WO1999054037A1 - Catalyst for producing unsaturated nitrile - Google Patents

Catalyst for producing unsaturated nitrile Download PDF

Info

Publication number
WO1999054037A1
WO1999054037A1 PCT/JP1999/002146 JP9902146W WO9954037A1 WO 1999054037 A1 WO1999054037 A1 WO 1999054037A1 JP 9902146 W JP9902146 W JP 9902146W WO 9954037 A1 WO9954037 A1 WO 9954037A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
group
element selected
iron
catalyst
Prior art date
Application number
PCT/JP1999/002146
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Sasaki
Kunio Mori
Yoshimi Nakamura
Takao Shimizu
Yuichi Tagawa
Kenichi Miyaki
Seiichi Kawatou
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to ROA200001018A priority Critical patent/RO119228B1/en
Priority to DE69920437T priority patent/DE69920437T2/en
Priority to EP99917105A priority patent/EP1075871B1/en
Priority to US09/673,571 priority patent/US6479691B1/en
Publication of WO1999054037A1 publication Critical patent/WO1999054037A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J27/192Molybdenum with bismuth

Definitions

  • the present invention relates to a metal oxide catalyst used for producing unsaturated nitrile by ammoxidation.
  • 4,290,922 includes molybdenum, cobalt, nickel, bismuth, vanadium, calcium, and potassium as essential components.
  • Patent No. 2,640,356 discloses an oxide catalyst containing molybdenum, bismuth, iron, nickel, and metal alloys;
  • U.S. Patent No. 5,093,299 and US Pat. No. 5,175,334 describe oxides containing molybdenum, bismuth, iron, nickel, magnesium, potassium and cesium.
  • 7-47272 disclose at least one element selected from the group consisting of molybdenum, bismuth, iron, nickel, chromium and indium, and alkalis such as potassium.
  • No. 5,132,269 discloses iron, antimony, and molybdenum, bismuth, cerium, iron, nickel, and oxide catalysts containing magnesium or zinc, and alkali metals.
  • a catalyst containing molybdenum, bismuth, iron, antimony, or the like comprises chromium, zirconium, lanthanum, and cerium.
  • At least one element selected from the group consisting of chromium, zirconium, lanthanum and cerium has a clear effect when added in a relatively small amount, and excessive addition rather decreases the yield of the target product sharply .
  • the ratio of zirconium, lanthanum, cerium, and the like to chromium is small. If the ratio is large, ammonia flammability increases and the yield of the target product decreases.
  • Chromium is used in combination with at least one element selected from the group consisting of zirconium, lanthanum and cerium, and by finding a favorable quantitative relationship at the time of addition, the yield of the target product is improved, and The flammability was suppressed and the yield of by-products was also reduced.
  • the present invention provides a catalyst composition represented by the following empirical formula, which is used when producing unsaturated nitrile by ammoxidation:
  • Mo, Bi, Fe, Sb, Ni, Cr, and K represent molybdenum, bismuth, iron, antimony, nickel, chromium, and potassium, respectively, and F represents zirconium, lanthanum, and cerium.
  • X is at least one element selected from the group consisting of phosphorus, boron and tellurium
  • Y is at least one element selected from the group consisting of lithium, sodium, rubidium and cesium
  • O is oxygen
  • U.S. Pat. No. 3,350,323 discloses a method of adding an aqueous solution of bismuth citrate to an aqueous solution of molybdic acid, JP-A-53-10387, JP-A-53-10388, and U.S. Pat. No. 4,847,831 describes a method of adding a bismuth compound in a solid state to an aqueous molybdic acid solution, and US Pat. No. 4,418,007 discloses a method in which the pH is in the range of 6 to 8.
  • 4,803,190 describes a method of using bismuth oxide or bismuth subcarbonate as a bismuth source
  • US Pat. No. 4,803,190 describes a method of forming bismuth compounds in advance. Adjusting a slurry containing at least one selected from the group consisting of: bismuth and tellurium and a molybdenum compound to a pH range above pH 7, US Pat.
  • Japanese Patent No. 5,071,814 discloses a method in which a chelating agent is added to a slurry containing molybdenum compound containing silicide to adjust ⁇ 1 to 1 ⁇ 6 or more.
  • the specification discloses a method of mixing a bismuth compound after a slurry containing molybdenum is adjusted to pH 6 or more.
  • Molybdenum, bismuth, iron, nickel, chromium, potassium, and the metal elements represented by F are essential components, and the objects of the present invention cannot be achieved unless each of the above composition ranges.
  • the catalyst composition of the present invention contains iron antimonate, it necessarily contains antimony.
  • the selectivity of the target product is improved, and the physical properties of the catalyst are improved. Advantages are noted.
  • silica is preferably used as a carrier.
  • j is preferably in a range of 20 to 80.
  • the catalyst composition of the present invention may be prepared by appropriately selecting and applying the preparation method disclosed as the above-mentioned prior art.
  • the raw materials for the molybdenum component include dimethyl molybdenum acid and ammonium paramolybdate; the raw materials for the bismuth component include bismuth trioxide, bismuth nitrate, bismuth carbonate, and bismuth oxalate; and the raw material for the iron component include nitric acid. Iron, iron oxalate, and the like, chromium nitrate and chromic acid are used as raw materials for the chromium component, and potassium hydroxide and potassium nitrate are used as the raw material for the potassium component.
  • the raw materials of the zirconium component include zirconium oxide and zirconium oxynitrate; the raw materials of the lanthanum component include lanthanum oxide and lanthanum nitrate; and the raw materials of the cerium component include cerium oxide and cerium ammonium nitrate. Etc. are for Also, organic acid salts of these elements can be used.
  • the respective nitrates as the raw materials for the components such as nickel, cobalt, magnesium, manganese and zinc, but it is also possible to use the respective organic acid salts, hydroxides and oxides.
  • the tellurium component when added, as a raw material of the tellurium component, a material capable of using telluric acid or a salt thereof or tellurous acid or a salt thereof, or a solution obtained by dissolving metallic tellurium in a heated aqueous hydrogen peroxide solution. May be used.
  • oxides, hydroxides, nitrates, organic acid salts, etc. of the respective elements are used as raw materials for other components.
  • silica sol As a raw material of silica, silica sol, fumed silica and the like are used, and silica sol is particularly preferable. As the silica sol, one having a low sodium content is preferably used.
  • the catalyst composition of the present invention is prepared by mixing these raw materials, drying and calcining.
  • the slurry prepared by mixing the raw materials preferably has a pH of 6 or more. This operation reduces the ammonia flammability during the reaction and improves the yield of the target product. In that case, the viscosity of the slurry can be reduced by mixing the chelating agent into the slurry, and the operability can be improved.
  • the present catalyst composition was prepared with a pH of 6 or more, it was found that the presence of the chromium component contributed to lowering the viscosity of the slurry. This is an advantage for improving operability, and it is noteworthy.
  • Further heat treatment of the prepared slurry may be advantageous in that the stability of the slurry is increased and the reproducibility is improved.
  • chelating agents examples include ethylenediaminetetraacetic acid, lactic acid, citric acid, tartaric acid, and dalconic acid.
  • the amount of the chelating agent is preferably in the range of 0.1 to 10%, preferably 0.5 to 8% by weight of the oxide catalyst to be produced. More preferably, it is used in the range of / 0 . If the amount of the chelating agent is less than 0.1% by weight with respect to the oxide catalyst, the effect is not sufficiently exhibited, and if the amount exceeds 10% by weight, a large number of cracks may be formed in the completed catalyst.
  • the chelating agent is iron 1 0.1 to 2 gram molecules are preferred for gram ions.
  • iron antimonate When iron antimonate is contained, it is preferable to prepare iron antimonate in advance and then mix it with a raw material of other components such as molybdenum to form a slurry. .
  • a molybdenum raw material and / or a raw material of at least one element selected from the group consisting of nickel, cobalt, magnesium, chromium, manganese and zinc and having a pH of 6 or more are contained.
  • a method is also preferable in which a certain aqueous slurry is mixed with a solution or slurry containing a tellurium raw material and a Z or iron raw material, and then the mixture is dried and fired.
  • a solution or slurry containing a raw material of iron and a solution containing a raw material of tellurium are mixed with the aqueous slurry having a pH of 6 or more, or Also preferred is a method of mixing a mixed solution or slurry containing a raw material and a tellurium raw material with the aqueous slurry having a pH of 6 or more, followed by drying and firing the mixture.
  • metallic iron may be used by dissolving it in heated nitric acid.
  • the solution containing the iron component may be used after adjusting the pH with ammonia water or the like.
  • coexistence of a chelating agent in a solution containing an iron component can prevent precipitation of the iron component, and a highly active catalyst can be obtained.
  • chelating agents that can be used here include ethylenediaminetetraacetic acid, lactic acid, citric acid, tartaric acid, and glyconic acid.
  • the drying of the slurry mixture is preferably carried out by a spray drying method in the case of producing a fluidized bed catalyst, and granulation is carried out simultaneously with drying. Thereby, fine spherical particles can be obtained.
  • the mixture is preferably calcined at 200 to 500 ° C, and more preferably calcined at 500 to 700 ° C.
  • the firing time may be 1 to 20 hours.
  • the atmosphere during firing is preferably an oxygen-containing gas.
  • the baking is conveniently performed in the air, but may be performed in an atmosphere in which oxygen and nitrogen, carbon dioxide, water vapor, organic compounds, and the like are appropriately mixed. Box furnaces, tunnel furnaces, rotary furnaces, fluidized furnaces, etc. are used for baking.
  • the final calcination is preferably performed in a fluidized furnace. This makes it easier to strictly control the final firing conditions, and makes it possible to produce fluidized bed catalysts with excellent performance with good reproducibility.
  • the particle size of the fluidized bed catalyst produced in this way is preferably from 10 to 200 ⁇ m.
  • the catalyst composition of the present invention or the catalyst composition produced by the production method of the present invention as described above is suitable for producing unsaturated nitrile by ammoxidation of olefin.
  • the apparent contact time is 0.1 to 20 seconds.
  • the reaction pressure was 20 ° kPa.
  • Atarilonitrile yield (%) number of moles of acrylonitrile produced Number of moles of propylene supplied / number of moles X 100
  • Acrylonitrile selectivity (%) number of moles of atarilonitrile produced, number of moles of propylene reacted x 100
  • Propylene conversion (%) number of moles of propylene reacted / propylene supplied Number of monoles of X 100
  • Ammonia combustion rate (%) 100- [(weight of nitrogen in product + weight of nitrogen in unreacted ammonia) Z weight of nitrogen in supplied ammonia X loo]
  • a catalyst having a K of 0.7 P 0.2 T e 0.25 ° 53.7 ⁇ i ° 2) 40 (atomic ratio) was prepared.
  • the above mixture was spray-dried with a rotating disk spray dryer at an inlet temperature of 330 ° C and an outlet temperature of 160 ° C.
  • the particles were heat-treated at 250 ° C. for 2 hours and 400 ° C. for 2 hours, and finally fluidized at 590 ° C. for 3 hours.
  • Example 11 A catalyst having the same composition as in Example 1 was prepared by the following method.
  • This slurry was adjusted to pH 7.7 by adding 15% aqueous ammonia with stirring, and then heat-treated at 100 ° C. for 1.5 hours under reflux.
  • To 208 g of water were added 4.65 g of metal tellurium, 3.9 g of ammonium paramolybdate, and 16 g of hydrogen peroxide solution, and the mixture was stirred at 95 to 100 ° C. and dissolved.
  • the solution was cooled to room temperature, and 20 g of citric acid and 35.33 g of iron nitrate were dissolved. While stirring this, 15% aqueous ammonia was added to adjust the pH to 9.2, and 99.1 g of ammonium paramolybdate was added little by little to dissolve.
  • ammonia water was added to adjust the pH to 7. This solution was mixed with the slurry previously heated, and 138.3 g of iron antimonate powder was mixed.
  • the mixture was spray-dried and heat-treated in the same manner as in Example 11-11, and finally fluidized at 580 ° C for 3 hours.
  • Example 1-11 The above mixture was spray-dried and heat-treated in the same manner as in Example 1-11, and finally fluidized-fired at 590 ° C for 3 hours.
  • a catalyst having the same composition as in Example 2-1 was prepared by the following method.
  • Example 1-11 The above mixture was spray-dried and heat-treated in the same manner as in Example 1-11, and finally fluidized-fired at 590 ° C for 3 hours.
  • Example 11-11 The above mixture was spray-dried and heat-treated in the same manner as in Example 11-11, and finally fluidized-fired at 600 ° C for 3 hours.
  • Example 4 1 The composition is Mo! 0 B i 0. 4 F e o . EN i 5. 75 C r 0. 5 Z r 0. 2 K o. 7
  • the catalyst was prepared a 2 T e 0. 25O39. 8 ( S i 0 2) 40 ( atomic ratio). 309.5 g of ammonium paramolybdate was dissolved in 1800 g of pure water, and then 4.04 g of 85% phosphoric acid was added. To this solution was added 293.2 g of nickel nitrate to 250 g of 3.3% nitric acid, 35.08 g of chromium nitrate, 9.37 g of zirconium oxynitrate, 12.41 g of potassium nitrate, and 34.02 of bismuth nitrate g was dissolved and then 2107 g of 20% silica sol was mixed to obtain a slurry.
  • the slurry was adjusted to pH 8 by adding 15% aqueous ammonia while stirring.
  • a solution of 10.1 g of telluric acid and 35.33 g of iron nitrate dissolved in 200 g of pure water was added to the slurry and mixed.
  • the mixture was spray-dried and heat-treated in the same manner as in Example 11-11, and finally fluidized at 580 ° C for 3 hours.
  • Example 4 A catalyst having the same composition as in Example 11 was prepared by the following method.
  • the mixture was spray-dried and heat-treated in the same manner as in Examples 13 to 13, and finally fluidized at 580 ° C for 3 hours.
  • Example 5 Composition Mo 10 B i 0. 4 F e o_ 6 N i 5. 75 C r x. 5 L a 0 _ 2 Mn 0. 2
  • the composition is Mo! 0 B i 1 F e 4. 5 S b 4 N i 6 C r 0. 5 zr o. I zn o. 2 b o. O 5 K 0. 6 P 0. 5 B 0. 3 T e 0. 25
  • a catalyst having a temperature of 56.0 (Si 2 ) 40 (atomic ratio) was prepared according to the method of Example 6.
  • composition is Mo! 0 B i! F e 4. 5 S b 4 N i 5. 5 C r 0. 5 L a 0. l ⁇ g 0. 5
  • Example 1 - were prepared in accordance with the second method. However, no zirconium component was added.
  • a catalyst having a ratio of 0 (S 10 2 ) 40 (atomic ratio) was prepared according to the method of Example 12-12. However, no kumumu component was added.
  • a catalyst having a ratio of P 0.2 T e 0.25 455.4 (S i ⁇ 2 ) 40 (atomic ratio) was prepared according to the method of Example 1-2.
  • the catalyst of the present invention can provide a high acrylonitrile yield in the production of atarilonitrile by ammoxidation of olefin, in particular, ammoxidation of propylene, and can suppress the flammability of ammonia.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

A catalyst composition represented by the following experimental formula: Mo10BiaFebSbcNidCreFfGgHhKkXxYyOi(SiO2)j, which is for use in producing an usaturated nitrile through ammoxidation wherein F represents at least one element selected from the group consisting of zirconium, lanthanum, and cerium; G represents at least one element selected from the group consisting of magnesium, cobalt, manganese, and zinc; H represents at least one element selected from the group consisting of vanadium, niobium, tantalum, and tungsten; X represents at least one element selected from the group consisting of phosphorus, boron, and tellurium; Y represents at least one element selected from the group consisting of lithium, sodium, rubidium, and cesium; and the subscripts a to k, x, and y, which represent proportions of the atoms and the group of atoms, are such numbers that a=0.1 to 3, b=0.3 to 15, c=0 to 20, d=3 to 8, e=0.2 to 2, f=0.05 to 1, e/f > 1, g=0 to 5, h=0 to 3, k=0.1 to 1, x=0 to 3, y=0 to 1, i is the number of oxygen atoms resulting from the bonding of the above ingredients, and j=0 to 100.

Description

明 細 書 不飽和二トリル製造用触媒 技術分野  Description Catalyst for the production of unsaturated nitriles Technical field
本発明は、 アンモ酸化による不飽和二トリルを製造する際に用いられる金属酸 化物触媒に関する。  The present invention relates to a metal oxide catalyst used for producing unsaturated nitrile by ammoxidation.
従来技術 Conventional technology
従来からアンモ酸化による不飽和二トリルの製造、 例えば、 プロピレンのアン モ酸化によるアクリロニトリルの製造、 イソブチレン又はターシャリー 'ブタノ ールのアンモ酸化によるメタクリロ二トリルの製造等に適した触媒として、 種々 の触媒の組成が開示されている。 例えば、 米国特許第 3, 2 2 6 , 4 2 2号明細 書にはモリブデン、 ビスマス及び鉄を含む酸化物触媒が、 特公昭 3 8 - 1 9 1 1 1号公報には鉄及びアンチモンを含む酸化物触媒が開示されている。 その後これ らの触媒の改良が精力的に続けられ、 例えば米国特許第 4, 2 9 0 , 9 2 2号明 細書にはモリブデン、 コバルト、 ニッケル、 ビスマス、 バナジウム、 カルシウム、 カリゥムを必須成分として含み、 ジルコニウム及びノ又はクロムを任意成分とし て含む酸化物触媒、 特許第 2 6 4 0 3 5 6号にはモリブデン、 ビスマス、 鉄、 二 ッケル及びアル力リ金属元素を含む酸化物触媒、 米国特許第 5, 0 9 3, 2 9 9 号明細書及び米国特許第 5, 1 7 5, 3 3 4号明細書には、 モリブデン、 ビスマ ス、 鉄、 ニッケル、 マグネシウム、 カリウム及びセシウムを含む酸化物触媒、 特 開平 7— 4 7 2 7 2号公報にはモリブデン、 ビスマス、 鉄、 ニッケル、 クロム及 びインジウムからなる群から選ばれる少なくとも一種の元素並びにカリウム等の アルカリ金属元素を必須成分として含み、 マンガン、 マグネシウム、 亜鉛、 セリ ゥム、 ナトリウム及びリンからなる群から選ばれる少なくとも一種の元素を任意 成分として含む酸化物触媒、 特開平 7— 3 2 8 4 4 1号公報にはモリブデン、 ビ スマス、 セリウム、 鉄、 ニッケル、 及びマグネシウム又は亜鉛、 並びにアルカリ 金属を含む酸化物触媒、 米国特許第 5, 1 3 2, 2 6 9号明細書には鉄、 アンチ モン、 モリブデン、 及びビスマス又はテルル並びにカリウム等を含む酸化物触媒 が開示されている。 Conventionally, various catalysts suitable for the production of unsaturated nitrile by ammoxidation, for example, the production of acrylonitrile by the ammoxidation of propylene, the production of methacrylonitrile by the ammoxidation of isobutylene or tert-butanol, etc. A composition of the catalyst is disclosed. For example, U.S. Pat. No. 3,226,422 discloses an oxide catalyst containing molybdenum, bismuth and iron, and Japanese Patent Publication No. 38-1991 includes iron and antimony. An oxide catalyst is disclosed. Thereafter, the improvement of these catalysts continued energetically. For example, US Pat. No. 4,290,922 includes molybdenum, cobalt, nickel, bismuth, vanadium, calcium, and potassium as essential components. Oxide catalyst containing zirconium and zirconium and / or chromium as optional components; Patent No. 2,640,356 discloses an oxide catalyst containing molybdenum, bismuth, iron, nickel, and metal alloys; U.S. Patent No. 5,093,299 and US Pat. No. 5,175,334 describe oxides containing molybdenum, bismuth, iron, nickel, magnesium, potassium and cesium. Catalysts and Japanese Patent Publication No. 7-47272 disclose at least one element selected from the group consisting of molybdenum, bismuth, iron, nickel, chromium and indium, and alkalis such as potassium. Oxide catalyst containing a metal element as an essential component and at least one element selected from the group consisting of manganese, magnesium, zinc, cerium, sodium and phosphorus as an optional component No. 5,132,269 discloses iron, antimony, and molybdenum, bismuth, cerium, iron, nickel, and oxide catalysts containing magnesium or zinc, and alkali metals. , Molybdenum, and oxide catalysts containing bismuth or tellurium, potassium, etc. Is disclosed.
これらの従来技術としての触媒は、 不飽和二トリルの収率の改善にはある程度 の効果があつたが、 未だ十分と言えるものではなかった。 当該技術分野において は不飽和二トリルの収率を一層高めると共に、 モリブデン含量の多い触媒に起こ りやすいアンモニアの燃焼性を抑制し、 環境対策上問題となる窒素酸化物等の副 生成物の生成を少なくすることが望まれていた。  While these prior art catalysts have had some effect in improving the yield of unsaturated nitriles, they have not been satisfactory. In the technical field, while further increasing the yield of unsaturated nitrile, suppressing the flammability of ammonia, which is likely to occur in catalysts containing a large amount of molybdenum, the generation of by-products such as nitrogen oxides, which are problematic in environmental measures It was desired to reduce the number.
発明の開示 Disclosure of the invention
本発明者らは、 従来技術が有する前記の課題を解決するために鋭意検討を重ね た結果、 モリブデン、 ビスマス、 鉄、 アンチモン等を含有する触媒において、 ク ロムと、 ジルコニウム、 ランタン及びセリウムからなる群から選ばれる少なくと も一種の元素とを共存させることによって、 それぞれ単独の元素の添加では得ら れない高い不飽和二トリル収率が得られることを見出した。  The present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, have found that a catalyst containing molybdenum, bismuth, iron, antimony, or the like comprises chromium, zirconium, lanthanum, and cerium. By coexisting at least one element selected from the group, it has been found that a high unsaturated nitrile yield that cannot be obtained by adding each element alone can be obtained.
これらの添加元素が相乗的に好ましい効果を発揮したのである。 ジルコニウム と同族のチタン、 ハフニウムではこのような効果を示さなかった。 ランタン及び セリウム以外のランタン属の希土類金属元素でもこのような特段の効果は示され なかった。  These additional elements synergistically exhibited favorable effects. Titanium and hafnium, which are related to zirconium, did not show such an effect. Rare earth metal elements of lanthanum other than lanthanum and cerium did not show such a special effect.
クロムとジルコニウム、 ランタン及びセリゥムからなる群から選ばれる少なく とも一種の元素とは、 比較的少量の添加で明白な効果が認められ、 過剰な添加は かえって目的生成物の収率を急激に低下せしめる。 またその添加に際しては、 ク ロムに対するジルコニウム、 ランタン及びセリウム等の割合が少ない方が好まし く、 これが大きくなるとアンモニア燃焼性の増大のほか、 目的生成物の収率が低 下する。 クロムとジルコニウム、 ランタン及びセリウムからなる群から選ばれた 少なくとも一種の元素とを併用し、 かつ添加に際しての好ましい量的関係を見出 すことによって、 目的生成物収率を向上させると共に、 アンモニアの燃焼性を抑 制し、 また副生成物収率も低くすることができた。  At least one element selected from the group consisting of chromium, zirconium, lanthanum and cerium has a clear effect when added in a relatively small amount, and excessive addition rather decreases the yield of the target product sharply . In addition, it is preferable that the ratio of zirconium, lanthanum, cerium, and the like to chromium is small. If the ratio is large, ammonia flammability increases and the yield of the target product decreases. Chromium is used in combination with at least one element selected from the group consisting of zirconium, lanthanum and cerium, and by finding a favorable quantitative relationship at the time of addition, the yield of the target product is improved, and The flammability was suppressed and the yield of by-products was also reduced.
すなわち、 本発明は、 アンモ酸化により不飽和二トリルを製造する際に用いら れる、 下記の実験式で表される触媒組成物を提供する :  That is, the present invention provides a catalyst composition represented by the following empirical formula, which is used when producing unsaturated nitrile by ammoxidation:
M o 1 0 B i a F e b S b c N i d C r e F f G g H h K k X x Y y O ¾ M o 10 B i a F e b S b c N i d C r e F f G g H h K k X x Y y O ¾
( S i 0 2 ) 式中、 Mo、 B i、 F e、 S b、 N i、 C r及び Kは、 それぞれモリブデン、 ビスマス、 鉄、 アンチモン、 ニッケル、 クロム及びカリウムを表し、 Fはジルコ 二ゥム、 ランタン及びセリゥムからなる群から選ばれる少なくとも一種の元素、 Gはマグネシウム、 コバルト、 マンガン及び亜鉛からなる群から選ばれる少なく とも一種の元素、 Hはバナジウム、 ニオブ、 タンタル及びタングステンからなる 群から選ばれる少なくとも一種の元素、 Xはリン、 ホウ素及びテルルからなる群 から選ばれる少なくとも一種の元素、 Yはリチウム、 ナトリウム、 ルビジウム及 びセシウムからなる群から選ばれる少なくとも一種の元素、 Oは酸素、 S i〇2 はシリカを表し、 そして添字 a、 b、 c、 d、 e、 f 、 g、 h、 i、 j、 k、 x 及び yは原子又は原子団の比を表し、 Mo = 10の時、 a = 0. :!〜 3、 b = 0. 3〜: L 5、 c = 0〜20、 d = 3〜8、 e = 0. 2〜2、 f = 0. 05〜; 1、 e Zf > l、 g = 0〜5、 h = 0〜3、 k = 0. :!〜 1、 x = 0〜3、 y = 0〜: 1、 i =上記各成分が結合して生成する酸素の数、 及び j =0〜100である。 (S i 0 2 ) In the formula, Mo, Bi, Fe, Sb, Ni, Cr, and K represent molybdenum, bismuth, iron, antimony, nickel, chromium, and potassium, respectively, and F represents zirconium, lanthanum, and cerium. At least one element selected from the group consisting of magnesium, cobalt, manganese, and zinc; andH is at least one element selected from the group consisting of vanadium, niobium, tantalum, and tungsten. Element, X is at least one element selected from the group consisting of phosphorus, boron and tellurium, Y is at least one element selected from the group consisting of lithium, sodium, rubidium and cesium, O is oxygen, and Si 2 is Represents silica, and the subscripts a, b, c, d, e, f, g, h, i, j, k, x, and y represent the ratio of atoms or groups of atoms. Then, when Mo = 10, a = 0.:! ~ 3, b = 0.3 ~: L5, c = 0 ~ 20, d = 3 ~ 8, e = 0.2-2 ~, f = 0.05 ~; 1, e Zf> l, g = 0 ~ 5, h = 0 ~ 3, k = 0. 11, x = 0 y3, y = 0 i: 1, i = the number of oxygen generated by combining the above components, and j = 00〜10100.
一方、 触媒の調製法の改良により目的とする酸化生成物の収率を向上させよう とする努力が続けられてきた。 例えば、 米国特許第 3, 350, 323号明細書 にはクェン酸ビスマス水溶液をモリブデン酸水溶液に添加する方法、 特開昭 53 - 10387号公報、 特開昭 53— 10388号公報、 及び米国特許第 3, 84 7, 83 1号明細書にはモリブデン酸水溶液に固体状態のビスマス化合物を添加 する方法、 米国特許第 4, 41 8, 007号明細書には p Hが 6〜8の範囲のモ リブデン酸水溶液にビスマス塩の水溶液とアンモニア水を同時に添加する方法。 米国特許第 4, 388, 226号明細書にはモリブデン化合物の懸濁液にビスマ ス塩の水溶液を添加する方法、 米国特許第 4, 21 2, 766号明細書、 米国特 許第 4, 148, 757号明細書、 及び米国特許第 4, 040, 978号明細書 には種々のモリブディトを予め形成する方法、 特公昭 52— 22359号公報、 及び米国特許第 3, 872, 148号明細書には種々のビスマス化合物を予め形 成する方法、 米国特許第 4, 803, 1 90号明細書にはビスマス源として酸化 ビスマスや、 次炭酸ビスマスを用いる方法、 特開平 2— 59046号公報には鉄、 ビスマス及びテルルからなる群から選ばれる少くとも一つとモリブデン化合物と を含むスラリーを pH 7を超える pH範囲に調整する方法、 米国特許第 5, 05 9, 5 7 3号明細書にはシリ力を含むモリブデン化合物含有スラリーにキレート 剤を添加し、 1^ 6以上に ^1を調整する方法、 米国特許第 5, 0 7 1, 8 1 4 号明細書にはモリブデンを含むスラリーを p H 6以上とした後、 ビスマス化合物 を混合する方法などが開示されている。 On the other hand, efforts have been made to improve the yield of the target oxidation product by improving the catalyst preparation method. For example, U.S. Pat. No. 3,350,323 discloses a method of adding an aqueous solution of bismuth citrate to an aqueous solution of molybdic acid, JP-A-53-10387, JP-A-53-10388, and U.S. Pat. No. 4,847,831 describes a method of adding a bismuth compound in a solid state to an aqueous molybdic acid solution, and US Pat. No. 4,418,007 discloses a method in which the pH is in the range of 6 to 8. A method in which an aqueous solution of bismuth salt and aqueous ammonia are simultaneously added to an aqueous solution of lybdic acid. U.S. Pat. No. 4,388,226 describes a method of adding an aqueous solution of a bismuth salt to a suspension of a molybdenum compound; U.S. Pat. No. 4,212,766; U.S. Pat. No. 4,148 No. 4,040,978 and US Pat. No. 4,040,978 describe a method for preforming various molybdite, Japanese Patent Publication No. 52-22359, and US Pat. No. 3,872,148. US Pat. No. 4,803,190 describes a method of using bismuth oxide or bismuth subcarbonate as a bismuth source, and US Pat. No. 4,803,190 describes a method of forming bismuth compounds in advance. Adjusting a slurry containing at least one selected from the group consisting of: bismuth and tellurium and a molybdenum compound to a pH range above pH 7, US Pat. Japanese Patent No. 5,071,814 discloses a method in which a chelating agent is added to a slurry containing molybdenum compound containing silicide to adjust ^ 1 to 1 ^ 6 or more. The specification discloses a method of mixing a bismuth compound after a slurry containing molybdenum is adjusted to pH 6 or more.
このように触媒の性能向上を図るためにモリブデン水溶液とビスマス化合物を 混合する方法を工夫したり、 ビスマスの原料を特別に選択するなど、 種々の方法 が提案されている。 しかし、 これらの方法を二価の金属元素及び三価の金属元素 からなる群から選ばれた少なくとも一種の金属元素を含むモリブデン ビスマス 含有複合酸化物触媒の製造に適用した場合、 目的とする酸化生成物の収率は必ず しも満足すべきものではなかった。  As described above, various methods have been proposed to improve the performance of the catalyst, such as devising a method of mixing an aqueous solution of molybdenum and a bismuth compound, and selecting a special raw material of bismuth. However, when these methods are applied to the production of a molybdenum-bismuth-containing composite oxide catalyst containing at least one metal element selected from the group consisting of divalent metal elements and trivalent metal elements, Product yields were not always satisfactory.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
モリブデン、 ビスマス、 鉄、 ニッケル、 クロム、 カリウム及び上記 Fで示され る金属元素は必須成分であり、 それぞれ上記の組成範囲になければ本発明の目的 を達成することができない。  Molybdenum, bismuth, iron, nickel, chromium, potassium, and the metal elements represented by F are essential components, and the objects of the present invention cannot be achieved unless each of the above composition ranges.
本発明の触媒組成物が鉄アンチモネートを含有する時には、 必然的にアンチモ ンを含有することになり、 この場合は、 特に目的生成物の選択性が向上し、 触媒 の物性も向上する等、 有利な点が認められる。  When the catalyst composition of the present invention contains iron antimonate, it necessarily contains antimony. In this case, in particular, the selectivity of the target product is improved, and the physical properties of the catalyst are improved. Advantages are noted.
また、 本発明の触媒を流動層触媒として用いる時にはシリカを担体として用い るのがよく、 その場合、 j = 2 0〜 8 0が好ましい範囲である。  When the catalyst of the present invention is used as a fluidized bed catalyst, silica is preferably used as a carrier. In this case, j is preferably in a range of 20 to 80.
本発明の触媒組成物は、 前記の従来技術として開示されている調製方法を適宜 選択し、 適用して調製すればよい。  The catalyst composition of the present invention may be prepared by appropriately selecting and applying the preparation method disclosed as the above-mentioned prior art.
モリブデン成分の原料としては、 酸ィヒモリブデン、 パラモリブデン酸アンモニ ゥム等が、 ビスマス成分の原料としては、 三酸化ビスマス、 硝酸ビスマス、 炭酸 ビスマス、 シユウ酸ビスマス等が、 鉄成分の原料としては、 硝酸鉄、 シユウ酸鉄 等が、 クロム成分の原料としては、 硝酸クロム、 クロム酸等が、 カリウム成分の 原料としては水酸化カリウム、 硝酸カリウム等が用いられる。  The raw materials for the molybdenum component include dimethyl molybdenum acid and ammonium paramolybdate; the raw materials for the bismuth component include bismuth trioxide, bismuth nitrate, bismuth carbonate, and bismuth oxalate; and the raw material for the iron component include nitric acid. Iron, iron oxalate, and the like, chromium nitrate and chromic acid are used as raw materials for the chromium component, and potassium hydroxide and potassium nitrate are used as the raw material for the potassium component.
また、 ジルコニウム成分の原料としては酸化ジルコニウム、 ォキシ硝酸ジルコ ニゥム等が、 ランタン成分の原料としては、 酸化ランタン、 硝酸ランタン等が、 セリウム成分の原料としては、 酸ィ匕セリウム、 硝酸アンモニゥムセリウム等が用 いられ、 またこれら元素の有機酸塩も用いることができる。 The raw materials of the zirconium component include zirconium oxide and zirconium oxynitrate; the raw materials of the lanthanum component include lanthanum oxide and lanthanum nitrate; and the raw materials of the cerium component include cerium oxide and cerium ammonium nitrate. Etc. are for Also, organic acid salts of these elements can be used.
ニッケル、 コバルト、 マグネシウム、 マンガン及び亜鉛などの成分の原料はそ れぞれの硝酸塩を用いるのが便利であるが、 それぞれの有機酸塩、 水酸化物、 酸 化物などを用いることもできる。  It is convenient to use the respective nitrates as the raw materials for the components such as nickel, cobalt, magnesium, manganese and zinc, but it is also possible to use the respective organic acid salts, hydroxides and oxides.
テルル成分を加えるときは、 テルル成分の原料としては、 テルル酸若しくはそ の塩、 又は亜テルル酸若しくはその塩を用いることができるほ力、 金属テルルを 加熱した過酸化水素水に溶解したものを用いてもよい。  When the tellurium component is added, as a raw material of the tellurium component, a material capable of using telluric acid or a salt thereof or tellurous acid or a salt thereof, or a solution obtained by dissolving metallic tellurium in a heated aqueous hydrogen peroxide solution. May be used.
その他の成分の原料としては、 それぞれの元素の酸化物、 水酸化物、 硝酸塩、 有機酸塩等が用いられる。  As raw materials for other components, oxides, hydroxides, nitrates, organic acid salts, etc. of the respective elements are used.
シリカの原料としては、 シリカゾル、 ヒュームド .シリカ等が用いられるが、 特にシリカゾルが好ましい。 シリカゾルとしては、 ナトリウム含量の低いものを 用いるのが良い。  As a raw material of silica, silica sol, fumed silica and the like are used, and silica sol is particularly preferable. As the silica sol, one having a low sodium content is preferably used.
本発明の触媒組成物は、 これらの原料を混合し、 乾燥、 焼成することにより調 製されるが、 各原料を混合して調製したスラリーは、 その p Hを 6以上とするの が好ましい。 この操作により反応時のアンモニア燃焼性が低減され、 また目的生 成物の収率が向上する。 その場合、 スラリー中にキレート剤を混合することによ つてスラリーの粘度を低下させ、 操作性を改善することができる。 p Hを 6以上 として本触媒組成物を調製する場合、 クロム成分の存在がこのスラリーの粘度低 下に寄与することが見出された。 これは操作性改善のために有利なことであり、 注目すべき点である。  The catalyst composition of the present invention is prepared by mixing these raw materials, drying and calcining. The slurry prepared by mixing the raw materials preferably has a pH of 6 or more. This operation reduces the ammonia flammability during the reaction and improves the yield of the target product. In that case, the viscosity of the slurry can be reduced by mixing the chelating agent into the slurry, and the operability can be improved. When the present catalyst composition was prepared with a pH of 6 or more, it was found that the presence of the chromium component contributed to lowering the viscosity of the slurry. This is an advantage for improving operability, and it is noteworthy.
調製したスラリーをさらに加熱処理すると、 スラリーの安定性が増し、 再現性 が良くなるなど、 有利になる場合がある。  Further heat treatment of the prepared slurry may be advantageous in that the stability of the slurry is increased and the reproducibility is improved.
ここで用いることが出来るキレート剤としてはエチレンジァミン四酢酸、 乳酸、 クェン酸、 酒石酸及びダルコン酸等が挙げられる。  Examples of chelating agents that can be used here include ethylenediaminetetraacetic acid, lactic acid, citric acid, tartaric acid, and dalconic acid.
キレート剤の添加量は製造される酸化物触媒の重量当り 0 . 1〜1 0 %の範囲 で用いるのが好ましく、 0 . 5〜 8重量。 /0の範囲で用いるのが更に好ましい。 キ レート剤の添加量が酸化物触媒に対し 0 . 1重量%より少ないとその効果が十分 に発現せず、 また 1 0重量%を超えると完成した触媒に多数の亀裂が入ることが ある。 鉄イオンとキレート剤とを含む溶液を調製する際には、 キレート剤は鉄 1 グラムイオンに対し 0 . 1〜 2グラム分子が好ましレ、。 The amount of the chelating agent is preferably in the range of 0.1 to 10%, preferably 0.5 to 8% by weight of the oxide catalyst to be produced. More preferably, it is used in the range of / 0 . If the amount of the chelating agent is less than 0.1% by weight with respect to the oxide catalyst, the effect is not sufficiently exhibited, and if the amount exceeds 10% by weight, a large number of cracks may be formed in the completed catalyst. When preparing a solution containing iron ions and a chelating agent, the chelating agent is iron 1 0.1 to 2 gram molecules are preferred for gram ions.
鉄アンチモネートを含有する場合は、 あらかじめ鉄アンチモネートを調製した 後に、 これをモリブデン等その他成分の原料と混合してスラリーを形成するのが よい。 .  When iron antimonate is contained, it is preferable to prepare iron antimonate in advance and then mix it with a raw material of other components such as molybdenum to form a slurry. .
またさらに改善された調製法として、 モリブデン原料の少なくとも一部、 及び ニッケル、 コバルト、 マグネシウム、 クロム、 マンガン及び亜鉛からなる群から 選ばれる少なくとも一種の元素の原料を含み、 かつ p Hが 6以上である水性スラ リーと、 テルルの原料及び Z又は鉄の原料を含む溶液若しくはスラリーとを混合 し、 次いでその混合物を乾燥、 焼成する方法も好ましい。 特に、 テルル及び鉄を 共に含有する触媒の場合には、 鉄の原料を含む溶液若しくはスラリーとテルルの 原料を含む溶液と前記 p Hが 6以上である水性スラリーとを混合し、 又は鉄の原 料とテルルの原料とを含む混合溶液又はスラリーと前記 p Hが 6以上である水性 スラリーとを混合し、 次いでその混合物を乾燥、 焼成する方法も好ましい。  Further, as a further improved preparation method, a molybdenum raw material and / or a raw material of at least one element selected from the group consisting of nickel, cobalt, magnesium, chromium, manganese and zinc and having a pH of 6 or more are contained. A method is also preferable in which a certain aqueous slurry is mixed with a solution or slurry containing a tellurium raw material and a Z or iron raw material, and then the mixture is dried and fired. In particular, in the case of a catalyst containing both tellurium and iron, a solution or slurry containing a raw material of iron and a solution containing a raw material of tellurium are mixed with the aqueous slurry having a pH of 6 or more, or Also preferred is a method of mixing a mixed solution or slurry containing a raw material and a tellurium raw material with the aqueous slurry having a pH of 6 or more, followed by drying and firing the mixture.
モリブデン原料の少なくとも一部、 及びニッケル、 コバルト、 マグネシウム、 クロム、 マンガン及び亜鉛からなる群から選ばれる少なくとも一種の元素の原料 を含み、 かつ p Hが 6以上である水性スラリーを、 温度 5 0 °C〜 1 2 0 °C、 好ま しくは 6 0 °C〜1 2 0 °Cの範囲で、 少なくとも 1 0分加熱処理した後、 テルルの 原料若しくは鉄の原料、 又はテルルの原料及び鉄の原料の両方を、 該加熱処理し たスラリーに混合し、 次いでその混合物を乾燥、 焼成する方法も好ましい。  An aqueous slurry containing at least a part of a molybdenum raw material and a raw material of at least one element selected from the group consisting of nickel, cobalt, magnesium, chromium, manganese, and zinc, and having a pH of 6 or more, is heated to a temperature of 50 °. After heating for at least 10 minutes in the range of C to 120 ° C, preferably 60 ° C to 120 ° C, tellurium raw material or iron raw material, or tellurium raw material and iron raw material It is also preferable to mix both of them into the heat-treated slurry, and then dry and bake the mixture.
鉄成分の原料としては酸化第一鉄、 酸化第二鉄、 四三酸化鉄、 硝酸第一鉄、 硝 酸第二鉄、 硫酸鉄、 塩化鉄、 鉄有機酸塩、 水酸化鉄等を用いることができるほか、 金属鉄を加熱した硝酸に溶解して用いてもよい。 鉄成分を含む溶液はァンモニァ 水等で p Hを調整して用いてもよい。 p Hを調整する際、 鉄成分を含む溶液にキ レート剤を共存させることで鉄成分が沈殿するのを防ぐことができ、 高活性な触 媒が得られる。 ここで用いることができるキレート剤としてはエチレンジァミン 四酢酸、 乳酸、 クェン酸、 酒石酸及ぴグリコン酸等が挙げられる。  Ferrous oxide, ferric oxide, ferric oxide, ferrous nitrate, ferric nitrate, iron sulfate, iron chloride, iron organic acid salt, iron hydroxide, etc. Alternatively, metallic iron may be used by dissolving it in heated nitric acid. The solution containing the iron component may be used after adjusting the pH with ammonia water or the like. When adjusting the pH, coexistence of a chelating agent in a solution containing an iron component can prevent precipitation of the iron component, and a highly active catalyst can be obtained. Examples of chelating agents that can be used here include ethylenediaminetetraacetic acid, lactic acid, citric acid, tartaric acid, and glyconic acid.
上記いずれかの方法において、 スラリー混合物の乾燥は、 流動層触媒を製造す る場合は、 噴霧乾燥法により行い、 乾燥と同時に造粒を行うのがよい。 これによ り微小球状粒子を得ることができる。 乾燥後上記混合物を 200〜 500 °Cで焼成した後、 さらに 500〜 700 °C で焼成するのが好ましい。 焼成時間は 1〜 20時間でよい。 焼成時の雰囲気は酸 素含有ガスが好ましい。 焼成は空気中で行'うのが便利であるが、 酸素と窒素、 炭 酸ガス、 水蒸気、 有機化合物等とを適宜混合した雰囲気で行うこともできる。 焼 成には、 箱型炉、 トンネル炉、 回転炉、 流動炉などが用いられる。 触媒が流動層 触媒の場合には、 特にその最終焼成は流動炉で行うのが好ましい。 これにより最 終焼成条件の厳密な管理がし易くなり、 優れた性能の流動層触媒を再現性良く製 造することができる。 このようにして製造される流動層触媒の粒径は、 1 0〜2 00 μ mとするのがよい。 In any of the above methods, the drying of the slurry mixture is preferably carried out by a spray drying method in the case of producing a fluidized bed catalyst, and granulation is carried out simultaneously with drying. Thereby, fine spherical particles can be obtained. After drying, the mixture is preferably calcined at 200 to 500 ° C, and more preferably calcined at 500 to 700 ° C. The firing time may be 1 to 20 hours. The atmosphere during firing is preferably an oxygen-containing gas. The baking is conveniently performed in the air, but may be performed in an atmosphere in which oxygen and nitrogen, carbon dioxide, water vapor, organic compounds, and the like are appropriately mixed. Box furnaces, tunnel furnaces, rotary furnaces, fluidized furnaces, etc. are used for baking. When the catalyst is a fluidized bed catalyst, the final calcination is preferably performed in a fluidized furnace. This makes it easier to strictly control the final firing conditions, and makes it possible to produce fluidized bed catalysts with excellent performance with good reproducibility. The particle size of the fluidized bed catalyst produced in this way is preferably from 10 to 200 μm.
上述のような本発明の触媒組成物又は本発明の製造法によって製造された触媒 組成物は、 ォレフィンのアンモ酸化による不飽和二トリルの製造に好適である。 アンモ酸化反応は、 通常、 原料有機化合物/アンモニア Z空気 =1Z0. 9〜 1. 3Ζ8〜1 2 (モル比) の組成範囲の供給ガスを用い、 反応温度 3 70〜5 00 °C、 反応圧力 常圧〜 500 k P aで行う。 見掛け接触時間は 0. 1〜 20 秒である。  The catalyst composition of the present invention or the catalyst composition produced by the production method of the present invention as described above is suitable for producing unsaturated nitrile by ammoxidation of olefin. The ammoxidation reaction is usually carried out using a feed gas in the composition range of raw material organic compound / ammonia Z air = 10.9 to 1.3 to 8 to 12 (molar ratio), reaction temperature 370 to 500 ° C, reaction pressure Perform at normal pressure to 500 kPa. The apparent contact time is 0.1 to 20 seconds.
以下、 本発明を実施例により具体的に説明する。  Hereinafter, the present invention will be described specifically with reference to examples.
触媒の活性試験 Catalyst activity test
ァンモ酸化反応の例としてプロピレンのアンモ酸化を行つた。  Ammoxidation of propylene was performed as an example of the gamma oxidation reaction.
触媒流動部の内径が 25 mm、 高さ 400 mmの流動層反応器に触媒を充填し、 プロピレン アンモニア Z空気 Z水蒸気 =lZl. 2/1 0/0. 5 (モル比) の組成の混合ガスをガス線速度 4. 5 c m/ s e cで送入した。 反応圧力は 20 ◦ k P aとした。  A catalyst is packed in a fluidized bed reactor with an inner diameter of the catalyst flowing section of 25 mm and a height of 400 mm, and a mixed gas having the composition of propylene ammonia Z air Z steam = 1Zl. 2/1 0 / 0.5 (molar ratio) At a gas linear velocity of 4.5 cm / sec. The reaction pressure was 20 ° kPa.
接触時間 (s e c) =見掛け嵩密度基準の触媒容積 (m l ) /反応条件に換算 した供給ガス流量 (m 1 Z s e c )  Contact time (sec) = catalyst volume based on apparent bulk density (ml) / supply gas flow rate converted to reaction conditions (m1Zsec)
アタリロニトリル収率 (%) =生成したァクリロニトリルのモル数 供給した プロピレンのモ /レ数 X 1 00  Atarilonitrile yield (%) = number of moles of acrylonitrile produced Number of moles of propylene supplied / number of moles X 100
ァクリロ二トリル選択率 (%) =生成したアタリロニトリルのモル数ノ反応し たプロピレンのモ/レ数 X 1 00  Acrylonitrile selectivity (%) = number of moles of atarilonitrile produced, number of moles of propylene reacted x 100
プロピレン転化率 (%) =反応したプロピレンのモル数/供給したプロピレン のモノレ数 X 100 Propylene conversion (%) = number of moles of propylene reacted / propylene supplied Number of monoles of X 100
アンモニア燃焼率 (%) = 1 00- [ (生成物中の窒素の重量 +未反応アンモ ニァ中の窒素の重量) Z供給アンモニア中の窒素の重量 X loo]  Ammonia combustion rate (%) = 100- [(weight of nitrogen in product + weight of nitrogen in unreacted ammonia) Z weight of nitrogen in supplied ammonia X loo]
実施例 1一 1 Example 11
組成が Mo ioB i 0. 3F e 4. 4S b4. 2N i 5. 75 c r 0. 5 Z r 0. 2Composition Mo ioB i 0. 3 F e 4. 4 S b 4. 2 N i 5. 7 5 c r 0. 5 Z r 0. 2
K0. 7 P 0. 2T e 0. 25 ° 53. 7 ^ i ° 2) 40 (原子比) である触媒を調 製した。 A catalyst having a K of 0.7 P 0.2 T e 0.25 ° 53.7 ^ i ° 2) 40 (atomic ratio) was prepared.
純水 1 730 gにパラモリプデン酸アンモニゥム 250. 6 gを溶解し、 次い で 85%リン酸 3. 3 gを加えた。 この溶液を 20%シリカゾル 1 750 gと混 合した。 この液に、 3. 3 %硝酸 216 gに硝酸二ッケル 243. 7 g、 硝酸ク ロム 29. 1 6 g、 ォキシ硝酸ジルコニウム 7. 79 g、 硝酸カリウム 10. 3 2 g、 クェン酸 40 g、 硝酸鉄 35. 33 g、 及び硝酸ビスマス 21. 21 gを 溶解した液を混合してスラリーを得た。 このスラリーに、 水 208 gに金属テル ル 4. 65 g、 パラモリブデン酸アンモ-ゥム 3. 9 g及び過酸化水素水 1 6 g を加え、 95〜 100°Cで攪拌し、 溶解して得た液を加えた。 このスラリーを攪 拌しつつ 1 5 %アンモニア水を加え、 pH7. 7とし、 このスラリーに鉄アンチ モネ一ト粉末 138. 3 gを混合して混合物を得た。  In 1730 g of pure water, 25.6 g of ammonium paramolybdate were dissolved, and then 3.3 g of 85% phosphoric acid was added. This solution was mixed with 1750 g of 20% silica sol. To this solution was added 243.7 g of nickel nitrate in 216 g of 3.3% nitric acid, 29.1 g of chromium nitrate, 7.79 g of zirconium oxynitrate, 10.32 g of potassium nitrate, 40 g of citric acid, and nitric acid A solution obtained by dissolving 35.33 g of iron and 21.21 g of bismuth nitrate was mixed to obtain a slurry. To this slurry, add 4.65 g of metal tellurium, 3.9 g of ammonium paramolybdate and 16 g of hydrogen peroxide in 208 g of water, stir at 95 to 100 ° C, dissolve The obtained liquid was added. 15% ammonia water was added to the slurry while stirring to adjust the pH to 7.7, and 138.3 g of iron antimonate powder was mixed with the slurry to obtain a mixture.
上記混合物を、 回転円盤式噴霧乾燥機で、 入口温度を 330°C、 出口温度を 1 60 °Cとして噴霧乾燥した。 この粒子を 250 で 2時間、 400 °Cで 2時間熱 処理し、 最終的に 590 °Cで 3時間流動焼成した。  The above mixture was spray-dried with a rotating disk spray dryer at an inlet temperature of 330 ° C and an outlet temperature of 160 ° C. The particles were heat-treated at 250 ° C. for 2 hours and 400 ° C. for 2 hours, and finally fluidized at 590 ° C. for 3 hours.
実施例 1一 2 Example 11
実施例 1一 1と同一組成の触媒を以下の方法で調製した。  Example 11 A catalyst having the same composition as in Example 1 was prepared by the following method.
純水 1 730 gにパラモリブデン酸アンモニゥム 1 54. 4 gを溶解し、 次い で 85 %リン酸 3. 3 gを加えた。 この溶液を 20 %シリ力ゾル 1 750 gと混 合した。 この液に、 3. 3%硝酸 216 gに硝酸ニッケル 243. 7 g、 硝酸ク ロム 29. 1 6 g、 ォキシ硝酸ジルコニウム 7. 79 g、 硝酸カリウム 10. 3 2 g、 クェン酸 20 g、 及び硝酸ビスマス 21. 21 gを溶解した液を混合して スラリーを得た。 このスラリーを攪拌しつつ 1 5%アンモニア水を加え、 pH7. 7とし、 次いで還流下 100 °Cで 1. 5時間加熱処理した。 水 208 gに金属テルル 4. 65 g、 パラモリブデン酸アンモニゥム 3. 9 g、 及び過酸化水素水 16 gを加え、 95〜100°Cで攪拌し、 溶解した。 この液を 常温まで冷却し、 クェン酸 20 g及び硝酸鉄 35. 33 gを溶解した。 これを攪 拌しつつ 1 5%アンモニア水を加え pH9. 2とし、 さらにパラモリブデン酸ァ ンモニゥム 99. 1 gを少しずつ加え溶解した。 ここでアンモニア水を加え、 pH7とした。 この液を先に加熱処理したスラリーに混合し、 鉄アンチモネート 粉末 138. 3 gを混合した。 154.4 g of ammonium paramolybdate was dissolved in 1730 g of pure water, and 3.3 g of 85% phosphoric acid was added. This solution was mixed with 1750 g of a 20% sily sol. To this solution was added 243.7 g of nickel nitrate, 29.1 g of chromium nitrate, 7.79 g of zirconium oxynitrate, 10.79 g of potassium nitrate, 20 g of citric acid, 20 g of nitric acid and 216 g of 3.3% nitric acid. A solution in which 21.21 g of bismuth was dissolved was mixed to obtain a slurry. This slurry was adjusted to pH 7.7 by adding 15% aqueous ammonia with stirring, and then heat-treated at 100 ° C. for 1.5 hours under reflux. To 208 g of water were added 4.65 g of metal tellurium, 3.9 g of ammonium paramolybdate, and 16 g of hydrogen peroxide solution, and the mixture was stirred at 95 to 100 ° C. and dissolved. The solution was cooled to room temperature, and 20 g of citric acid and 35.33 g of iron nitrate were dissolved. While stirring this, 15% aqueous ammonia was added to adjust the pH to 9.2, and 99.1 g of ammonium paramolybdate was added little by little to dissolve. Here, ammonia water was added to adjust the pH to 7. This solution was mixed with the slurry previously heated, and 138.3 g of iron antimonate powder was mixed.
上記混合物を実施例 1一 1と同様に噴霧乾燥、 熱処理し、 最終的に 580°Cで 3時間流動焼成した。  The mixture was spray-dried and heat-treated in the same manner as in Example 11-11, and finally fluidized at 580 ° C for 3 hours.
実施例 2— 1 Example 2-1
組成が Mo 10 B i 0. 3 F e 4. 5 S b 7N i 5. 75 C Γ o. 7 L a 0. 2 V0. 05K0. 7 P 0. 2Te o. 25059. 8 (S i 02) 40 (原子比) である 触媒を以下の方法により調製した。 Composition Mo 10 B i 0. 3 F e 4. 5 S b 7 N i 5. 75 C Γ o. 7 L a 0. 2 V 0. 05 K 0. 7 P 0. 2 Te o. 25 0 5 9.8 the (S i 0 2) 40 catalyst is (atomic ratio) was prepared by the following method.
純水 1 730 gにパラモリブテン酸アンモニゥム 237. 2 gを溶解し、 次い で 85%リン酸 3. 10 gを加えた。 この溶液を 20%シリカゾル 161 5 gと 混合した。 この液に 3. 3 %硝酸 210 gに硝酸二ッケル 224. 6 g、 硝酸ク ロム 37. 6 g、 硝酸ランタン 1 1· 63 g、 硝酸カリウム 9. 51 g、 クェン 酸 40 g、 硝酸鉄 32. 56 g及び硝酸ビスマス 1 9. 55 gを溶解した液を混 合してスラリーを得た。 このスラリーを攪拌しつつ 1 5%アンモニア水を加え、 p H 7. 7とし、 次いで還流下 100°Cで 1. 5時間加熱処理した。  237.2 g of ammonium paramolybdate was dissolved in 1730 g of pure water, and then 3.10 g of 85% phosphoric acid was added. This solution was mixed with 1615 g of 20% silica sol. To this solution was added 224.6 g of nickel nitrate in 210 g of 3.3% nitric acid, 37.6 g of chromium nitrate, 11.63 g of lanthanum nitrate, 9.51 g of potassium nitrate, 40 g of citric acid, and 32. A slurry in which 56 g and 19.55 g of bismuth nitrate were dissolved was mixed to obtain a slurry. The slurry was adjusted to pH 7.7 by adding 15% aqueous ammonia with stirring, and then heated under reflux at 100 ° C. for 1.5 hours.
水 200 gにテルル 7. 71 gを溶解した。 この液を先に加熱処理したスラリ 一に混合し、 鉄アンチモネ一ト粉末 186. 4 gを混合した。  7.71 g of tellurium was dissolved in 200 g of water. This solution was mixed with the slurry previously heated, and 186.4 g of iron antimonate powder was mixed.
上記混合物を実施例 1一 1と同様に噴霧乾燥、 熱処理し、 最終的に 590°Cで 3時間流動焼成した。  The above mixture was spray-dried and heat-treated in the same manner as in Example 1-11, and finally fluidized-fired at 590 ° C for 3 hours.
実施例 2— 2 Example 2-2
実施例 2— 1と同一組成の触媒を以下の方法で調製した。  A catalyst having the same composition as in Example 2-1 was prepared by the following method.
純水 1 730 gにパラモリブテン酸アンモニゥム 237. 2 gを溶解し、 次い で 85 %リン酸 3. 10 gを加えた。 この溶液を 20 %シリカゾル 161 5 gと 混合した。 この液に、 3. 3 %硝酸 21 6 gに硝酸二ッケル 224. 6 g、 硝酸 クロム 37· 6 g、 硝酸ランタン 1 1. 63 g、 硝酸カリゥム 9. 51 g、 クェ ン酸 20 g、 及び硝酸ビスマス 1 9. 55 gを溶解した液を混合してスラリ一を 得た。 このスラリーを攪拌しつつ 1 5%アンモニア水を加え、 pH7. 7とし、 次いで還流下 100 °Cで 1. 5時間加熱処理した。 237.2 g of ammonium paramolybdate was dissolved in 1730 g of pure water, and then 3.10 g of 85% phosphoric acid was added. This solution was mixed with 1615 g of 20% silica sol. To this solution, add 22.6 g of nickel nitrate to 216 g of 3.3% nitric acid, nitric acid A solution obtained by dissolving 37.6 g of chromium, 1.63 g of lanthanum nitrate, 9.51 g of potassium nitrate, 20 g of citric acid and 19.55 g of bismuth nitrate was mixed to obtain a slurry. This slurry was adjusted to pH 7.7 by adding 15% aqueous ammonia with stirring, and then heat-treated at 100 ° C. for 1.5 hours under reflux.
水 200 gにテルル酸 7. 71 g、 クェン酸 20 g及び硝酸鉄 32. 56 gを 溶解した。 この液を先に加熱したスラリーに混合し、 鉄アンチモネート粉末 1 8 6. 4 gを混合した。  7.71 g of telluric acid, 20 g of citric acid and 32.56 g of iron nitrate were dissolved in 200 g of water. This solution was mixed with the previously heated slurry, and 186.4 g of iron antimonate powder was mixed.
上記混合物を実施例 1一 1と同様に噴霧乾燥、 熱処理し、 最終的に 590°Cで 3時間流動焼成した。  The above mixture was spray-dried and heat-treated in the same manner as in Example 1-11, and finally fluidized-fired at 590 ° C for 3 hours.
実施例 3 組成が M o 10B i 0. 4 F e 4. 5 S b l 0 N i 5. 7 5 C r 1. 0 C e 0. 2 a 0. 05K0. 5P0. 2C s o. i065. 8 (S i 02) 40 (原子比) である 触媒を以下の方法により調製した。 Example 3 composition M o 10 B i 0. 4 F e 4. 5 S b l 0 N i 5. 7 5 C r 1. 0 C e 0. 2 a 0. 05 K 0. 5 P 0. 2 It was prepared by C s o. i0 65. 8 (S i 0 2) 40 following way catalyst is (atomic ratio).
純水 1 730 gにパラモリブテン酸アンモニゥム 21 9. 2 gを溶解し、 次い で 85%リン酸 2. 86 gを加えた。 この溶液を 20%シリカゾル 1490 gと 混合した。 この液に、 3. 3 %硝酸 210 gに硝酸二ッケル 207. 6 g、 硝酸 クロム 49. 67 g、 硝酸セリウム 10. 78 g、 硝酸カリウム 8. 79 g、 硝 酸セシウム 2. 42 g、 酸化タンタル 1. 32 g、 クェン酸 20 g、 及び硝酸ビ スマス 21. 21 gを溶解した液を混合してスラリーを得た。 このスラリーを攪 拌しつつ 1 5 %アンモニア水を加え、 pH7. 7とし、 次いで還流下 100°Cで 1. 5時間加熱処理した。  219.2 g of ammonium paramolybdate was dissolved in 1730 g of pure water, and then 2.86 g of 85% phosphoric acid was added. This solution was mixed with 1490 g of 20% silica sol. To this solution, add 207.6 g of nickel nitrate to 210 g of 3.3% nitric acid, 49.67 g of chromium nitrate, 10.78 g of cerium nitrate, 8.79 g of potassium nitrate, 2.42 g of cesium nitrate, and tantalum oxide A solution obtained by dissolving 1.32 g, 20 g of citric acid, and 21.21 g of bismuth nitrate was mixed to obtain a slurry. The slurry was adjusted to pH 7.7 by adding 15% aqueous ammonia with stirring, and then heat-treated at 100 ° C for 1.5 hours under reflux.
水 100 gにクェン酸 20 g、 及び硝酸鉄 35. 33 gを溶解した。 この液を 攪拌しつつ 1 5%アンモニア水を加え pH8とした。 この液を先に加熱処理した スラリーに混合し、 鉄アンチモネ一ト粉末 138. 3 gを混合した。  20 g of citrate and 35.33 g of iron nitrate were dissolved in 100 g of water. The solution was adjusted to pH 8 by adding 15% aqueous ammonia while stirring. This solution was mixed with the slurry that had been previously heat-treated, and 138.3 g of iron antimonate powder was mixed.
上記混合物を実施例 1一 1と同様に噴霧乾燥、 熱処理し、 最終的に 600°Cで 3時間流動焼成した。  The above mixture was spray-dried and heat-treated in the same manner as in Example 11-11, and finally fluidized-fired at 600 ° C for 3 hours.
実施例 4一 1 組成が Mo! 0B i 0. 4F e o. eN i 5. 75C r 0. 5Z r 0. 2 Ko. 7Example 4 1 1 The composition is Mo! 0 B i 0. 4 F e o . EN i 5. 75 C r 0. 5 Z r 0. 2 K o. 7
P0. 2T e 0. 25O39. 8 (S i 02) 40 (原子比) である触媒を調製した。 純水 1800 gにパラモリブテン酸アンモ-ゥム 309. 5 gを溶解し、 次い で 85 %リン酸 4. 04 gを加えた。 この液に、 3. 3 %硝酸 250 gに硝酸二 ッケル 293. 2 g、 硝酸クロム 35. 08 g、 ォキシ硝酸ジルコニウム 9. 3 7 g、 硝酸力リウム 12. 41 g、 及び硝酸ビスマス 34. 02 gを溶解した液 を混合し、 次いで 2107 gの 20%シリカゾルを混合してスラリーを得た。 こ のスラリーを攪拌しつつ 1 5%アンモニア水を加え、 pH8とした。 このスラリ —に純水 200 gにテルル酸 10. 1 g及び硝酸鉄 35. 33 gを溶解した液を 加え、 混合した。 P 0. The catalyst was prepared a 2 T e 0. 25O39. 8 ( S i 0 2) 40 ( atomic ratio). 309.5 g of ammonium paramolybdate was dissolved in 1800 g of pure water, and then 4.04 g of 85% phosphoric acid was added. To this solution was added 293.2 g of nickel nitrate to 250 g of 3.3% nitric acid, 35.08 g of chromium nitrate, 9.37 g of zirconium oxynitrate, 12.41 g of potassium nitrate, and 34.02 of bismuth nitrate g was dissolved and then 2107 g of 20% silica sol was mixed to obtain a slurry. The slurry was adjusted to pH 8 by adding 15% aqueous ammonia while stirring. A solution of 10.1 g of telluric acid and 35.33 g of iron nitrate dissolved in 200 g of pure water was added to the slurry and mixed.
上記混合物を実施例 1一 1と同様に噴霧乾燥、 熱処理し、 最終的に 580°Cで 3時間流動焼成した。  The mixture was spray-dried and heat-treated in the same manner as in Example 11-11, and finally fluidized at 580 ° C for 3 hours.
実施例 4一 2 Example 4-1
実施例 4一 1と同一組成の触媒を以下の方法で調製した。  Example 4 A catalyst having the same composition as in Example 11 was prepared by the following method.
純水 1 730 gにパラモリブデン酸アンモ-ゥム 185. 7 gを溶解し、 次い で 85 %リン酸 4. 04 gを加えた。 この液に、 3. 3 %硝酸 216 g、 二硝酸 ニッケル 293. 2 g、 硝酸クロム 35. 08 g、 ォキシ硝酸ジルコニウム 9. 37 g、 硝酸力リウム 1 2. 41 g、 クェン酸 24 g、 及び硝酸ビスマス 34. 02 gを溶解した液を混合し、 次いで 2107 gの 20 %シリ力ゾルを混合して スラリーを得た。 このスラリーを攪拌しつつ 1 5%アンモニア水を加え p H 7. 7とした後、 還流下 100 °Cで 1. 5時間加熱処理した。  185.7 g of ammonium paramolybdate was dissolved in 1730 g of pure water, and then 4.04 g of 85% phosphoric acid was added. In this solution, 216 g of 3.3% nitric acid, 293.2 g of nickel dinitrate, 35.08 g of chromium nitrate, 9.37 g of zirconium oxynitrate, 12.41 g of potassium nitrate, 24 g of citric acid, and A solution in which 34.02 g of bismuth nitrate was dissolved was mixed, and then 2107 g of a 20% silicic acid sol was mixed to obtain a slurry. The slurry was adjusted to pH 7.7 by adding 15% aqueous ammonia with stirring, and then heated under reflux at 100 ° C. for 1.5 hours.
純水 208 gに金属テルル粉 5. 59 g、 パラモリブデン酸アンモニゥム 4. 5.59 g of metallic tellurium powder in 208 g of pure water, ammonium paramolybdate 4.
6 g、 3 1 %過酸化水素及び水 1 9 gを加え、 95〜: 100°Cで攪拌、 溶解した。 この液を常温まで冷却し、 クェン酸 20 g及び硝酸鉄 35. 33 gを溶解した。 これを攪拌しつつ 1 5%アンモニア水を加え p H 9. 2とした後、 1 1 9. 2 g のパラモリブデン酸アンモ-ゥムを少しずつ加え溶解し、 さらに 1 5%アンモニ ァ水を加え、 pHを 7とした。 この液を、 先に加熱処理したスラリーに加え混合 した。 6 g, 31% hydrogen peroxide and 19 g of water were added, and the mixture was dissolved by stirring at 95 to 100 ° C. The solution was cooled to room temperature, and 20 g of citrate and 35.33 g of iron nitrate were dissolved. While stirring, 15% aqueous ammonia was added to adjust the pH to 9.2. Then, 11.9.2 g of ammonium paramolybdate was added little by little to dissolve, and further, 15% aqueous ammonia was added. In addition, the pH was set to 7. This liquid was added to and mixed with the slurry previously heated.
上記混合物を実施例 1一 3と同様に噴霧乾燥、 熱処理し、 最終的に 580°Cで 3時間流動焼成した。  The mixture was spray-dried and heat-treated in the same manner as in Examples 13 to 13, and finally fluidized at 580 ° C for 3 hours.
実施例 5 組成が Mo 10B i 0. 4 F e o_ 6N i 5. 75 C r x. 5 L a 0_ 2Mn0. 2 Example 5 Composition Mo 10 B i 0. 4 F e o_ 6 N i 5. 75 C r x. 5 L a 0 _ 2 Mn 0. 2
K0. 7 P o. 2T e 0. 25°41. 6 (S i 02) 40 (原子比) の触媒を実施例 4-2の方法に準じて調製した。 K 0. 7 P o. 2 T e 0. 25 ° 41. 6 (S i 0 2) 40 was prepared analogously to catalyst (atomic ratio) in the method of Example 4-2.
実施例 6 Example 6
組成が Μθ ι 0Β ί 0· 8 F e 4. 5 S b 4N i 6. 5 C r 0. 6 Z r 0. 1Composition Μθ ι 0 Β ί 0 · 8 F e 4. 5 S b 4 N i 6. 5 C r 0. 6 Z r 0. 1
L a 0. iKo. 7 P0. 5B0. 305 5. 8 (S i 02) 50 (原子比) である触 媒を実施例 1— 2の方法に準じて調製した。 ただし、 鉄アンチモネートにはリン 及びホウ素を含有 (S bに対しそれぞれ原子比で 0. 075 ) するものを用い た。 L a 0. IKo. 7 P 0. 5 B 0. 3 0 5 5. 8 (S i 0 2) was 50 catalysts are (atomic ratio) was prepared according to the method of Example 1 2. However, iron antimonate containing phosphorus and boron (atomic ratio of 0.075 to Sb, respectively) was used.
実施例 7 Example 7
組成が M o! 0 B i 1 F e 4. 5S b 4N i 6C r 0. 5 z r o. i z n o. 2 b o. o 5 K0. 6 P 0. 5 B 0. 3T e 0. 25 ° 56. 0 (S i〇2) 40 (原子 比) である触媒を実施例 6の方法に準じて調製した。 The composition is Mo! 0 B i 1 F e 4. 5 S b 4 N i 6 C r 0. 5 zr o. I zn o. 2 b o. O 5 K 0. 6 P 0. 5 B 0. 3 T e 0. 25 A catalyst having a temperature of 56.0 (Si 2 ) 40 (atomic ratio) was prepared according to the method of Example 6.
実施例 8 Example 8
組成が M o! 0 B i ! F e 4. 5S b 4N i 5. 5 C r 0. 5 L a 0. l^g 0. 5The composition is Mo! 0 B i! F e 4. 5 S b 4 N i 5. 5 C r 0. 5 L a 0. l ^ g 0. 5
K0. 6 P 0. 2T e 0. 25° 54. 5 (S i 02) 40 (原子比) である触媒を実 施例 1一 2の方法に準じて調製した。 K 0. 6 P 0. 2 T e 0. 25 ° 54. 5 (S i 0 2) 4 0 was prepared according to catalyst is (atomic ratio) in actual Example 1 one 2 ways.
実施例 9 Example 9
組成が Mo! 0B i !. 5F e 4. 5 S b 4N 1 5 C r 0. 3 L a 0. 07C o 1 K0. 6 P 0. 2T e 0. 25°55. 3 (S i〇2) 40 (原子比) である触媒を実 施例 1一 2の方法に準じて調製した。 The composition is Mo! 0 B i!. 5 F e 4. 5 S b 4 N 1 5 C r 0. 3 L a 0. 07 C o 1 K 0. 6 P 0. 2 T e 0. 25 ° 55. 3 (S i It was prepared 〇 2) 40 (according to the catalyst an atomic ratio) in actual Example 1 one 2 ways.
実施例 10 Example 10
組成が Mo 10B i 0. 4F e 4. 5S b 4N i 7C r 0. 4L a 0. iW0. 1Composition Mo 10 B i 0. 4 F e 4. 5 S b 4 N i 7 C r 0. 4 L a 0. IW 0. 1
K0. 5 P 0. 5B 0. 3Rb o. ι055· 4 (S i 02) 40 (原子比) である触 媒を実施例 6の方法に準じて調製した。 K 0. 5 P 0. 5 B 0. 3 Rb o. The ι0 55 · 4 (S i 0 2) 40 catalysts is (atomic ratio) was prepared according to the method of Example 6.
実施例 1 1 Example 1 1
組成が Mo i0B i 0. 3 F e 7. 6 S b 7. 7N 1 6 C r 0. 5 Z r 0. 1 La 0. !KQ. 6 P 0. 2〇65. 5 (S i 02) 60 (原子比) である触媒を実施 例 1一 2の方法に準じて調製した。 比較例 1 Composition Mo i 0 B i 0. 3 F e 7. 6 S b 7. 7 N 1 6 C r 0. 5 Z r 0. 1 La 0.! KQ. 6 P 0. 2_Rei_65. 5 (S A catalyst having i 0 2 ) 60 (atomic ratio) was prepared according to the method of Example 1-2. Comparative Example 1
組成が Mo i oB i o. 3 F e 4 4 S b 4, 2N i 5. 75 C r o. 5K0. 7 Composition Mo i oB i o. 3 F e 4 4 S b 4, 2 N i 5. 75 C r o. 5 K 0. 7
P0. 2 T e 0. 25 ° 53. 3 (S i 02) 40 (原子比) である触媒を実施例 1 — 2の方法に準じて調製した。 ただしジルコニウム成分は加えなかった。 . P 0 2 T e 0. 25 ° 53. 3 (S i 0 2) 40 implementing the catalyst is (atomic ratio) Example 1 - were prepared in accordance with the second method. However, no zirconium component was added.
比較例 2 組成が^40 10:6 1 0. 3 F e 4. 4 S b 4. 2Ν ί 5. 75 Z r 0. 2K0. 7 P 0. 2T e 0. 25° 53. 0 (S 102) 40 (原子比) である触媒を実施例 1 一 2の方法に準じて調製した。 ただしク口ム成分は加えなかった。 Comparative Example 2 composition ^ 40 10: 6 1 0. 3 F e 4. 4 S b 4. 2 Ν ί 5. 75 Z r 0. 2 K 0. 7 P 0. 2 T e 0. 25 ° 53. A catalyst having a ratio of 0 (S 10 2 ) 40 (atomic ratio) was prepared according to the method of Example 12-12. However, no kumumu component was added.
比較例 3 Comparative Example 3
組成が Mo i oB i o. 3F e 4. 4 S b 4. 2N i 5. 75Ce 0. 2K0. 7 Composition Mo i oB i o. 3 F e 4. 4 S b 4. 2 N i 5. 75 Ce 0. 2 K 0. 7
P 0. 2T e 0. 25〇55. 4 (S i〇2) 40 (原子比) である触媒を実施例 1 一 2の方法に準じて調製した。 A catalyst having a ratio of P 0.2 T e 0.25 455.4 (S i〇 2 ) 40 (atomic ratio) was prepared according to the method of Example 1-2.
上記実施例及び比較例の触媒につき、 前述の触媒活性試験を行い、 その結果を 表 1に示す。  The catalysts of the above Examples and Comparative Examples were subjected to the above-mentioned catalytic activity test, and the results are shown in Table 1.
産業上の利用可能性 Industrial applicability
本発明の触媒は、 ォレフィンのアンモ酸化、 特にプロピレンのアンモ酸化によ るアタリロニトリルの製造において高いァクリロニトリル収率を与えると共にァ ンモユア燃焼性を抑制することができる。 INDUSTRIAL APPLICABILITY The catalyst of the present invention can provide a high acrylonitrile yield in the production of atarilonitrile by ammoxidation of olefin, in particular, ammoxidation of propylene, and can suppress the flammability of ammonia.
応 条 件 Conditions
焼成 反応 接触 A N C 3 A N N,H:。 触 媒 組 成 ( 原 子 比 ) 温度 温度 時間 収率1 > tei匕率2) 3) 燃焼率Firing Reaction Contact ANC 3 ANN, H :. Catalyst composition (atomic ratio) Temperature Temperature Time Yield 1 > Teidani rate 2 ) 3) Burn rate
Mo Bi Fe Sb Ni Cr F G H Mo Bi Fe Sb Ni Cr F G H
実 ¾例 K X Y Si02 °C sec % % % %Example K X Y Si02 ° C sec%%%%
1-1 10 0.3 4.4 4.2 5.75 0.5 Zr 0.2 一 一 0.7 P 0.2 Te 0.25 一 40 590 440 2.25 84.5 98.5 85.9 111-1 10 0.3 4.4 4.2 5.75 0.5 Zr 0.2 1 0.7 P 0.2 Te 0.25 1 40 590 440 2.25 84.5 98.5 85.9 11
1-2 10 0.3 4.4 4.2 5.75 0.5 Zr 0.2 - - 0.7 P 0.2 Te 0.25 - 40 590 440 2.25 85.7 98.5 87.0 101-2 10 0.3 4.4 4.2 5.75 0.5 Zr 0.2--0.7 P 0.2 Te 0.25-40 590 440 2.25 85.7 98.5 87.0 10
2-1 10 0.3 4.5 7.0 5.75 0.7 0.2 V 0.05 0.7 P 0.2 Te 0.25 一 40 590 435 2.50 84.5 98.5 85.7 92-1 10 0.3 4.5 7.0 5.75 0.7 0.2 V 0.05 0.7 P 0.2 Te 0.25 1 40 590 435 2.50 84.5 98.5 85.7 9
2-2 10 0.3 4.5 7.0 5.75 0.7 La 0.2 ― V 0.05 0.7 P 0.2 Te 0.25 - 40 590 435 2.50 84.7 98.6 85.9 82-2 10 0.3 4.5 7.0 5.75 0.7 La 0.2 ― V 0.05 0.7 P 0.2 Te 0.25-40 590 435 2.50 84.7 98.6 85.9 8
3 10 0.4 4.5 10.0 5.75 1.0 Ce 0.2 一 Ta 0.05 0.5 P 0.2 Cs 0.1 40 600 440 2.50 85.1 98.5 86.4 73 10 0.4 4.5 10.0 5.75 1.0 Ce 0.2 i Ta 0.05 0.5 P 0.2 Cs 0.1 40 600 440 2.50 85.1 98.5 86.4 7
4-1 10 0.4 0.6 一 5.75 0.5 Zr 0.2 一 - 0.7 P 0.2 Te 0.25 一 40 580 440 2.50 84.2 98.2 85.7 154-1 10 0.4 0.6 one 5.75 0.5 Zr 0.2 one-0.7 P 0.2 Te 0.25 one 40 580 440 2.50 84.2 98.2 85.7 15
4-2 10 0.4 0.6 一 5, 75 0.5 Zr 0.2 - 一 0.7 P 0.2 Te 0.25 ― 40 580 440 2.25 84.8 98.6 86.0 134-2 10 0.4 0.6 1 5, 75 0.5 Zr 0.2-1 0.7 P 0.2 Te 0.25 ― 40 580 440 2.25 84.8 98.6 86.0 13
5 10 0.4 0.6 - 5.75 1.5 La 0.2 Mn 0.2 - 0.7 P 0.2 Te 0.25 ― 40 580 435 2.50 84.1 98.9 85.0 105 10 0.4 0.6-5.75 1.5 La 0.2 Mn 0.2-0.7 P 0.2 Te 0.25 ― 40 580 435 2.50 84.1 98.9 85.0 10
6 10 0.8 4.5 4.0 6.50 0.6 Zr 0.1 0.1 — - 0.7 P 0.5 B 0.3 一 40 560 440 2.50 84.2 98.1 85.8 126 10 0.8 4.5 4.0 6.50 0.6 Zr 0.1 0.1--0.7 P 0.5 B 0.3 1 40 560 440 2.50 84.2 98.1 85.8 12
7 10 1.0 4.5 4.0 6.00 0.5 Zr 0.1 Zn 0.2 Nb 0.05 0.6 P 0.5 Te 0.25 B 0.3 ― 50 560 440 2.50 83.9 98.0 85.6 117 10 1.0 4.5 4.0 6.00 0.5 Zr 0.1 Zn 0.2 Nb 0.05 0.6 P 0.5 Te 0.25 B 0.3 ― 50 560 440 2.50 83.9 98.0 85.6 11
8 10 1.0 4.5 4.0 5.50 0.5 La 0.1 Mg 0.5 一 0.6 P 0.2 Te 0.25 40 555 440 2.25 84.1 98.8 85.1 108 10 1.0 4.5 4.0 5.50 0.5 La 0.1 Mg 0.5-0.6 P 0.2 Te 0.25 40 555 440 2.25 84.1 98.8 85.1 10
9 10 1.5 4.5 4.0 5.00 0.3 La 0.07 Co 1.0 一 0.6 P 0.2 Te 0.25 一 40 535 440 2.25 83.9 98.5 85.2 169 10 1.5 4.5 4.0 5.00 0.3 La 0.07 Co 1.0-0.6 P 0.2 Te 0.25-40 535 440 2.25 83.9 98.5 85.2 16
10 10 0.4 4.5 4.0 7.00 0.4 0.1 W 0.1 0.5 P 0.5 B 0.3 Rb 0.1 40 600 440 100 85.5 98.3 87.0 610 10 0.4 4.5 4.0 7.00 0.4 0.1 W 0.1 0.5 P 0.5 B 0.3 Rb 0.1 40 600 440 100 85.5 98.3 87.0 6
11 10 0.3 7.6 7.7 6.00 0.5 Zr 0.1 La 0.1 0.6 P 0.2 60 590 440 2.50 85.6 98.7 86,7 9 比較例 11 10 0.3 7.6 7.7 6.00 0.5 Zr 0.1 La 0.1 0.6 P 0.2 60 590 440 2.50 85.6 98.7 86,7 9 Comparative example
1 10 0.3 4.4 4.2 5.75 0.5 0.7 P 0.2 Te 0.25 40 590 440 1.50 82.1 98.3 83.5 5 1 10 0.3 4.4 4.2 5.75 0.5 0.7 P 0.2 Te 0.25 40 590 440 1.50 82.1 98.3 83.5 5
2 10 0.3 4.4 4.2 5.75 Zr 0.2 0.7 P 0.2 Te 0.25 ΊΟ 550 440 1.75 83.1 98.5 84.4 182 10 0.3 4.4 4.2 5.75 Zr 0.2 0.7 P 0.2 Te 0.25 ΊΟ 550 440 1.75 83.1 98.5 84.4 18
3 10 0.3 4.4 4.2 5.75 Ce 0.2 0.7 P 0.2 Te 0, 25 40 570 1 440 2.50 83.6 98.6 84.8 25 注) 1 ) AN : アタ リ ロ ニ ト リノレ 3 10 0.3 4.4 4.2 5.75 Ce 0.2 0.7 P 0.2 Te 0, 25 40 570 1 440 2.50 83.6 98.6 84.8 25 Note) 1) AN: Atarilonitrino
2 ) C 3 : プロ ピレン  2) C 3: propylene

Claims

請求の範囲 The scope of the claims
1. アンモ酸化により不飽和二トリルを製造する際に用いられる、 下記の実験 式で表される触媒組成物: 1. A catalyst composition represented by the following empirical formula used in the production of unsaturated nitrile by ammoxidation:
Mo 1 0B i a F e b S b cN i dC r e F f GgHhKkXxYyO i Mo 1 0 B i a F e b S b c N i d C r e F f G g H h K k X x Y y O i
(S i 02) j (S i 0 2 ) j
式中、 Mo、 B i、 F e、 S b、 N i、 C r及び Kは、 それぞれモリブデン、 ビスマス、 鉄、 アンチモン、 ニッケル、 クロム及びカリウムを表し、 Fはジルコ 二ゥム、 ランタン及びセリウムからなる群から選ばれる少なくとも一種の元素、 Gはマグネシウム、 コバルト、 マンガン及び亜鉛からなる群から選ばれる少なく とも一種の元素、 Hはバナジウム、 ニオブ、 タンタル及びタングステンからなる 群から選ばれる少なくとも一種の元素、 Xはリン、 ホウ素及びテルルからなる群 から選ばれる少なくとも一種の元素、 Yはリチウム、 ナトリウム、 ルビジウム及 びセシウムからなる群から選ばれる少なくとも一種の元素、 Oは酸素、 S i 02 はシリカを表し、 そして添字 a、 b、 c、 d、 e、 f 、 g、 h、 i、 j、 k、 x 及び yは原子又は原子団の比を表し、 Mo = 10の時、 a = 0. :!〜 3、 b = 0.In the formula, Mo, Bi, Fe, Sb, Ni, Cr, and K represent molybdenum, bismuth, iron, antimony, nickel, chromium, and potassium, respectively, and F represents zirconium, lanthanum, and cerium. At least one element selected from the group consisting of magnesium, cobalt, manganese, and zinc; andH is at least one element selected from the group consisting of vanadium, niobium, tantalum, and tungsten. element, X is phosphorus, at least one element selected from the group consisting of boron and tellurium, Y is lithium, sodium, at least one element selected from the group consisting of rubidium及beauty cesium, O represents oxygen, S i 0 2 is Represents silica, and the subscripts a, b, c, d, e, f, g, h, i, j, k, x, and y represent the ratio of atoms or groups of atoms. , When Mo = 10, a = 0.:! ~ 3, b = 0.
3〜1 5、 c = 0〜20、 d = 3〜8、 e = 0. 2〜2、 f = 0. 05〜: 1、 e f > 1、 g = 0〜5、 h = 0〜3、 k = 0. 1〜: 1、 x = 0〜 3、 y = 0 ~ 1 Λ i =上記各成分が結合して生成する酸素の数、 及び〗 =0〜100である。 3 to 15, c = 0 to 20, d = 3 to 8, e = 0.2 to 2, f = 0.05.05 to: 1, ef> 1, g = 0 to 5, h = 0 to 3, k = 0. 1 to: 1, x = 0 to 3, y = 0 to 1 Λ i = the number of oxygen generated by combining the above components, and〗 = 0 to 100.
2. 鉄アンチモネートを含有する請求項 1に記載の触媒組成物。  2. The catalyst composition according to claim 1, comprising iron antimonate.
3. 該金属酸化物触媒が、 少なくともモリブデン、 ビスマス及び鉄原料成分と キレート剤とを含む、 pHが 6以上の水性スラリーを噴霧乾燥、 焼成することに より調製された流動層触媒である請求項 1又は 2に記載の触媒組成物。  3. The metal oxide catalyst is a fluidized bed catalyst prepared by spray-drying and calcining an aqueous slurry containing at least molybdenum, bismuth and iron raw materials and a chelating agent and having a pH of 6 or more. 3. The catalyst composition according to 1 or 2.
4. モリブデン原料の少なくとも一部、 及びニッケル、 コバルト、 マグネシゥ ム、 クロム、 マンガン及ぴ亜鉛からなる群から選ばれる少なくとも一種の元素の 原料を含み、 かつ、 pHが 6以上である水性スラリーと、 テルルの原料又は鉄の 原料を含む溶液若しくはスラリーとを混合し、 次いでその混合物を乾燥、 焼成す ることを含む請求項 1又は 2に記載の触媒組成物の製造法。  4. an aqueous slurry containing at least a part of a molybdenum raw material, and a raw material of at least one element selected from the group consisting of nickel, cobalt, magnesium, chromium, manganese and zinc, and having a pH of 6 or more; 3. The method for producing a catalyst composition according to claim 1, comprising mixing a solution or slurry containing a tellurium raw material or an iron raw material, and then drying and calcining the mixture.
5. モリブデン原料の少なくとも一部、 及びニッケル、 コバルト、 マグネシゥ ム、 クロム、 マンガン及び亜鈴からなる群から選ばれる少なくとも一種の元素の 原料を含み、 かつ、 P Hが 6以上である水性スラリーを、 温度 5 0〜1 2 0 °Cの 範囲で、 少なくとも 1 0分加熱処理した後、 テルルの原料又は鉄の原料を、 該カロ 熱処理したスラリーに混合し、 次いでその混合物を乾燥、 焼成することを含む請 求項 1又は 2に記載の触媒組成物の製造法。 5. At least a part of molybdenum raw material and nickel, cobalt, magnesium Aqueous slurry containing at least one element selected from the group consisting of aluminum, chromium, manganese, and dumbbell and having a pH of 6 or more at a temperature of 50 to 120 ° C and at least 10 ° C. The method for producing a catalyst composition according to claim 1 or 2, further comprising mixing a tellurium raw material or an iron raw material with the calo-heat-treated slurry, followed by drying and calcining the mixture. .
6 . モリブデン原料の少なくとも一部、 及び二ッケル、 コバルト、 マグネシゥ ム、 クロム、 マンガン及び亜鉛からなる群から選ばれる少なくとも一種の元素の 原料を含み、 かつ、 p Hが 6以上である水性スラリーと、 テルルの原料及び鉄の 原料を含む溶液若しくはスラリーとを混合し、 次いでその混合物を乾燥、 焼成す ることを含む請求項 1又は 2に記載の触媒組成物の製造法。  6. An aqueous slurry containing at least a part of a molybdenum raw material, and a raw material of at least one element selected from the group consisting of nickel, cobalt, magnesium, chromium, manganese, and zinc, and having a pH of 6 or more. 3. The method for producing a catalyst composition according to claim 1, comprising mixing a solution or slurry containing a tellurium raw material and an iron raw material, and then drying and calcining the mixture.
7 . モリブデン原料の少なくとも一部、 及び二ッケル、 コバルト、 マグネシゥ ム、 クロム、 マンガン及び亜鉛からなる群から選ばれる少なくとも一種の元素の 原料を含み、 かつ、 p Hが 6以上である水性スラリーを、 温度 5 0〜1 2 0 °Cの 範囲で、 少なくとも 1 0分加熱処理した後、 テルルの原料及び鉄の原料を、 該加 熱処理したスラリーに混合し、 次いでその混合物を乾燥、 焼成することを含む請 求項 1又は 2に記載の触媒組成物の製造法。  7. An aqueous slurry containing at least a part of a molybdenum raw material and a raw material of at least one element selected from the group consisting of nickel, cobalt, magnesium, chromium, manganese, and zinc, and having a pH of 6 or more. After a heat treatment at a temperature of 50 to 120 ° C. for at least 10 minutes, a tellurium raw material and an iron raw material are mixed with the heat-treated slurry, and then the mixture is dried and fired. 3. The method for producing a catalyst composition according to claim 1, comprising:
PCT/JP1999/002146 1998-04-23 1999-04-22 Catalyst for producing unsaturated nitrile WO1999054037A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ROA200001018A RO119228B1 (en) 1998-04-23 1999-04-22 Catalyst and process for preparing unsaturated nitriles
DE69920437T DE69920437T2 (en) 1998-04-23 1999-04-22 CATALYST FOR THE PRODUCTION OF UNSATURATED NITRILES
EP99917105A EP1075871B1 (en) 1998-04-23 1999-04-22 Catalyst for producing unsaturated nitrile
US09/673,571 US6479691B1 (en) 1998-04-23 1999-04-22 Catalyst for producing unsaturated nitrile

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP10128098 1998-04-23
JP10/128098 1998-04-23
JP15538898 1998-05-21
JP10/155388 1998-05-21
JP15998798 1998-05-26
JP10/159987 1998-05-26

Publications (1)

Publication Number Publication Date
WO1999054037A1 true WO1999054037A1 (en) 1999-10-28

Family

ID=27309425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002146 WO1999054037A1 (en) 1998-04-23 1999-04-22 Catalyst for producing unsaturated nitrile

Country Status (1)

Country Link
WO (1) WO1999054037A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028986A1 (en) * 1999-10-18 2001-04-26 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
WO2001028984A1 (en) * 1999-10-18 2001-04-26 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
WO2002013963A3 (en) * 2000-08-17 2002-05-02 Standard Oil Co Improved catalyst for the manufacture of acrylonitrile
EP1254713A1 (en) * 1999-07-21 2002-11-06 Mitsubishi Rayon Co., Ltd. Molybdenum-bismuth-iron containing metal oxide catalyst for fluidized layer, method for preparation thereof, and use thereof
WO2004091776A1 (en) 2003-04-18 2004-10-28 Dia-Nitrix Co., Ltd. Catalyst for acrylonitrile synthesis
EP1223163A4 (en) * 1999-10-18 2005-02-23 Mitsubishi Rayon Co Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
CN1299824C (en) * 2001-04-13 2007-02-14 大野绿水株式会社 Method for producing molybdenum-bismuth-iron containing composite oxide fluid bed catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139839A (en) * 1979-04-18 1980-11-01 Ube Ind Ltd Catalyst for production of acrylonitrile
JPS5835160A (en) * 1981-08-25 1983-03-01 Asahi Chem Ind Co Ltd Preparation of methacrylonitrile
JPH02214543A (en) * 1989-02-16 1990-08-27 Nitto Chem Ind Co Ltd Production of molybdenum-containing metal oxide fluid catalyst fit for oxidation reaction
JPH02251250A (en) * 1989-03-23 1990-10-09 Nitto Chem Ind Co Ltd Preparation of molybdenum-bismuth-containing composite oxide catalyst
JPH04118051A (en) * 1990-09-10 1992-04-20 Nitto Chem Ind Co Ltd Iron-antimony-molybdenum-containing oxide catalyst composition and its manufacture
JPH0747272A (en) * 1993-08-06 1995-02-21 Asahi Chem Ind Co Ltd Manufacture of unsaturated nitrile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139839A (en) * 1979-04-18 1980-11-01 Ube Ind Ltd Catalyst for production of acrylonitrile
JPS5835160A (en) * 1981-08-25 1983-03-01 Asahi Chem Ind Co Ltd Preparation of methacrylonitrile
JPH02214543A (en) * 1989-02-16 1990-08-27 Nitto Chem Ind Co Ltd Production of molybdenum-containing metal oxide fluid catalyst fit for oxidation reaction
JPH02251250A (en) * 1989-03-23 1990-10-09 Nitto Chem Ind Co Ltd Preparation of molybdenum-bismuth-containing composite oxide catalyst
JPH04118051A (en) * 1990-09-10 1992-04-20 Nitto Chem Ind Co Ltd Iron-antimony-molybdenum-containing oxide catalyst composition and its manufacture
JPH0747272A (en) * 1993-08-06 1995-02-21 Asahi Chem Ind Co Ltd Manufacture of unsaturated nitrile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1075871A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254713A1 (en) * 1999-07-21 2002-11-06 Mitsubishi Rayon Co., Ltd. Molybdenum-bismuth-iron containing metal oxide catalyst for fluidized layer, method for preparation thereof, and use thereof
US6740769B1 (en) 1999-07-21 2004-05-25 Mitsubishi Rayon Co., Ltd. Molybdenum-bismuth-iron-containing metal oxide catalysts for fluidized layer, method for preparation thereof, and use thereof
EP1254713A4 (en) * 1999-07-21 2003-08-20 Mitsubishi Rayon Co Molybdenum-bismuth-iron containing metal oxide catalyst for fluidized layer, method for preparation thereof, and use thereof
US6653496B1 (en) 1999-10-18 2003-11-25 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile, catalyst for use therein and method for preparing the same
US6642405B1 (en) 1999-10-18 2003-11-04 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile, catalyst for use therein and method for preparing the same
WO2001028986A1 (en) * 1999-10-18 2001-04-26 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
WO2001028984A1 (en) * 1999-10-18 2001-04-26 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
EP1223163A4 (en) * 1999-10-18 2005-02-23 Mitsubishi Rayon Co Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
EP1223164A4 (en) * 1999-10-18 2005-02-23 Mitsubishi Rayon Co Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
EP1223162A4 (en) * 1999-10-18 2005-02-23 Mitsubishi Rayon Co Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
WO2002013963A3 (en) * 2000-08-17 2002-05-02 Standard Oil Co Improved catalyst for the manufacture of acrylonitrile
CN1299824C (en) * 2001-04-13 2007-02-14 大野绿水株式会社 Method for producing molybdenum-bismuth-iron containing composite oxide fluid bed catalyst
WO2004091776A1 (en) 2003-04-18 2004-10-28 Dia-Nitrix Co., Ltd. Catalyst for acrylonitrile synthesis

Similar Documents

Publication Publication Date Title
JP3142549B2 (en) Iron / antimony / molybdenum-containing oxide catalyst composition and method for producing the same
EP1075871B1 (en) Catalyst for producing unsaturated nitrile
JP2701065B2 (en) Preparation of molybdenum-bismuth-containing composite oxide catalyst
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP5919870B2 (en) Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst
JP4954750B2 (en) Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst
WO2001028985A1 (en) Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
JP3371112B2 (en) Iron / antimony-containing metal oxide catalyst composition and method for producing the same
JP3819192B2 (en) Production method of acrylonitrile
JP2001162173A (en) Multiple oxide catalyst and method of producing acrylic acid
WO2001028984A1 (en) Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
JP3680115B2 (en) Catalyst composition for producing unsaturated nitrile
JP6683708B2 (en) Improved mixed metal oxide ammoxidation catalyst
EP0032012B1 (en) Oxidation and ammoxidation catalysts and their use
JP4588533B2 (en) Catalyst for acrylonitrile synthesis
WO1999054037A1 (en) Catalyst for producing unsaturated nitrile
WO2000058272A1 (en) Process for producing unsaturated nitrile
JPH0210695B2 (en)
EP0032618B1 (en) Oxidation and ammoxidation catalysts and their uses
JP3875011B2 (en) Acrylonitrile manufacturing process
JP4159729B2 (en) Method for producing acrylonitrile
JPS6028824A (en) Catalyst for manufacturing methacrolein
JP3872269B2 (en) Method for producing hydrogen cyanide
JP4060578B2 (en) Method for producing composite oxide catalyst
JP2001276618A (en) Catalyst for oxidation or ammoxidation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99805387.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR RO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007011364

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2000 200001018

Country of ref document: RO

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09673571

Country of ref document: US

Ref document number: 1999917105

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999917105

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007011364

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999917105

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007011364

Country of ref document: KR