JPS5865926A - Purifying system of exhaust gas - Google Patents

Purifying system of exhaust gas

Info

Publication number
JPS5865926A
JPS5865926A JP16229681A JP16229681A JPS5865926A JP S5865926 A JPS5865926 A JP S5865926A JP 16229681 A JP16229681 A JP 16229681A JP 16229681 A JP16229681 A JP 16229681A JP S5865926 A JPS5865926 A JP S5865926A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust gas
temperature
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16229681A
Other languages
Japanese (ja)
Inventor
Keiichiro Isomura
磯村 敬一郎
Kunio Okamoto
邦夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP16229681A priority Critical patent/JPS5865926A/en
Publication of JPS5865926A publication Critical patent/JPS5865926A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To largely improve purifying performance of HC and CO almost without worsening the purifying performance of Nox, by controlling air-fuel ratio of exhaust gas to a lean side from logical air-fuel ratio when the temperature of exhaust gas is less than a prescribed value. CONSTITUTION:A thermocouple 8 is provided to a catalytic inlet part of a catalytic converter 4 connected to an exhaust pipe 1, and temperature detected by the thermocouple 8 is also relayed by a temperature controller 80, then a signal is fed to a solenoid valve 7 provided in an air supply pipe 5, thus supply of air from an air pump 10 is on-off controlled. Fuel is fed to an engine 13 from a fuel injection valve 12 controlled by a computer 11. When temperature of exhaust gas is less than a prescribed value, the air-fuel ratio is controlled to a lean side from logical air-fuel ratio, while controlled to the logical air-fuel ratio when the temperature of exhaust gas is at prescribed temperature or more.

Description

【発明の詳細な説明】 本発明は三元触媒を用いた自動車排気ガス浄化システム
において、排気ガスの浄化性能を向上せしめることを目
的とするものである。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to improve the exhaust gas purification performance in an automobile exhaust gas purification system using a three-way catalyst.

排気ガス通路に触媒コンバータおよび酸素濃度検出装置
?′tを設け、空燃比を制御してHO,OQ。
Catalytic converter and oxygen concentration detection device in exhaust gas passage? 't is provided and the air-fuel ratio is controlled to achieve HO and OQ.

NOxのエミッション成分を同時に浄化するようになし
た三元触媒方式の排気ガス浄化システムにおいて、従来
は7.rOzセンサーやTie、センサ等の酸素センサ
ーにより排Xガス中の酸累濃度を検知してその結果を吸
気系にフィード、バック上1エンジンに供給される混合
気の空燃比を坤騙空燃比に制御する方式や、エンジンを
リッチマツチングし、触媒の上流でエアーポンプやエア
ーサクションバルブ等で排気ガス中に空気を導入し、二
次空燃比を理論空燃比に制御する方式がとられてすた。
Conventionally, in a three-way catalyst type exhaust gas purification system that simultaneously purifies the emission components of NOx, 7. Oxygen sensors such as rOz sensor, tie sensor, etc. detect the cumulative concentration of acid in the exhaust gas and feed the result to the intake system, changing the air-fuel ratio of the air-fuel mixture supplied to the engine into a false air-fuel ratio. Some methods are used to rich match the engine and introduce air into the exhaust gas using an air pump or air suction valve upstream of the catalyst to control the secondary air-fuel ratio to the stoichiometric air-fuel ratio. Ta.

このように、従来のシステムでは触媒は理論空燃比雰囲
気下で使用されるようになされているが、この場合、浄
化温度特性は第1図に示すように、1(0,00け排気
ガス触媒直前1晶度約230〜240”Cで、NOxは
約210〜220℃で浄化が開始され、いずれも約32
0°Cでようやく平衡冗達し、コールドスタート等の吐
濡領域での浄化性能は低い。
In this way, in conventional systems, the catalyst is used in an atmosphere with a stoichiometric air-fuel ratio, but in this case, as shown in Figure 1, the purification temperature characteristics are Immediately before, the crystallinity was about 230-240"C, NOx purification started at about 210-220"C, and both were about 32"C.
Equilibrium is finally reached at 0°C, and the purification performance is low in wet discharge areas such as cold starts.

近時、各国において排気ガス浄化についてけ諧しい3v
制が科せられており、更に浄化性能が改善された浄化シ
ステムが要望されている。
Recently, there has been a lot of concern about 3V in various countries regarding exhaust gas purification.
There is a demand for a purification system with improved purification performance.

発明者等は上記の実情に鑑み、上記の要望に応えること
を目的として神々の実験を行なった。
In view of the above-mentioned circumstances, the inventors conducted a divine experiment with the aim of meeting the above-mentioned demands.

第2図ないし第4図はエンジンに供給される混合気の空
燃比を増大、即ちリーンにした場合のHe (第2図)
、ao (第3図1)、No、(第4図)の浄化性能を
示すものである。図において各性能曲線に何した数字は
空燃比を示す。図より知られるように、エンジン特性を
リーン側に傾けるとHOlOOについての吐湯浄化性能
は8!論空燃比(本実験では145)の場合よりも顕著
に向上する。またNOxも低温でHOlooがだ、べ煉
するため触媒自体の扇ffLが上り、理論空燃[じの場
合よりも浄化開始温度が低くなる。しかし、いずれのエ
ミッション成分も温度の上昇につれて理論空燃比の方が
浄化性能がすぐれるようになる。
Figures 2 to 4 show He (Figure 2) when the air-fuel ratio of the mixture supplied to the engine is increased, that is, made lean.
, ao (Fig. 3, 1), and No. (Fig. 4). In the figure, the numbers attached to each performance curve indicate the air-fuel ratio. As can be seen from the figure, when the engine characteristics are tilted toward the lean side, the hot water purification performance for HOlOO is 8! This is significantly improved compared to the case of the stoichiometric air-fuel ratio (145 in this experiment). In addition, since NOx also oxidizes at low temperatures, the fan ffL of the catalyst itself increases, and the purification start temperature becomes lower than in the stoichiometric air/fuel situation. However, as the temperature rises, the purification performance of any emission component becomes better at the stoichiometric air-fuel ratio.

次に第5用人いし第7図は触媒の直前にエアーをイFt
給して二次空燵出をリーンザLハKしたj1!。
Next, from the 5th operator to the 7th figure, air is pumped in just before the catalyst.
j1 who gave the secondary sky light and lean the L hak! .

合)HO(第5 NM )、ao(第6図)、N0X(
第7f、i)の浄化性能を示すものである。エンジン特
性をリーン状γ岸とした場合とffぼ同じ傾同が1Mら
れたそしrHo、00、NOxとも湛埠が上筒するにつ
れて浄化性能(寸理倫空燃叱の方がすぐれている。
) HO (5th NM), ao (Fig. 6), NOX (
This shows the purification performance of No. 7f, i). When the engine characteristics were set to lean gamma, almost the same slope of ff was obtained by 1M, and the purification performance of rHo, 00, and NOx was better as the tank was raised.

そこでリーン状態としたときの低/晶域でのメリットと
、理論2!燃比状因七L7たときの高温域でのメリット
とを組合せるこ七(c溝目して炉に検討し、第8図に示
す結果が得られた。
So, what are the benefits in the low/crystalline region when in a lean state, and theory 2! Combining the merits of the fuel ratio in the high temperature range with the fuel ratio factor L7, we investigated this method for the furnace, and obtained the results shown in Figure 8.

第8川は、触媒[θ゛前潟度が300 °C!’J下で
は排気通路へのエアー導入(Cより空燃比をリーン(1
+16.0)K、300’C以上ではエアー幅大を停止
して理論空燃比としたと^の各エミッション成分の浄化
率を示すものである。Ho、00け300℃以下で浄化
t′g、能が大きく向」ニしたことにより全体として浄
化性Q!’ Ir太きく向上りな。
The eighth river has a catalyst temperature of 300 °C! Under 'J, air is introduced into the exhaust passage (the air-fuel ratio is leaner than C (1
+16.0) K, 300'C or higher, the air width is stopped and the stoichiometric air-fuel ratio is achieved. This shows the purification rate of each emission component. Ho, the purification performance has been greatly improved at temperatures below 300°C, resulting in an overall purification performance Q! ' Ir has improved greatly.

NOxは若干でけあるが低下した。NOx was slightly higher, but it decreased.

次に、NOxの浄化性能を低下させないためにエアー導
入を停+1−する温度を250″Cとし、250°C以
下ではエアー導入により空燃比を約16、 OK、  
250’C以上では理論空燃比とした結床をff(9図
に示す。@8図の実験結果と比較すると、Ho、00は
260℃前後でいったん低下する。しかし全体として第
1図の場合よりも大幅に浄化性能がすぐれている。NO
XはHO。
Next, in order not to reduce the NOx purification performance, the temperature at which air introduction is stopped +1- is set to 250"C, and below 250°C, air is introduced to reduce the air-fuel ratio to approximately 16, OK,
Above 250'C, the stoichiometric air-fuel ratio is set to ff (shown in Figure 9. When compared with the experimental results in Figure 8, Ho, 00 decreases once at around 260°C. However, as a whole, in the case of Figure 1 The purification performance is significantly better than that of the NO.
X is HO.

COが曲馬で燃焼するので、第8図の場合よりもすぐれ
ている。第8図および第9図の実験結果よ抄エアー導入
を停止する温度を境として、リーン状態の浄化曲線と理
論空燃比の浄化曲線とをつなぎ合せたような浄化性能が
得られることがわかる。
This is better than the case shown in Figure 8 because the CO is combusted in a curved manner. From the experimental results shown in FIGS. 8 and 9, it can be seen that a purification performance similar to a combination of the purification curve of the lean state and the purification curve of the stoichiometric air-fuel ratio can be obtained at the temperature at which the introduction of draft air is stopped.

なお、第10図は上記実験に供した排気系の概略を示す
もので、排気管はエンジンと連通する排気管1と、長さ
可変の排気管2とよりなり、IIP気管2には三元触媒
3を設けた触媒コンパ−グ管6が取付けである。エア供
給管5には電磁弁7が設けてあり、電磁弁7けコンバー
タ4の上流に設装置した温度センサー8の信号ニより二
次空yの供給をff1l+御する。コンバータ4の後流
には出力サンプリング管9が取付けである。そして上記
実験での浄化率は入力サンプリング戦・6に連なる排気
ガス分析装置行(図示せず)により検知されたエミッシ
ョン成分の絶対量をA1出力サンプリング管9に連なる
エミッション分析装置(図示せず)により検知されたエ
ミッション成分の絶対量をBとしたときの(A−B)X
100/A(%)である。そして実験は、エンジン条件
(回転数3000 ram、吸気角用−2aommHg
)一定で、排気管2の長さを変えることにより触媒直前
温度を変え、温度センサー8からの信号により二次空気
供給聞を調節することにより行なった。
Furthermore, Fig. 10 shows the outline of the exhaust system used in the above experiment, and the exhaust pipe consists of an exhaust pipe 1 that communicates with the engine and an exhaust pipe 2 whose length is variable. A catalytic converting pipe 6 provided with a catalyst 3 is attached. The air supply pipe 5 is provided with a solenoid valve 7, and the supply of secondary air y is controlled by a signal from a temperature sensor 8 installed upstream of the converter 4 with seven solenoid valves. An output sampling tube 9 is attached downstream of the converter 4. The purification rate in the above experiment was determined by input sampling.The absolute amount of the emission component detected by the exhaust gas analyzer row (not shown) connected to A1 output sampling pipe 9 was calculated by the input sampling test. (A-B)X when B is the absolute amount of the emission component detected by
It is 100/A (%). The experiment was conducted under engine conditions (rpm 3000 ram, intake angle -2 aommHg).
), the temperature immediately before the catalyst was changed by changing the length of the exhaust pipe 2, and the secondary air supply level was adjusted based on the signal from the temperature sensor 8.

次に、本発明の浄化システムについて、シャシ台上で米
国のLA’4モード走行を実施した結果について述べる
。第11図は、実施に用いた排則浄化システムを示すも
ので、排気IFl; 1に連結した触媒コンバータ4の
触媒入口部に設けた熱電、対8で検知した温度を温調器
80でリレーさせ、エア供給管5に設けた電磁バルブ7
へ信号を送り、エアポンプ10(7アンベルトに連結)
からのエアーの供給をオン・オフさせるように措成しで
ある。燃料はコンピュータ11により制御される溶料噴
射弁12によりエンジン13に供給される。
Next, the results of running the purification system of the present invention in the US LA'4 mode on a chassis stand will be described. FIG. 11 shows the exhaust purification system used in the implementation, in which the temperature detected by a thermoelectric pair 8 installed at the catalyst inlet of the catalytic converter 4 connected to the exhaust IFL; 1 is relayed by a temperature controller 80. and a solenoid valve 7 provided in the air supply pipe 5.
Send a signal to air pump 10 (connected to 7 Umbert)
It is designed to turn on and off the air supply from the Fuel is supplied to the engine 13 by a solvent injection valve 12 controlled by a computer 11.

実施例り 触媒入ロン都度が350″C以下の低温領域においてエ
アーポンプでエアーを排気管内へ導入して二次空燃比を
16,5.160.155.150に制御し、350°
Cを越えるとエアーカットして理論空燃比に制御した。
In the example, in a low temperature region where the catalyst input temperature is 350"C or less, air is introduced into the exhaust pipe using an air pump to control the secondary air-fuel ratio to 16,5,160,155,150, and 350°
When the temperature exceeded C, the air was cut and the air-fuel ratio was controlled to the stoichiometric air-fuel ratio.

実鮪例2 触媒人ロメ晶度が300°C以下の低湿領域においてエ
アーポンプでエアーを排気jn内に導入して二次空燃比
を165.16.0,15.5.150に制御し、30
0°Cを越えるとエアーカットして理論空燃比に制御し
た。
Actual tuna example 2 In a low humidity region where the crystallinity of the catalyst is 300°C or less, air is introduced into the exhaust jn using an air pump to control the secondary air-fuel ratio to 165.16.0, 15.5.150, 30
When the temperature exceeded 0°C, air was cut to control the stoichiometric air-fuel ratio.

実施例3 触媒人口渇麿が250°C以下の低温領域においてエア
ーポンプでエアーを排y管内に導入して二次空燃比を1
6.5.16.0.15.5.150に制御し、250
°Cを越えるとエアーカッドして理論空燃比に制御した
Example 3 In a low-temperature region where the catalyst population depletion is 250°C or less, air is introduced into the exhaust pipe using an air pump to bring the secondary air-fuel ratio to 1.
6.5.16.0.15.5.150, 250
When the temperature exceeded °C, air was added to control the stoichiometric air-fuel ratio.

各実施例における全エミッション値を次表に示す。なお
、比較のため参考例(370°C以下でエアー導入、3
70°C以上で理論空燃比)および従来例(温度に関係
なく理論空燃比とする)を併記する。
The total emission values for each example are shown in the following table. For comparison, a reference example (air introduced below 370°C, 3
The stoichiometric air-fuel ratio at 70°C or higher) and the conventional example (stoichiometric air-fuel ratio regardless of temperature) are also listed.

次表の結果より、本発明の浄化システムによるときは、
NOxの浄化性能をほとんど損カうことなく、HOlo
oの浄化性能を大きく向上できることがわかる。
From the results in the following table, when using the purification system of the present invention,
HOlo with almost no loss in NOx purification performance.
It can be seen that the purification performance of o can be greatly improved.

Eコ なお、本発明のシステムに用いる湛唯センサーは執事対
の他にサーミスタ、Io温度センサー、ダイオード温度
センサー等を用いてもよ為また141いる触媒は三元触
媒であって、形状、成分は特に限定されない。史にリー
ン状■から理論空燃比への切換え温度け350°C以上
が適当であるが、具体的には車縣に応じて350°C以
下の適宜の温度が選ばれる。また、低高領域でのリーン
状態の制御も適宜空燃比を変化させることにより浄化性
nPを更に向上させることができる。
In addition, the sensor used in the system of the present invention may be a thermistor, an Io temperature sensor, a diode temperature sensor, etc. in addition to the butler pair, and the 141 catalysts are three-way catalysts, and their shape and composition may vary. is not particularly limited. Historically, a temperature of 350°C or higher for switching from the lean condition (1) to the stoichiometric air-fuel ratio is appropriate, but specifically, an appropriate temperature of 350°C or lower is selected depending on the vehicle environment. In addition, the purification performance nP can be further improved by controlling the lean state in the low and high ranges by appropriately changing the air-fuel ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第9図はそれぞれ排気ガス浄化性能に関す
る実験結果を示す図、第10図および第11図はそれぞ
れ本発明の実1也に用いる自動車の排気系のシステム図
である。 1.2・・・・・・排気管  4・・・・・・触媒コン
バータ5・・・・・・エアー供給管 7・・・・・・電
磁バルブ8・・・・・・温度センサ  −2・・・・・
・燃料噴射装瞭13・・・・・・エンジン 第1 図 第3図 第4図 六公 tJ栗 直 前 膠巨 度 (’C)$5回 第8図 第9図
FIGS. 1 to 9 are diagrams showing experimental results regarding exhaust gas purification performance, and FIGS. 10 and 11 are system diagrams of an automobile exhaust system used in the first embodiment of the present invention, respectively. 1.2... Exhaust pipe 4... Catalytic converter 5... Air supply pipe 7... Solenoid valve 8... Temperature sensor -2・・・・・・
・Fuel injection arrangement 13...Engine 1 Figure 3 Figure 4 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)  自動車の排気ガス通路に設けた三元触媒叫ヅ
ガスi福度検知手段、排気ガス中へエアーを供給する手
段および1=I14気ガスの空燃比を検知する手段を具
備し、till=気カス温川が所定用未満のときはNp
気ガスを理論空燃比よりもリーン側に、所定温度以−に
のとき(・↓理論空熔叱に制御するようになした排気ガ
ス浄化システム0
(1) A three-way catalytic converter provided in the exhaust gas passage of an automobile includes a means for detecting the degree of exhaust gas, a means for supplying air into the exhaust gas, and a means for detecting the air-fuel ratio of 1=I14 gas, When the air temperature is less than the specified value, Np
Exhaust gas purification system that controls air gas to leaner than the stoichiometric air-fuel ratio and at a predetermined temperature (↓ stoichiometry)
(2)  排yガスをリーン(ttl:から理論空撚出
へ切換える排気ガス温度を350”Cないしそれ以下に
設定した特許請求の範囲第1項記載の朗気ガス浄化シス
テム。
(2) The pleasant air gas purification system according to claim 1, wherein the exhaust gas temperature at which the exhaust gas is switched from lean (TTL) to stoichiometric air is set to 350"C or lower.
JP16229681A 1981-10-12 1981-10-12 Purifying system of exhaust gas Pending JPS5865926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16229681A JPS5865926A (en) 1981-10-12 1981-10-12 Purifying system of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16229681A JPS5865926A (en) 1981-10-12 1981-10-12 Purifying system of exhaust gas

Publications (1)

Publication Number Publication Date
JPS5865926A true JPS5865926A (en) 1983-04-19

Family

ID=15751791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16229681A Pending JPS5865926A (en) 1981-10-12 1981-10-12 Purifying system of exhaust gas

Country Status (1)

Country Link
JP (1) JPS5865926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212884B1 (en) * 1999-03-09 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Device for controlling the rise of the catalyst temperature in an internal combustion engine
US7603847B2 (en) * 2003-03-21 2009-10-20 Ford Global Technologies, Llc Device and method for internal combustion engine control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212884B1 (en) * 1999-03-09 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Device for controlling the rise of the catalyst temperature in an internal combustion engine
US6513322B2 (en) 1999-03-09 2003-02-04 Mitsubishi Denki Kabushiki Kaisha Device for controlling the rise of the catalyst temperature in an internal combustion engine
US7603847B2 (en) * 2003-03-21 2009-10-20 Ford Global Technologies, Llc Device and method for internal combustion engine control

Similar Documents

Publication Publication Date Title
US8205438B2 (en) Catalyst warming-up control device
JP2853385B2 (en) Secondary air supply device for internal combustion engine
JPH1047048A (en) Emission control device for internal combustion engine
JPH0518234A (en) Secondary air control device for internal combustion engine
JP3835140B2 (en) Engine air-fuel ratio control device
US5271223A (en) Exhaust gas purifying device of an engine
US6880329B2 (en) Exhaust gas purifying system for internal combustion engines
JP3402200B2 (en) Exhaust gas purification device for internal combustion engine
JPS647217B2 (en)
JPS5865926A (en) Purifying system of exhaust gas
JPH02271042A (en) Accelerating fuel controller of engine
JPS6158912A (en) Exhaust cleaning apparatus of engine
JPS58210311A (en) Exhaust gas purifier
JP2944371B2 (en) Air introduction device in exhaust pipe of internal combustion engine
JPH0518235A (en) Secondary air control device for internal combustion engine
JPS62251415A (en) Exhaust gas purifying device for internal combustion engine
JPH0329982B2 (en)
JPH0559935A (en) Catalyst deterioration preventive device of internal combustion engine
JPH0539750A (en) Air-fuel ratio control device for carbureter
JP3632065B2 (en) Engine exhaust purification system
JPS6030443Y2 (en) Exhaust gas purification device
JPS60261949A (en) Air-fuel ratio controller for internal-combustion engine
JPS61247810A (en) Fuel injection type engine with catalyst
JPH0579323A (en) Exhaust purifying device for engine
JP2005155493A (en) Exhaust emission control device of engine