JPH0215255B2 - - Google Patents

Info

Publication number
JPH0215255B2
JPH0215255B2 JP56161232A JP16123281A JPH0215255B2 JP H0215255 B2 JPH0215255 B2 JP H0215255B2 JP 56161232 A JP56161232 A JP 56161232A JP 16123281 A JP16123281 A JP 16123281A JP H0215255 B2 JPH0215255 B2 JP H0215255B2
Authority
JP
Japan
Prior art keywords
catalyst
parts
gas
calcination
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56161232A
Other languages
Japanese (ja)
Other versions
JPS5861833A (en
Inventor
Masaaki Kato
Masaki Kamogawa
Toshiharu Nakano
Yorifumi Furuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP56161232A priority Critical patent/JPS5861833A/en
Publication of JPS5861833A publication Critical patent/JPS5861833A/en
Publication of JPH0215255B2 publication Critical patent/JPH0215255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は不飽和アルデヒドを気相接触酸化して
相当する不飽和酸を製造する際に使用するリン、
モリブデンおよび酸素を含む触媒の焼成法に関す
る。更に詳しくはアクロレン又はメタクロレンを
気相接触酸化してアクリル酸又はメタクリル酸を
製造する際に使用するリン、モリブデンおよび酸
素を含む触媒の焼成法に関する。 従来、アクロレン又はメタクロレンの気相接触
酸化用触媒として種々のものが提案されている
が、リン、モリブデンおよび酸素を含む触媒が比
較的すぐれた性能を示している。本発明者らの一
部も特公昭50−23013、同50−23014などでリン、
モリブデンおよび酸素を含む触媒を提案した。上
記触媒は特定の条件の下に調製すると、活性およ
び目的生成物の選択性が著しく向上する。しか
し、性能の再現性が不十分であり、製造の規模が
大きくなるに従つて性能のバラツキが大となり、
工業的な実施の観点からは必ずしも充分ではなか
つた。 本発明者らは高性能を具備し、均質性の高い上
記触媒を特に工業的規模で製造する場合に有利に
製造する方法について鋭意研究した結果、公知の
方法によつて得られた触媒組成物を活性賦与する
際にアンモニアおよび/または水蒸気を厳密に管
理された濃度で含んだガス流通下300〜500℃の温
度で、1〜数十時間、必要であれば該アンモニア
または水を含んだガスの流通方向を反転して焼成
することにより、高性能で高均質性の触媒が得ら
れることを見出し、本発明を完成するに到つた。 従つて本発明はアクロレン又はメタクロレンを
気相接触酸化してアクリル酸又はメタクリル酸を
製造する際に使用するリン、モリブデンおよび酸
素を含む触媒の焼成法を提供するものである。以
下に本発明を詳しく説明する。 リン、およびモリブデンを含む触媒は前述の引
例に示されているように種々の調製法で活性を示
す。特に空気流通下焼成した触媒は流通しないで
焼成した触媒に比べて著しく高い活性を示すこと
が多い。しかしながら、この時の焼成では触媒量
が多くなればなる程触媒間に活性の違いが生ずる
ことから、不均一な性能を有する触媒が得られて
再現性が悪く工業的規模での焼成が困難であり、
改良が待たれていた。 そこで、本発明者らはリン、モリブデンおよび
酸素を含む触媒の焼成における活性発現の機構お
よび活性の不均一性の原因を解明するために種々
の検討を行なつた。その結果、触媒活性の不均一
性は空気などのガスを通じて触媒を焼成した場
合、原料塩の分解などにより触媒中より、水蒸
気、アンモニア、窒素酸化物、その他ガスあるい
はガス状物質が発生するので焼成中の触媒組成物
はガス流通の入口部から出口部にわたつて一様で
ない雰囲気にさらされるためであることをつきと
めた。 本発明者らは、これらの事実に基いて触媒を工
業的規模で均一に焼成する方法を種々の角度から
研究した結果、通常の方法によつて得られた触媒
組成物をアンモニアおよび/または水蒸気を全量
で0.05〜3%の範囲で含むように規制されたガス
流通下で処理することにより高性能で、均一性の
高い性能を有する触媒となしうることを見い出し
たのである。 本発明が焼成の対象とし得る触媒系はリンおよ
びモリブデンを含む組成物であり、かつ調製の過
程でアンモニアまたはアンモニウム基が関与する
系である。例えば触媒の原料化合物から、蒸発乾
固法、共沈法あるいは酸化物混合法によつて触媒
を調製する際に原料物質中にアンモニアまたはア
ンモニウム基が存在しなければ添加するなどして
アンモニアまたはアンモニウム基の存在下で調製
を行ない、得られたスラリーを乾燥して得られる
組成物である。本発明の触媒焼成法はリン、モリ
ブデンおよび酸素の他に種種の元素を含む触媒に
適用することができる。含有させることの出来る
元素の例示としてはアルカリ土類金属、ヒ素、ア
ンチモン、ビスマス、銅、バナジウム、タングス
テン、鉄、マンガン、錫、ジルコニウム、コバル
ト、ニツケル、亜鉛、セレン、カドミウム、ニオ
ブ、タンタル、珪素、アルミニウム、チタン、ロ
ジウム、セリウム、ゲルマニウム、鉛、クロム、
タリウム、インジウム、パラジウム、銀、テルル
などを挙げることができる。触媒の調製に用いら
れる原料物質は水酸化物、酸化物、塩、塩化物、
遊離酸のいずれでもよい。これらの例としてはリ
ン酸、モリブデン酸、リンモリブデン酸、モリブ
デン酸アンモニウム、リンモリブデン酸アンモニ
ウム、三酸化モリブデン等が挙げられる。調製法
の一例を挙げると、次の通りである。 モリブデン酸アンモニウム水溶液にリン酸水溶
液を添加し、必要であれば他の元素の化合物例え
ばヒ酸、硝酸銅、メタバリジン酸アンモンなどを
添加した後撹拌しながら蒸発乾固し、乾燥する。
ケークを粉砕した後打錠成形、あるいは希釈剤で
希釈して成形しても良い。また、適当な担体に担
持しても良い。得られた触媒をそのまゝ焼成して
も良いし、340℃以下の温度で熱処理した後焼成
することもできる。 本発明の方法ではアンモニア含有ガスの場合は
アンモニア濃度は0.05〜3%、とくに0.05〜1.5%
が好ましい。水蒸気含有ガスまたはアンモニアお
よび水蒸気含有ガスの場合は0.05〜3%の範囲が
好ましい。 いずれの場合でも上記の下限より小さいと効果
が小さく、不均一な活性の触媒となる。また、上
記の上限より大きくても熱処理後得られた触媒の
活性は不均一となり、かつ活性発現が全体に不十
分となる。焼成の温度は300〜500℃、特に300〜
420℃が好ましい。焼成に要する時間は焼成温度、
雰囲気あるいはその濃度により異なるが1〜数十
時間、とくに1〜30時間が好ましい。 本発明による焼成は通常用いられる装置、炉で
充分である。さらに本発明の方法によると、触媒
の均一性の高い触媒が得られるため焼成時の触媒
層を大きくすることが出来る。例えば、全長5〜
6mの反応器等に充填して行うこともできる。こ
の場合より均一性を高めるため必要ならガスの方
向を反転してもよい。 本発明による高活性化処理をほどこした触媒を
使用してアクロレン又はメタクロレンを酸化して
アクリル酸又はメタクリル酸を製造するにあたつ
て原料ガスとしてアクロレン又はメタクロレンと
分子状酸素例えば空気との混合ガスが使用され
る。希釈剤として水蒸気、窒素、炭酸ガス等を導
入しても良い。特に水蒸気の存在はアクロレン又
はメタクロレン転化率およびアクリル酸又はメタ
クリル酸の選択率の向上に好ましい影響を与え
る。原料ガス中のアクロレン又はメタクロレン濃
度は広い範囲で変えることが出来るが1〜20vol
%が適当であり、とくに好ましくは3〜15vol%
である。酸素濃度はアクロレンに対するモル比で
0.3〜4とくに0.4〜3.2が好ましい。反応圧は常圧
から数気圧までが良い。反応温度は240〜390℃、
とくに270〜340℃が適当である。ガス空間速度は
反応圧と反応温度によつて変るが300〜10000/
Hが適当である。 以下に実施例および比較例を挙げて本発明の方
法を更に詳しく説明する。以下においては部は重
量部を表わし、転化率および選択率は次の通りで
ある。 転化率(%)=反応したアクロレン又
はメタクロレンモル数/供給したアクロレン又はメタク
ロレンモル数×100 選択率(%)=生成したアクリル酸又
はメタクリル酸モル数/反応したアクロレン又はメタク
ロレンモル数×100 実施例 1 パラモリブデン酸アンモニウム3000部を70℃の
純水8000部に溶解させ、これに85%リン酸163部
と60%ヒ酸水溶液147部の水溶液を添加した。 この混合液を撹拌しながら加熱して蒸発乾固さ
せ、更に130°に約16時間保つて乾燥させた。得ら
れたケークを粉砕後成形した。 得られた成形品660部を内径27.5m/m、長さ
1mのステンレスパイプに充填した後0.06vol%
のアンモニアを含む空気1000/Hを通じながら
80℃/時の速度で380℃に昇温、2時間保持した
後、流通方向を逆にして更に4時間熱処理した。
冷却後ほゞ等分に5分割して取出し、最初のガス
流通の入口側よりとした。これら
の触媒を内径16m/mの反応管にそれぞれ
充填して炉温280℃に保ち、容量でメタクロレン
5%、空気47.8%、水蒸気20%、窒素27.2%の組
成の原料ガスを空間速度1000/Hで送入してそ
れぞれ反応した。 その結果を下に示した。
The present invention relates to phosphorus, which is used when producing a corresponding unsaturated acid by vapor phase catalytic oxidation of an unsaturated aldehyde,
This invention relates to a method for calcination of a catalyst containing molybdenum and oxygen. More specifically, the present invention relates to a method for firing a catalyst containing phosphorus, molybdenum, and oxygen used when producing acrylic acid or methacrylic acid by vapor phase catalytic oxidation of acrolene or methachlorolene. Conventionally, various catalysts have been proposed for gas phase catalytic oxidation of acrolene or methachlorolene, but catalysts containing phosphorus, molybdenum, and oxygen have shown relatively excellent performance. Some of the inventors also published phosphorus in Japanese Patent Publications No. 50-23013 and No. 50-23014.
A catalyst containing molybdenum and oxygen was proposed. When the above catalysts are prepared under specific conditions, the activity and selectivity of the desired product are significantly improved. However, the reproducibility of performance is insufficient, and as the scale of production increases, the variation in performance increases.
This was not always sufficient from the point of view of industrial implementation. The present inventors conducted intensive research on a method for producing the above-mentioned catalyst with high performance and high homogeneity, especially when producing it on an industrial scale, and as a result, a catalyst composition obtained by a known method was obtained. When activating ammonia and/or water vapor at a temperature of 300 to 500°C for 1 to several tens of hours under a gas flow containing ammonia and/or water vapor at a strictly controlled concentration, if necessary, the ammonia or water-containing gas The present inventors have discovered that a high-performance and highly homogeneous catalyst can be obtained by reversing the flow direction of the catalyst and completing the present invention. Accordingly, the present invention provides a method for calcination of a catalyst containing phosphorus, molybdenum, and oxygen used in producing acrylic acid or methacrylic acid by gas-phase catalytic oxidation of acrolene or methachlorolene. The present invention will be explained in detail below. Catalysts containing phosphorus and molybdenum are active in a variety of preparations, as shown in the references cited above. In particular, catalysts calcined under air circulation often exhibit significantly higher activity than catalysts calcined without air circulation. However, in this calcination, as the amount of catalyst increases, the difference in activity between the catalysts occurs, resulting in a catalyst with non-uniform performance, poor reproducibility, and difficulty in calcination on an industrial scale. can be,
Improvements were awaited. Therefore, the present inventors conducted various studies in order to elucidate the mechanism of activity expression and the cause of the non-uniformity of activity in the calcination of a catalyst containing phosphorus, molybdenum and oxygen. As a result, non-uniformity in catalytic activity is caused by the generation of water vapor, ammonia, nitrogen oxides, and other gases or gaseous substances from the catalyst due to decomposition of raw material salts when the catalyst is fired through gas such as air. It has been found that this is because the catalyst composition therein is exposed to a non-uniform atmosphere from the inlet to the outlet of the gas flow. Based on these facts, the present inventors researched methods for uniformly firing catalysts on an industrial scale from various angles. They have discovered that a catalyst with high performance and highly uniform performance can be obtained by treating the catalyst under gas flow that is regulated to contain a total amount of 0.05 to 3%. Catalyst systems that can be subjected to calcination in the present invention are compositions containing phosphorus and molybdenum, and systems in which ammonia or ammonium groups are involved in the preparation process. For example, when preparing a catalyst from a raw material compound of a catalyst by evaporation to dryness method, coprecipitation method, or oxide mixing method, if ammonia or ammonium group does not exist in the raw material, ammonia or ammonium group may be added. It is a composition obtained by preparing the slurry in the presence of a base and drying the obtained slurry. The catalyst calcination method of the present invention can be applied to catalysts containing various elements in addition to phosphorus, molybdenum, and oxygen. Examples of elements that can be contained include alkaline earth metals, arsenic, antimony, bismuth, copper, vanadium, tungsten, iron, manganese, tin, zirconium, cobalt, nickel, zinc, selenium, cadmium, niobium, tantalum, and silicon. , aluminum, titanium, rhodium, cerium, germanium, lead, chromium,
Examples include thallium, indium, palladium, silver, and tellurium. The raw materials used to prepare the catalyst include hydroxides, oxides, salts, chlorides,
Any free acid may be used. Examples of these include phosphoric acid, molybdic acid, phosphomolybdic acid, ammonium molybdate, ammonium phosphomolybdate, molybdenum trioxide, and the like. An example of the preparation method is as follows. A phosphoric acid aqueous solution is added to an ammonium molybdate aqueous solution, and if necessary, other elemental compounds such as arsenic acid, copper nitrate, ammonium metavalidate, etc. are added, and then evaporated to dryness with stirring to dry.
The cake may be crushed and then molded into tablets, or it may be diluted with a diluent and molded. Alternatively, it may be supported on a suitable carrier. The obtained catalyst may be calcined as it is, or it may be calcined after being heat treated at a temperature of 340° C. or less. In the method of the present invention, in the case of ammonia-containing gas, the ammonia concentration is 0.05 to 3%, particularly 0.05 to 1.5%.
is preferred. In the case of water vapor-containing gases or ammonia and water vapor-containing gases, a range of 0.05 to 3% is preferred. In any case, if it is smaller than the above lower limit, the effect will be small and the catalyst will have non-uniform activity. In addition, even if it is larger than the above-mentioned upper limit, the activity of the catalyst obtained after heat treatment will be non-uniform, and the activity will be insufficiently expressed as a whole. The firing temperature is 300~500℃, especially 300~
420°C is preferred. The time required for firing depends on the firing temperature,
Although it varies depending on the atmosphere or its concentration, it is preferably 1 to several tens of hours, particularly 1 to 30 hours. For firing according to the present invention, commonly used equipment and furnaces are sufficient. Furthermore, according to the method of the present invention, a highly homogeneous catalyst can be obtained, so that the size of the catalyst layer during firing can be increased. For example, total length 5~
It can also be carried out by filling a 6 m reactor or the like. In this case, the direction of the gas may be reversed if necessary to improve uniformity. When producing acrylic acid or methacrylic acid by oxidizing acrolene or methacrolene using the highly activated catalyst according to the present invention, a mixed gas of acrolene or methachlorolene and molecular oxygen, such as air, is used as a raw material gas. is used. Steam, nitrogen, carbon dioxide gas, etc. may be introduced as a diluent. In particular, the presence of water vapor has a favorable effect on improving the acrolene or methacrolene conversion rate and the selectivity of acrylic acid or methacrylic acid. The acrolene or methachlorolene concentration in the raw material gas can be varied within a wide range, but is 1 to 20 vol.
% is suitable, particularly preferably 3 to 15 vol%
It is. Oxygen concentration is the molar ratio to acrolene
0.3-4, particularly 0.4-3.2 is preferred. The reaction pressure is preferably from normal pressure to several atmospheres. Reaction temperature is 240-390℃,
A temperature of 270 to 340°C is particularly suitable. The gas space velocity varies depending on the reaction pressure and reaction temperature, but is 300 to 10,000/
H is appropriate. The method of the present invention will be explained in more detail below with reference to Examples and Comparative Examples. In the following, parts represent parts by weight, and conversion rates and selectivities are as follows. Conversion rate (%) = Number of moles of acrolene or methacrolene reacted / Number of moles of acrolene or methacrolene supplied × 100 Selectivity (%) = Number of moles of acrylic acid or methacrylic acid produced / Number of moles of acrolene or methacrolene reacted × 100 Example 1 3000 parts of ammonium paramolybdate was dissolved in 8000 parts of pure water at 70°C, and an aqueous solution of 163 parts of 85% phosphoric acid and 147 parts of a 60% arsenic acid aqueous solution was added thereto. The mixture was heated with stirring to evaporate to dryness, and was further dried by keeping it at 130° for about 16 hours. The resulting cake was crushed and molded. 0.06vol% after filling 660 parts of the obtained molded product into a stainless steel pipe with an inner diameter of 27.5m/m and a length of 1m.
While passing through 1000/h of air containing ammonia
After raising the temperature to 380°C at a rate of 80°C/hour and holding it for 2 hours, the flow direction was reversed and heat treatment was performed for an additional 4 hours.
After cooling, it was divided into 5 approximately equal parts and taken out, starting from the inlet side of the first gas flow. Each of these catalysts was packed into a reaction tube with an inner diameter of 16 m/m, the furnace temperature was kept at 280°C, and the raw material gas with a volume composition of 5% methachlorolene, 47.8% air, 20% water vapor, and 27.2% nitrogen was heated at a space velocity of 1000/m. The reactants were reacted by feeding them with H. The results are shown below.

【表】 比較例 1 実施例1において熱処理に使用するガスを0.01
%のアンモニアを含む空気に変えた以外は実施例
1と同様にした。
[Table] Comparative example 1 In Example 1, the gas used for heat treatment was 0.01
The same procedure as in Example 1 was carried out except that the air containing % of ammonia was used.

【表】 この結果大量触媒の焼成において活性、選択性
に大きなバラツキを生ずることがわかる。 比較例 2 実施例1において熱処理に使用するガスを5%
のアンモニアを含む空気に変えた以外は実施例1
と同様にした。
[Table] As a result, it can be seen that large variations in activity and selectivity occur in the calcination of a large amount of catalyst. Comparative example 2 5% of the gas used for heat treatment in Example 1
Example 1 except that the air containing ammonia was changed to
I did the same thing.

【表】 実施例 2 パラモリブデン酸アンモン3000部を約60℃の純
水14000部に溶解した。これに41.3部のメタバナ
ジン酸アンモニウムを投入し溶解した後、85%リ
ン酸163部、次いで二酸化ゲルマニウム73.6部を
加える。更に硝酸カリウム143部を純水1700部に、
硝酸第二鉄57.2部を純水600部にそれぞれ溶解し
た後添加し、加熱撹拌しながら蒸発乾固した。
130℃で16時間乾燥した後、粉砕し滑剤を混合し
て成形した。 これを内径27.5m/m、長さ3mの反応管に充
填した後、水蒸気0.5%を含んだ空気1000/H
を通じながら昇温速度25℃/Hで100℃から385℃
まで昇温し、昇温後4時間保持した後ガスの方向
を逆にして4時間処理した。冷却後、触媒をほゞ
等分に5分割して取り出し、最初のガス流通の入
口側よりとした。これらの
触媒をそれぞれ内径22m/mの反応管に充填し
た。以下実施例1と同様の反応条件で反応した。
但し、反応温度は300℃とし、メタクロレン4%、
空気60%、水蒸気36%とした。
[Table] Example 2 3000 parts of ammonium paramolybdate was dissolved in 14000 parts of pure water at about 60°C. After 41.3 parts of ammonium metavanadate was added and dissolved, 163 parts of 85% phosphoric acid and then 73.6 parts of germanium dioxide were added. Furthermore, add 143 parts of potassium nitrate to 1,700 parts of pure water.
57.2 parts of ferric nitrate was dissolved in 600 parts of pure water and added, and the mixture was evaporated to dryness with heating and stirring.
After drying at 130°C for 16 hours, it was crushed, mixed with a lubricant, and molded. After filling this into a reaction tube with an inner diameter of 27.5 m/m and a length of 3 m, 1000/H of air containing 0.5% water vapor was added.
from 100°C to 385°C at a heating rate of 25°C/H.
After the temperature was raised, the temperature was maintained for 4 hours, and then the direction of the gas was reversed and the treatment was continued for 4 hours. After cooling, the catalyst was divided into five approximately equal parts and taken out from the inlet side of the first gas flow. Each of these catalysts was packed into a reaction tube with an inner diameter of 22 m/m. Thereafter, the reaction was carried out under the same reaction conditions as in Example 1.
However, the reaction temperature was 300℃, 4% methachlorolene,
60% air and 36% water vapor.

【表】 比較例 3 実施例2において熱処理に使用するガスを0.01
%の水蒸気を含む空気に変えた以外は実施例2と
同様にした。
[Table] Comparative Example 3 The gas used for heat treatment in Example 2 was 0.01
The same procedure as in Example 2 was carried out except that the air containing % of water vapor was used.

【表】 比較例 4 実施例2において熱処理に使用するガスを5.0
%の水蒸気を含む空気に変えた以外は実施例2と
同様にした。
[Table] Comparative Example 4 In Example 2, the gas used for heat treatment was 5.0
The same procedure as in Example 2 was carried out except that the air containing % of water vapor was used.

【表】 実施例 3 純水200部に三酸化モリブデン500部、三酸化ア
ンチモン63.3部、三酸化クロム17.4部を添加、更
に硝酸銅17.5部と硝酸カリウム29.3部の混合水溶
液を加えた後撹拌しながら85%リン酸66.7部を混
合する。充分に撹拌しながら50℃で3時間保持し
た後、28%アンモニア水80部を徐々に添加する。
更に2時間保つた後蒸発乾固する。得られたケー
クを150℃で16時間乾燥後、粉砕し成形した。 これを内径27.5m/m、長さ3mの反応管に充
填して、アンモニア0.05%と水蒸気0.85%を含む
空気を1500/Hで通じながら65℃/Hの昇温速
度で390℃まで昇温、1時間保持した後、ガスの
方向を反転して更に3時間熱処理した。以下実施
例2と同様の取り出しをし、反応を行なつた。但
し、反応温度は310℃とし、空間速度は700/H
とした。
[Table] Example 3 500 parts of molybdenum trioxide, 63.3 parts of antimony trioxide, and 17.4 parts of chromium trioxide were added to 200 parts of pure water. After adding a mixed aqueous solution of 17.5 parts of copper nitrate and 29.3 parts of potassium nitrate, the mixture was stirred. Mix 66.7 parts of 85% phosphoric acid. After maintaining the temperature at 50°C for 3 hours with sufficient stirring, 80 parts of 28% aqueous ammonia was gradually added.
After keeping for another 2 hours, it is evaporated to dryness. The resulting cake was dried at 150°C for 16 hours, then ground and molded. This was filled into a reaction tube with an inner diameter of 27.5 m/m and a length of 3 m, and the temperature was raised to 390°C at a rate of 65°C/H while passing air containing 0.05% ammonia and 0.85% water vapor at a rate of 1500°C/H. After holding for 1 hour, the direction of the gas was reversed and the heat treatment was further carried out for 3 hours. Thereafter, the same extraction as in Example 2 was carried out and a reaction was carried out. However, the reaction temperature is 310℃ and the space velocity is 700/H.
And so.

【表】 実施例 4 パラモリブデン酸アンモン3000部を約70℃の純
水14000部に溶解した。これに85%リン酸163部添
加し撹拌した。更に60%ヒ酸水溶液147部を撹拌
しながら加えた。硝酸銅34.1部の水溶液と硝酸カ
リウム43.0部と硝酸セシウム193部の混合水溶液
を添加した。上記の液を撹拌しながらメタバナジ
ン酸アンモニウム49.6部を投入、最後に三酸化ア
ンチモン41.3部を投入した。撹拌しながら蒸発乾
固した。得られたケークを130℃で16時間乾燥し
た後、粉砕した。この粉末をシリカーアルミナ製
球状担体に約30%担持した。 得られた触媒を内径27.5m/m、長さ3mの反
応管に充填した。水蒸気0.8%を含む空気1000
/Hを供給しながら昇温速度25℃/Hで昇温、
380℃で8時間焼成した。降温後、5分割して取
出し、空気供給側よりとした。 得られた触媒を内径16m/mの反応管にそれぞ
れ充填した後、浴温295℃に保ちながらメタクロ
レン4.0%、空気47.8%、水蒸気15%、窒素33.2%
(容量パーセント)の組成の原料ガスを空間速度
600/Hで供給したところ、次の結果が得られ
た。
[Table] Example 4 3000 parts of ammonium paramolybdate was dissolved in 14000 parts of pure water at about 70°C. 163 parts of 85% phosphoric acid was added to this and stirred. Further, 147 parts of a 60% arsenic acid aqueous solution was added with stirring. An aqueous solution of 34.1 parts of copper nitrate, a mixed aqueous solution of 43.0 parts of potassium nitrate, and 193 parts of cesium nitrate were added. While stirring the above liquid, 49.6 parts of ammonium metavanadate was added, and finally 41.3 parts of antimony trioxide was added. It was evaporated to dryness while stirring. The resulting cake was dried at 130° C. for 16 hours and then ground. Approximately 30% of this powder was supported on a silica-alumina spherical carrier. The obtained catalyst was packed into a reaction tube with an inner diameter of 27.5 m/m and a length of 3 m. Air 1000 containing 0.8% water vapor
/H is supplied while increasing the temperature at a temperature increase rate of 25℃/H.
It was baked at 380°C for 8 hours. After the temperature had cooled, it was divided into five parts and taken out from the air supply side. After each of the obtained catalysts was filled into a reaction tube with an inner diameter of 16 m/m, 4.0% methachlorolene, 47.8% air, 15% water vapor, and 33.2% nitrogen were added while keeping the bath temperature at 295°C.
Space velocity of feed gas with composition (percent by volume)
When it was supplied at a rate of 600/H, the following results were obtained.

【表】 比較例 5 実施例4に於いて、焼成時に供給したガスをア
ンモニア1%と水蒸気4%を含む空気に変えたほ
かは、実施例4と同様にした。その結果、次の値
が得られた。
[Table] Comparative Example 5 Example 4 was carried out in the same manner as in Example 4, except that the gas supplied during firing was changed to air containing 1% ammonia and 4% water vapor. As a result, the following values were obtained.

【表】 実施例 5 パラモリブデン酸アンモン500部を純水1000部
に溶解した後メタバナジン酸アンモン82.8部を投
入、溶解する。更に硝酸第二鉄47.7部の水溶液を
添加、次に、水ガラス21.0部の水溶液を添加し
て、速やかに蒸発乾固した。得られたケークを
340℃で2時間乾燥した後粉砕した。ついで、シ
リカーアルミナ担体に約30%担持した。 得られた触媒を内径27.5m/m、長さ3mの反
応管に充填した後水蒸気0.5%を含む空気を空間
速度300/Hで通じながら70℃/Hで370℃まで
昇温した後、2時間保持して熱処理した。 以下、実施例1と同じようにして取り出し、そ
れらを反応した。但し、メタクロレンの代りにア
クロレンを使用し、反応温度は270℃とした。
[Table] Example 5 After dissolving 500 parts of ammonium paramolybdate in 1000 parts of pure water, 82.8 parts of ammonium metavanadate was added and dissolved. Furthermore, an aqueous solution of 47.7 parts of ferric nitrate was added, followed by an aqueous solution of 21.0 parts of water glass, and the mixture was quickly evaporated to dryness. the resulting cake
It was dried at 340°C for 2 hours and then ground. Then, about 30% was supported on a silica-alumina carrier. The obtained catalyst was packed into a reaction tube with an inner diameter of 27.5 m/m and a length of 3 m, and then heated to 370°C at a rate of 70°C/H while passing air containing 0.5% water vapor at a space velocity of 300/H. Heat treatment was performed for a certain period of time. Thereafter, the samples were taken out and reacted in the same manner as in Example 1. However, acrolene was used instead of methachlorolene, and the reaction temperature was 270°C.

【表】【table】

Claims (1)

【特許請求の範囲】 1 不飽和アルデヒドを気相接触酸化して相当す
る不飽和酸を製造する際に使用するリン、モリブ
デンおよび酸素を含み、調整過程でアンモニアま
たはアンモニウム基が関与する触媒を300〜500℃
の温度で焼成するに際し、焼成温度までの昇温速
度を10〜100℃/時とし、アンモニアおよび/ま
たは水蒸気を0.05〜3%含むガスの流通下に処理
することを特徴とする触媒の焼成法。 2 ガスが空気であることを特徴とする特許請求
の範囲第1項の触媒焼成法。 3 焼成を不飽和アルデヒドの気相接触酸化用反
応管中で行なうことを特徴とする特許請求の範囲
第1項又は第2項の触媒焼成法。 4 ガスの流通方向を焼成途中で反転させること
を特徴とする特許請求の範囲第1項、第2項又は
第3項の触媒焼成法。
[Claims] 1. A catalyst containing phosphorus, molybdenum and oxygen, which is used in the gas phase catalytic oxidation of unsaturated aldehydes to produce the corresponding unsaturated acids, and in which ammonia or ammonium groups are involved in the preparation process. ~500℃
A method for calcination of a catalyst, which is characterized in that, when calcination is carried out at a temperature of . 2. The catalyst firing method according to claim 1, wherein the gas is air. 3. The catalyst calcination method according to claim 1 or 2, characterized in that the calcination is carried out in a reaction tube for gas phase catalytic oxidation of unsaturated aldehydes. 4. The catalyst firing method according to claim 1, 2, or 3, characterized in that the direction of gas flow is reversed during firing.
JP56161232A 1981-10-09 1981-10-09 Calcining method of phosphorus and molybdenum type catalyst Granted JPS5861833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161232A JPS5861833A (en) 1981-10-09 1981-10-09 Calcining method of phosphorus and molybdenum type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161232A JPS5861833A (en) 1981-10-09 1981-10-09 Calcining method of phosphorus and molybdenum type catalyst

Publications (2)

Publication Number Publication Date
JPS5861833A JPS5861833A (en) 1983-04-13
JPH0215255B2 true JPH0215255B2 (en) 1990-04-11

Family

ID=15731139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161232A Granted JPS5861833A (en) 1981-10-09 1981-10-09 Calcining method of phosphorus and molybdenum type catalyst

Country Status (1)

Country Link
JP (1) JPS5861833A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627099B2 (en) * 1985-02-18 1994-04-13 株式会社日本触媒 Method for producing polyethylene glycol dicarboxylate
JP2008207068A (en) * 2007-02-23 2008-09-11 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, method for producing the catalyst and method for producing unsaturated carboxylic acid
JP4812034B2 (en) * 2007-04-26 2011-11-09 三菱レイヨン株式会社 Method for producing methacrylic acid production catalyst, methacrylic acid production catalyst, and methacrylic acid production method
JP5485013B2 (en) * 2010-05-14 2014-05-07 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
CN110809494B (en) 2017-07-10 2022-10-28 三菱化学株式会社 Method for producing catalyst, method for producing unsaturated carboxylic acid, method for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated carboxylic acid ester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985017A (en) * 1972-12-23 1974-08-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985017A (en) * 1972-12-23 1974-08-15

Also Published As

Publication number Publication date
JPS5861833A (en) 1983-04-13

Similar Documents

Publication Publication Date Title
US7132384B2 (en) Process for producing composite oxide catalyst
JPH0570502B2 (en)
TWI655029B (en) Improved selective ammoxidation catalyst (1)
EP3263213B1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JPS5811416B2 (en) Method for producing methacrylic acid
KR100870790B1 (en) Method for producing molybdenum-bismuth-iron containing composite oxide fluid bed catalyst
US10626082B2 (en) Ammoxidation catalyst with selective co-product HCN production
JPS5826329B2 (en) Seizouhou
EP3233272A1 (en) Improved mixed metal oxide ammoxidation catalysts
US5349092A (en) Process for producing catalysts for synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JPH0215255B2 (en)
US4469810A (en) Process for the calcination of phosphorus-molybdenum catalyst
JP3288197B2 (en) Method for producing catalyst for synthesizing methacrolein and methacrylic acid
WO2005056185A1 (en) Process for producing composite oxide catalyst
EP0113156B1 (en) Process for the calcination of phosphorus-molybdenum catalyst
JPH0215256B2 (en)
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPS6345658B2 (en)
JP2847150B2 (en) Method for producing acrolein or methacrolein
JP2003001111A (en) Method for manufacturing catalyst for synthesizing methacrylic acid
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JP3505547B2 (en) Method for producing acrylonitrile
CN112547082B (en) Catalyst for preparing acrylic acid by acrolein oxidation and preparation method and application thereof
JPH03167152A (en) Production of methacrylic acid