2K0.2P0.1B0.1- (SiO2) 35 was prepared in the same manner as in Example 1.
[0037]
Example 7
A catalyst having a composition represented by Mo10Bi0.2Fe1.3Ni4.0Mg2.0Cr0.4Ce0.8Nd0.2K0.15Cs0.05- (SiO2) 35 was prepared in the same manner as in Example 4.
[0038]
[Table 1]
[0039]
【The invention's effect】
The mixed oxide fluidized bed catalyst for acrylonitrile production prepared by the method of the present invention can maintain a high reaction performance for a long time.
Claims (4)
MoaBibFecHdLeMfNgCehXiYjSikOx
(式中、Mo、Bi、Fe、Ce、SiおよびOはそれぞれモリブデン、ビスマス、鉄、セリウム、珪素および酸素を表し、Hはマグネシウム、カルシウム、ストロンチウム、バリウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛およびカドミウムからなる群より選ばれた少なくとも一種の元素、Lはイットリウム、ランタン、プラセオジム、ネオジム、サマリウム、アルミニウム、ガリウムおよびインジウムからなる群より選ばれた少なくとも一種の元素、Mはチタン、ジルコニウム、バナジウム、ニオブ、タンタル、タングステン、ゲルマニウム、錫、鉛およびアンチモンからなる群より選ばれた少なくとも一種の元素、Nはルテニウム、ロジウム、パラジウム、レニウム、オスミウム、イリジウム、白金および銀からなる群より選ばれた少なくとも一種の元素、Xはリン、ホウ素、砒素、タリウムおよびテルルからなる群より選ばれた少なくとも一種の元素、Yはリチウム、ナトリウム、カリウム、ルビジウム、セシウムからなる群から選ばれた少なくとも一種の元素を表す。ただし、添字a、b、c、d、e、f、g、h、i、j、kおよびxは各元素の原子比を表し、a=10のとき、b=0.1〜1.5、c=0.5〜2.0、d=3〜10、e=0〜2、f=0〜3、g=0〜1、h=0.1〜1、i=0〜3、j=0.05〜1.5、k=20〜200であり、xは前記各成分の原子価を満足するのに必要な酸素原子数である。)で示される組成を有するものであることを特徴とする請求項1に記載の複合酸化物流動層触媒の調製法。The complex oxide fluidized bed catalyst has the general formula MoaBibFecHdLeMfNgCehXiYjSikOx
(In the formula, Mo, Bi, Fe, Ce, Si and O represent molybdenum, bismuth, iron, cerium, silicon and oxygen, respectively, H represents magnesium, calcium, strontium, barium, chromium, manganese, cobalt, nickel and copper. At least one element selected from the group consisting of zinc and cadmium, L is at least one element selected from the group consisting of yttrium, lanthanum, praseodymium, neodymium, samarium, aluminum, gallium and indium, and M is titanium, zirconium At least one element selected from the group consisting of vanadium, niobium, tantalum, tungsten, germanium, tin, lead and antimony, N is a group consisting of ruthenium, rhodium, palladium, rhenium, osmium, iridium, platinum and silver At least one element selected, X is at least one element selected from the group consisting of phosphorus, boron, arsenic, thallium and tellurium, Y is at least selected from the group consisting of lithium, sodium, potassium, rubidium and cesium Represents an element, where the subscripts a, b, c, d, e, f, g, h, i, j, k and x represent the atomic ratio of each element, and when a = 10, b = 0 0.1 to 1.5, c = 0.5 to 2.0, d = 3 to 10, e = 0 to 2, f = 0 to 3, g = 0 to 1, h = 0.1-1, i = 0-3, j = 0.05-1.5, k = 20-200, and x is the number of oxygen atoms necessary to satisfy the valence of each component. The method for preparing a mixed oxide fluidized bed catalyst according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000240087A JP3682211B2 (en) | 2000-08-08 | 2000-08-08 | Preparation of mixed oxide fluidized bed catalyst for acrylonitrile production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000240087A JP3682211B2 (en) | 2000-08-08 | 2000-08-08 | Preparation of mixed oxide fluidized bed catalyst for acrylonitrile production |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002045696A JP2002045696A (en) | 2002-02-12 |
JP3682211B2 true JP3682211B2 (en) | 2005-08-10 |
Family
ID=18731514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000240087A Expired - Fee Related JP3682211B2 (en) | 2000-08-08 | 2000-08-08 | Preparation of mixed oxide fluidized bed catalyst for acrylonitrile production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3682211B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008237963A (en) * | 2007-03-26 | 2008-10-09 | Daiyanitorikkusu Kk | Method for preparing catalyst for manufacturing acrylonitrile |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4597782B2 (en) * | 2005-06-08 | 2010-12-15 | ダイヤニトリックス株式会社 | Method for producing fluidized bed ammoxidation catalyst |
DE102013004755B4 (en) * | 2013-03-20 | 2014-12-11 | Clariant International Ltd. | Composite material containing a bismuth-molybdenum-nickel mixed oxide or a bismuth-molybdenum-cobalt mixed oxide and SiO 2 |
-
2000
- 2000-08-08 JP JP2000240087A patent/JP3682211B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008237963A (en) * | 2007-03-26 | 2008-10-09 | Daiyanitorikkusu Kk | Method for preparing catalyst for manufacturing acrylonitrile |
Also Published As
Publication number | Publication date |
---|---|
JP2002045696A (en) | 2002-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4030740B2 (en) | Method for producing ammoxidation catalyst | |
JP3142549B2 (en) | Iron / antimony / molybdenum-containing oxide catalyst composition and method for producing the same | |
JP2747920B2 (en) | Preparation of Molybdenum Containing Metal Oxide Fluidized Bed Catalyst Suitable for Oxidation Reaction | |
JP2701065B2 (en) | Preparation of molybdenum-bismuth-containing composite oxide catalyst | |
JP4242197B2 (en) | Catalyst for acrylonitrile synthesis | |
JP5919870B2 (en) | Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst | |
JP5011176B2 (en) | Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile | |
JP4954750B2 (en) | Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst | |
KR100531988B1 (en) | Catalyst for producing unsaturated nitrile | |
JP3819192B2 (en) | Production method of acrylonitrile | |
KR20020043632A (en) | Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same | |
JP3680115B2 (en) | Catalyst composition for producing unsaturated nitrile | |
JP4159759B2 (en) | Method for producing molybdenum-bismuth-iron-containing composite oxide fluidized bed catalyst | |
JP4159729B2 (en) | Method for producing acrylonitrile | |
JP3875011B2 (en) | Acrylonitrile manufacturing process | |
JP3682211B2 (en) | Preparation of mixed oxide fluidized bed catalyst for acrylonitrile production | |
JP4823950B2 (en) | Method for producing catalyst for acrylonitrile production | |
JP3720625B2 (en) | Method for preparing molybdenum-bismuth-iron-containing composite oxide catalyst | |
JP5378041B2 (en) | Method for producing composite oxide catalyst for acrylonitrile synthesis | |
JP3872269B2 (en) | Method for producing hydrogen cyanide | |
JP3796132B2 (en) | Preparation of composite oxide catalyst for gas phase ammoxidation reaction | |
JP3872270B2 (en) | Production method of hydrogen cyanide | |
WO1999054037A1 (en) | Catalyst for producing unsaturated nitrile | |
JP2903317B2 (en) | Preparation of molybdenum-containing ammoxidation catalyst | |
JP3720626B2 (en) | Method for preparing molybdenum-bismuth-tellurium-containing composite oxide catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050520 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3682211 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080527 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080527 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090527 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100527 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100527 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110527 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110527 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120527 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130527 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130527 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130527 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130527 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |