JPS647217B2 - - Google Patents
Info
- Publication number
- JPS647217B2 JPS647217B2 JP58205082A JP20508283A JPS647217B2 JP S647217 B2 JPS647217 B2 JP S647217B2 JP 58205082 A JP58205082 A JP 58205082A JP 20508283 A JP20508283 A JP 20508283A JP S647217 B2 JPS647217 B2 JP S647217B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- temperature
- correction amount
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 61
- 239000000498 cooling water Substances 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000013021 overheating Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/0015—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
- F02D35/0046—Controlling fuel supply
- F02D35/0053—Controlling fuel supply by means of a carburettor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1486—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
- F02D41/1488—Inhibiting the regulation
- F02D41/1489—Replacing of the control value by a constant
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of The Air-Fuel Ratio Of Carburetors (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の詳細な説明】
(技術分野)
本発明は、空燃比制御装置、特に、電子制御式
気化器を使用した空燃比制御装置に関する。TECHNICAL FIELD The present invention relates to an air-fuel ratio control device, and particularly to an air-fuel ratio control device using an electronically controlled carburetor.
(従来技術)
従来の電子制御式気化器を使用した空燃比制御
装置(特開昭52−129841号公報参照)は、一般
に、機関の吸気路に配された気化器のソレノイド
バルブを作動して供給燃料量を増・減補正して混
合比を理論空燃比に制御しており、その空燃比制
御は、機関の排気中の酸素濃度を検出する酸素セ
ンサの出力に基づいて機関の空燃比を判定して空
燃比が理論空燃比となるようにフイードバツク制
御している。そして、冷却水温度を検出し、冷却
水温度が低温のときには空燃比をリツチに補正し
て低温時の運転性の向上を図つている。(Prior Art) A conventional air-fuel ratio control device using an electronically controlled carburetor (see Japanese Patent Application Laid-open No. 129841/1984) generally operates a solenoid valve of a carburetor arranged in the intake passage of an engine. The mixture ratio is controlled to the stoichiometric air-fuel ratio by increasing or decreasing the amount of supplied fuel.The air-fuel ratio control is based on the output of an oxygen sensor that detects the oxygen concentration in the engine's exhaust gas. Feedback control is performed so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. The cooling water temperature is detected, and when the cooling water temperature is low, the air-fuel ratio is richly corrected to improve drivability at low temperatures.
しかしながら、このような従来の空燃比制御装
置にあつては、冷却水温度が低温のときのみ空燃
比をリツチに補正する構成となつていたため、高
温時においても空燃比が燃焼温度の高い理論空燃
比に制御される。その結果、排気温度が上昇して
機関が過熱され、最終的には機関のオーバーヒー
トを招くという問題点があつた。 However, such conventional air-fuel ratio control devices are configured to richly correct the air-fuel ratio only when the cooling water temperature is low, so even at high temperatures, the air-fuel ratio does not match the stoichiometric air-fuel ratio with a high combustion temperature. Controlled by fuel ratio. As a result, the exhaust gas temperature rises, causing the engine to overheat, eventually causing the engine to overheat.
(発明の目的)
そこで、本発明は、電子制御式気化器を使用し
た空燃比制御装置において、吸気温度と冷却水温
度を検出し、吸気温度が所定値以上で、かつ、冷
却水温度が所定値以上のときには、燃料供給量を
濃空燃比となる所定値に設定することにより、燃
焼温度を下げて、高温時における機関の過熱を防
止し、機関のオーバーヒートを未然に防止するこ
とを目的としている。(Objective of the Invention) Therefore, the present invention detects the intake air temperature and the cooling water temperature in an air-fuel ratio control device using an electronically controlled carburetor, and detects the intake air temperature at a predetermined value or higher and the cooling water temperature at a predetermined value. When the value exceeds this value, the fuel supply amount is set to a predetermined value that results in a rich air-fuel ratio, thereby lowering the combustion temperature and preventing the engine from overheating at high temperatures. There is.
(発明の構成)
本発明の空燃比制御装置は、その全体構成図を
第1図に示すように、機関の排気中の酸素濃度を
検出する酸素センサ11と、酸素センサの出力に
基づいて空燃比が目標空燃比になるように燃料の
補正量を演算し、補正量信号を出力する補正量演
算手段20と、吸気量に対応した燃料を機関に供
給するとともに補正量信号に応じて作動する電磁
弁によりその燃料量を増量あるいは減量する電子
制御式気化器4と、を備えた空燃比制御装置にお
いて、機関の冷却水温度を検出する水温検出手段
10と、吸気温度を検出する吸気温検出手段8
と、を設け、冷却水温度が所定温度以上で、か
つ、吸気温度が所定温度以上のとき、前記補正量
演算手段が空燃比を濃空燃比とする所定量に補正
量を設定するとともに、該所定量の補正量で該電
磁弁を作動することにより、燃焼温度を下げて、
高温時における機関の過熱を防止するものであ
る。(Structure of the Invention) As shown in FIG. 1, the air-fuel ratio control device of the present invention includes an oxygen sensor 11 that detects the oxygen concentration in the exhaust gas of an engine, and A correction amount calculating means 20 that calculates a fuel correction amount so that the fuel ratio becomes a target air-fuel ratio and outputs a correction amount signal, and a correction amount calculation means 20 that supplies fuel corresponding to the intake air amount to the engine and operates in accordance with the correction amount signal. An air-fuel ratio control device comprising an electronically controlled carburetor 4 that increases or decreases the amount of fuel using a solenoid valve, a water temperature detection means 10 that detects the engine cooling water temperature, and an intake air temperature detection means that detects the intake air temperature. Means 8
and when the cooling water temperature is above a predetermined temperature and the intake air temperature is above a predetermined temperature, the correction amount calculation means sets the correction amount to a predetermined amount that makes the air-fuel ratio a rich air-fuel ratio, and By operating the solenoid valve with a predetermined amount of correction, the combustion temperature is lowered,
This prevents the engine from overheating at high temperatures.
(実施例)
以下、本発明の実施例を図面に基づいて説明す
る。(Example) Hereinafter, an example of the present invention will be described based on the drawings.
第2〜4図は本発明の一実施例を示す図であ
る。 2 to 4 are diagrams showing an embodiment of the present invention.
まず、構成を説明すると、第2図において、1
は機関本体であり、機関1の燃焼室2にはエアク
リーナ3で清浄にされた空気が電子制御式気化器
4で燃料と混合され、吸気管5を通して供給され
る。そして、燃焼室2内で燃焼した排気は排気管
6を通して三元触媒器7に導入され、三元触媒器
7で排気中の三成分(CO,HC,NOx)を酸化
と還元により清浄化して排出される。エアクリー
ナ3には、吸気温度(この場合、吸入空気温度)
TAを検出する吸気温センサ(吸気温検出手段)
8が取付けられており、機関1のシリンダブロツ
ク9には、冷却水温度TWを検出する水温センサ
(水温検出手段)10が取付けられている。なお、
吸気温センサ8は吸気管5に取付けて混合気温度
を検出してもよい。また、排気管6には排気中の
酸素濃度を検出し、理論空燃比においてその出力
電圧VSが急変する酸素センサ11が取付けられ
ている。電子制御式気化器4にはプライマリース
ロツトルバルブ12の設けられた一次側通路13
とセカンダリースロツトルバルブ14の設けられ
た二次側通路15が形成されており、この気化器
4はソレノイドバルブ16に入力されるパルス信
号(補正量信号)SPによりメーンジエツト17
と補正用メーンジエツト18を通してフロート室
19から一次側通路13に供給される燃料量を制
御している。すなわち、ソレノイドバルブ16が
ONのときには、補正用メーンジエツト18が閉
じられるとともにメーンジエツト17に作用する
負圧が小さくなつて燃料供給量が少なくなり、ソ
レノイドバルブ16がOFFのときには、補正用
メーンジエツト18が開くとともにメーンジエツ
ト17および補正用メーンジエツト18に作用す
る負圧が大きくなつて燃料供給量が多くなる。し
たがつて、ソレノイドバルブ16に入力されるパ
ルス信号(補正量信号)SPのデユーテイ値が大
きくなるほど燃料供給量は少なくなり、デユーテ
イ値が小さくなるほど燃料供給量は多くなる。ま
た、二次側通路15には、照示しないセカンダリ
ーメーンジエツトを通して燃料が供給される。す
なわち、気化器4は吸気量に対応した燃料を機関
に供給するとともにパルス信号(補正量信号)
SPに応じてその燃料量を増量あるいは減量する。
このパルス信号(補正量信号)SPはコントロー
ルユニツト(補正量演算手段)20から入力され
ており、コントロールユニツト20には前記吸気
センサ8、水温センサ10および酸素センサ11
からの各信号が入力されている。 First, to explain the configuration, in Figure 2, 1
is an engine body, and air cleaned by an air cleaner 3 is mixed with fuel in an electronically controlled carburetor 4 and supplied to a combustion chamber 2 of the engine 1 through an intake pipe 5. The exhaust gas burned in the combustion chamber 2 is introduced into the three-way catalytic converter 7 through the exhaust pipe 6, where the three components (CO, HC, NOx) in the exhaust gas are purified by oxidation and reduction. It is discharged. Air cleaner 3 has intake air temperature (in this case, intake air temperature)
Intake temperature sensor that detects TA (intake temperature detection means)
8 is attached to the cylinder block 9 of the engine 1, and a water temperature sensor (water temperature detection means) 10 is attached to the cylinder block 9 of the engine 1 to detect the cooling water temperature TW. In addition,
The intake temperature sensor 8 may be attached to the intake pipe 5 to detect the air-fuel mixture temperature. Further, an oxygen sensor 11 is attached to the exhaust pipe 6 to detect the oxygen concentration in the exhaust gas and whose output voltage VS suddenly changes at the stoichiometric air-fuel ratio. The electronically controlled carburetor 4 includes a primary passage 13 in which a primary throttle valve 12 is provided.
A secondary passage 15 is formed in which a secondary throttle valve 14 is provided, and this carburetor 4 is operated by a main jet 17 in response to a pulse signal (correction amount signal) SP input to a solenoid valve 16.
The amount of fuel supplied from the float chamber 19 to the primary passage 13 through the correction main jet 18 is controlled. That is, the solenoid valve 16
When the solenoid valve 16 is ON, the main jet 18 for correction is closed and the negative pressure acting on the main jet 17 is reduced, reducing the amount of fuel supplied. When the solenoid valve 16 is OFF, the main jet 18 for correction is opened and the main jet 17 and the main jet 17 are closed. The negative pressure acting on the main jet 18 increases, and the amount of fuel supplied increases. Therefore, as the duty value of the pulse signal (correction amount signal) SP input to the solenoid valve 16 increases, the amount of fuel supplied decreases, and as the duty value decreases, the amount of fuel supplied increases. Further, fuel is supplied to the secondary side passage 15 through a secondary main jet, which is not shown. That is, the carburetor 4 supplies fuel corresponding to the intake air amount to the engine, and also sends a pulse signal (correction amount signal).
Increase or decrease the amount of fuel depending on SP.
This pulse signal (correction amount signal) SP is input from a control unit (correction amount calculation means) 20, and the control unit 20 includes the intake air sensor 8, water temperature sensor 10, and oxygen sensor 11.
Each signal from is input.
コントロールユニツト20は、I/Oポート2
1、CPU22およびメモリ23で構成されてお
り、コントロールユニツト20に入力される信号
のうちアナログ値で入力される信号はデイジタル
値に変換されて処理される。CPU22はメモリ
23に書き込まれたプログラムに従つてI/Oポ
ート21より必要とされる外部データを取り込ん
だり、また、メモリ23との間でデータの授受を
行つたりしながら演算処理し、必要に応じて処理
したデータをI/Oポート21へ出力する。ま
た、メモリ23はROMやRAMで構成されてお
り、CPU22における演算プログラムや演算に
使用するデータがマツプ等の形で記憶されてい
る。 The control unit 20 has an I/O port 2
1, a CPU 22, and a memory 23. Of the signals input to the control unit 20, signals input as analog values are converted into digital values and processed. The CPU 22 takes in required external data from the I/O port 21 according to the program written in the memory 23, performs arithmetic processing while exchanging data with the memory 23, and performs arithmetic processing as required. The processed data is output to the I/O port 21. The memory 23 is composed of a ROM and a RAM, and stores calculation programs and data used in calculations in the CPU 22 in the form of a map or the like.
次に、作用を説明する。 Next, the effect will be explained.
気化器4は吸気流量QAに応じた燃料量を一次
側通路13および二次側通路15に供給し、さら
に、ソレノイドバルブ17に入力されるパルス信
号SPに応じてその燃料供給量を増量あるいは減
量している。そして、コントロールユニツト20
は、まず、水温センサ10からの冷却水温度TW
等に基づく補正量を演算するとともに酸素センサ
11の出力に基づいて補正量を演算している。こ
の酸素センサ11の出力に基づく補正量は酸素セ
ンサ11の出力を所定の基準値と比較してPI制
御されている。すなわち、空燃比は酸素センサ1
1の出力に基づいて理論空燃比となるようにフイ
ードバツク制御されている。 The carburetor 4 supplies the primary side passage 13 and the secondary side passage 15 with an amount of fuel according to the intake flow rate QA, and further increases or decreases the amount of fuel supplied according to the pulse signal SP input to the solenoid valve 17. are doing. And the control unit 20
First, the cooling water temperature TW from the water temperature sensor 10 is
In addition, the correction amount is calculated based on the output of the oxygen sensor 11. The correction amount based on the output of the oxygen sensor 11 is PI-controlled by comparing the output of the oxygen sensor 11 with a predetermined reference value. In other words, the air-fuel ratio is determined by oxygen sensor 1
Based on the output of 1, feedback control is performed to maintain the stoichiometric air-fuel ratio.
また、コントロールユニツト20は吸気温度
TAおよび冷却水温度TWに基づいて高温状態で
あるか否かを判別し、高温状態にあるときには、
空燃比をフイードバツク制御せず、所定の濃空燃
比に設定している。以下、この作用を第3図に示
すフローチヤートに従つて説明する。なお、第3
図中S1〜S6はフローの各ステツプを示したいる。
まず、ステツプS1において吸気温度TAを読み取
り、ステツプS2において吸気温度TAを所定の基
準値TAO(例えば、65℃)と比較する。TA<
TAOのときには、高温状態にないと判断してフ
イードバツク制御を継続し、TA≧TAOのとき
には、ステツプS3において冷却水温度TWを読み
取つて、ステツプS4において冷却水温度TWを所
定の基準値TWO(例えば、105℃)と比較する。
TW<TWOのときには、高温時でないと判断し
てフイードバツク制御を継続し、TW≧TWOの
ときにはステツプS5で空燃比を濃くする所定のデ
ユーデイ値Do(例えば、10%)をルツクアツプす
る。このデユーテイ値Doは、気化器4の気化器
4のソレノイドバルブ16に出力されるパルス信
号SPのデユーテイ値であり、吸気温度TAと冷却
水温度TWをパラメータとしてあらかじめメモリ
23にデータテーブルとして記憶されている。な
お、このデユーテイ値Doは、吸気温度TAや冷却
水温TWだけでなく変速機のギア位値や車速等を
もパラメータとし考慮してデータを設定してもよ
く、また、これらのデータのパラメータとしてで
なく所定の一定値としてもよい。そして、ステツ
プS6においてデユーテイ値Doのパルス信号SPを
気化器4のソレノイドバルブ16に出力する。し
たがつて、高温時、例えば、第4図に斜線で表示
するような領域において空燃比を理論空燃比より
濃空燃比とすることができ、燃焼温度を下げるこ
とができる。その結果、高温時に機関が過熱され
るのを防止することができ、機関のオーバーヒー
トを未然に防止することができる。 The control unit 20 also controls the intake air temperature.
It is determined whether the temperature is high based on TA and cooling water temperature TW, and when the temperature is high,
The air-fuel ratio is set to a predetermined rich air-fuel ratio without feedback control. This operation will be explained below with reference to the flowchart shown in FIG. In addition, the third
In the figure, S1 to S6 indicate each step of the flow.
First, in step S1 , the intake air temperature TA is read, and in step S2 , the intake air temperature TA is compared with a predetermined reference value TAO (for example, 65°C). TA<
At TAO, it is determined that the high temperature is not present and feedback control is continued. When TA≧TAO, the cooling water temperature TW is read in step S3 , and the cooling water temperature TW is set to a predetermined reference value TWO in step S4 . (e.g. 105℃).
When TW<TWO, it is determined that the temperature is not high and the feedback control is continued, and when TW≧TWO, a predetermined duty value Do (for example, 10%) for enriching the air-fuel ratio is looked up in step S5 . This duty value Do is the duty value of the pulse signal SP output to the solenoid valve 16 of the carburetor 4, and is stored in advance in the memory 23 as a data table using the intake air temperature TA and the cooling water temperature TW as parameters. ing. Note that this duty value Do may be set by considering not only the intake air temperature TA and cooling water temperature TW but also the gear position of the transmission, vehicle speed, etc. Instead, it may be a predetermined constant value. Then, in step S6 , a pulse signal SP having a duty value Do is output to the solenoid valve 16 of the carburetor 4. Therefore, at high temperatures, the air-fuel ratio can be made richer than the stoichiometric air-fuel ratio, for example, in the area indicated by diagonal lines in FIG. 4, and the combustion temperature can be lowered. As a result, it is possible to prevent the engine from overheating at high temperatures, and it is possible to prevent the engine from overheating.
なお、上記実施例においては、高温時であるか
否かを吸気温度と冷却水温度に基づいて判別して
いるが、変速機のギア位置や車速をも判断資料と
してもよい。また、空燃比を制御するだけでな
く、点火時期をも合わせて制御してもよい。さら
に、空燃比を濃くする制御をクランキング時やア
イドリング時には行わないようにしてもよい。 In the above embodiment, whether or not the temperature is high is determined based on the intake air temperature and the cooling water temperature, but the gear position of the transmission and the vehicle speed may also be used as determination materials. In addition to controlling the air-fuel ratio, the ignition timing may also be controlled. Furthermore, the control to enrich the air-fuel ratio may not be performed during cranking or idling.
(効果)
本発明によれば、機関の冷却水温度を検出する
水温検出手段と、吸気温度を検出する吸気温度検
出手段とを設け、冷却水温度が所定温度以上で、
かつ、吸気温度が所定温度以上のとき、前記補正
量演算手段が空燃比を濃空燃比とする所定量に補
正量を設定するとともに、該所定量の補正量で該
電磁弁を作動するので、機関冷却水および吸気が
共に高温時、空燃比を濃空燃比に制御することが
でき、燃焼温度を低下させることができる。した
がつて、高温時、機関が過熱されるのを防止する
ことができ、機関のオーバーヒートを防止するこ
とができる。(Effects) According to the present invention, the water temperature detection means for detecting the engine cooling water temperature and the intake air temperature detection means for detecting the intake air temperature are provided, and when the cooling water temperature is equal to or higher than a predetermined temperature,
Further, when the intake air temperature is equal to or higher than a predetermined temperature, the correction amount calculation means sets the correction amount to a predetermined amount that makes the air-fuel ratio a rich air-fuel ratio, and operates the solenoid valve with the predetermined correction amount. When both the engine cooling water and the intake air are at high temperatures, the air-fuel ratio can be controlled to a rich air-fuel ratio, and the combustion temperature can be lowered. Therefore, it is possible to prevent the engine from being overheated at high temperatures, and it is possible to prevent the engine from overheating.
第1図は本発明の全体構成図、第2〜4図は本
発明の一実施例を示す図であり、第2図はその概
略構成図、第3図はその作用を示すフローチヤー
ト、第4図は濃空燃比に制御する高温領域を吸気
温度と冷却水温との関係で示す図である。
4……電子制御式気化器、8……吸気温検出手
段、10……水温検出手段、11……酸素セン
サ、20……補正量演算手段。
FIG. 1 is an overall configuration diagram of the present invention, FIGS. 2 to 4 are diagrams showing one embodiment of the present invention, FIG. 2 is a schematic configuration diagram thereof, FIG. 3 is a flowchart showing its operation, and FIG. FIG. 4 is a diagram showing the high temperature region where the air-fuel ratio is controlled to be rich in relation to the intake air temperature and the cooling water temperature. 4...Electronically controlled carburetor, 8...Intake temperature detection means, 10...Water temperature detection means, 11...Oxygen sensor, 20...Correction amount calculation means.
Claims (1)
サと、酸素センサの出力に基づいて空燃比が目標
空燃比となるように燃料の補正量を演算し、補正
量信号を出力する補正量演算手段と、吸気量に対
応した燃料を機関に供給するとともに補正量信号
に応じて作動する電磁弁によりその燃料量を増量
あるいは減量する電子制御式気化器と、を備えた
空燃比制御装置において、機関の冷却水温度を検
出する水温検出手段と、吸気温度を検出する吸気
温検出手段と、を設け、冷却水温度が所定温度以
上で、かつ、吸気温度が所定温度以上のとき、前
記補正量演算手段が空燃比を濃空燃比とする所定
量に補正量を設定するとともに、該所定量の補正
量で該電磁弁を作動することを特徴とする空燃比
制御装置。1. An oxygen sensor that detects the oxygen concentration in the exhaust gas of the engine, and a correction amount calculating means that calculates a fuel correction amount so that the air-fuel ratio becomes the target air-fuel ratio based on the output of the oxygen sensor, and outputs a correction amount signal. and an electronically controlled carburetor that supplies fuel corresponding to the amount of intake air to the engine and increases or decreases the amount of fuel using a solenoid valve that operates in response to a correction amount signal. water temperature detection means for detecting a cooling water temperature, and intake temperature detection means for detecting an intake air temperature, and when the cooling water temperature is a predetermined temperature or higher and the intake air temperature is a predetermined temperature or higher, the correction amount calculation is performed. An air-fuel ratio control device characterized in that the means sets a correction amount to a predetermined amount that makes the air-fuel ratio a rich air-fuel ratio, and operates the solenoid valve with the predetermined correction amount.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58205082A JPS6095168A (en) | 1983-10-31 | 1983-10-31 | Control device of air-fuel ratio |
US06/666,039 US4572135A (en) | 1983-10-31 | 1984-10-29 | Air-to-fuel ratio control system for an engine |
DE19843439840 DE3439840A1 (en) | 1983-10-31 | 1984-10-31 | DEVICE AND METHOD FOR CONTROLLING THE AIR / FUEL RATIO FOR AN ENGINE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58205082A JPS6095168A (en) | 1983-10-31 | 1983-10-31 | Control device of air-fuel ratio |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6095168A JPS6095168A (en) | 1985-05-28 |
JPS647217B2 true JPS647217B2 (en) | 1989-02-08 |
Family
ID=16501121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58205082A Granted JPS6095168A (en) | 1983-10-31 | 1983-10-31 | Control device of air-fuel ratio |
Country Status (3)
Country | Link |
---|---|
US (1) | US4572135A (en) |
JP (1) | JPS6095168A (en) |
DE (1) | DE3439840A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2167883A (en) * | 1984-11-30 | 1986-06-04 | Suzuki Motor Co | Apparatus for controlling an air-fuel ratio in an internal combustion engine |
JP2678985B2 (en) * | 1991-09-18 | 1997-11-19 | 本田技研工業株式会社 | Air-fuel ratio control device for internal combustion engine |
JPH08246932A (en) * | 1995-03-09 | 1996-09-24 | Sanshin Ind Co Ltd | Operation control device of engine |
DE19613487A1 (en) * | 1996-04-04 | 1997-10-09 | Motorradhaus Pabst | Air=fuel control system for self-aspirating and self-compressing IC engine e.g. for motorcycle |
JP3883231B2 (en) * | 1996-06-17 | 2007-02-21 | ヤマハマリン株式会社 | Engine operation control device |
JPH10288065A (en) * | 1997-04-17 | 1998-10-27 | Honda Motor Co Ltd | Air-fuel ratio control device for internal combustion engine |
JP2009149385A (en) * | 2007-12-18 | 2009-07-09 | Ricoh Co Ltd | Solenoid device, automatic document feeder and image forming apparatus |
US7658184B2 (en) * | 2008-05-15 | 2010-02-09 | Lycoming Engines, a division of Avco Corportion | Method and apparatus for providing fuel to an aircraft engine |
US20120234930A1 (en) * | 2011-03-17 | 2012-09-20 | Ford Global Technologies, Llc | Automatic remote start/stop control strategy for vehicle heating and cooling systems |
DE102012201541B4 (en) * | 2012-02-02 | 2014-05-15 | Ford Global Technologies, Llc | Method for influencing the heat balance of an internal combustion engine and internal combustion engine for carrying out such a method |
US9157391B2 (en) | 2013-03-14 | 2015-10-13 | EMIT Technologies, Inc. | Systems and methods for controlling a combustion engine |
DE102014211323B4 (en) | 2013-07-17 | 2019-03-21 | Ford Global Technologies, Llc | Method for operating an internal combustion engine, internal combustion engine and motor vehicle with improved tractive power at low speeds |
CN117093023A (en) * | 2023-10-20 | 2023-11-21 | 沈阳航天新光集团有限公司 | Flow control device and method based on venturi and electromagnetic valve duty cycle adjustment |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5253148A (en) * | 1975-10-28 | 1977-04-28 | Nissan Motor Co Ltd | Air/fuel ratio controller |
JPS52129841A (en) * | 1976-04-21 | 1977-10-31 | Hitachi Ltd | Air fuel ratio control system by closed loop of engine |
JPS5732112Y2 (en) * | 1976-09-17 | 1982-07-14 | ||
FR2454527A1 (en) * | 1979-04-21 | 1980-11-14 | Nissan Motor | ELECTRONICALLY CONTROLLED CARBURETOR |
JPS5681235A (en) * | 1979-12-04 | 1981-07-03 | Nippon Soken Inc | Air-fuel ratio controller for internal combustion engine with supercharger |
DE3022427A1 (en) * | 1980-06-14 | 1982-01-07 | Robert Bosch Gmbh, 7000 Stuttgart | CONTROL DEVICE FOR FUEL-AIR MIXTURE TREATMENT IN INTERNAL COMBUSTION ENGINES |
JPS57119152A (en) * | 1981-01-16 | 1982-07-24 | Fuji Heavy Ind Ltd | Air-fuel ratio control device |
JPS582443A (en) * | 1981-06-25 | 1983-01-08 | Toyota Motor Corp | Engine air-fuel control |
JPS5828567A (en) * | 1981-07-31 | 1983-02-19 | Toyota Motor Corp | Method of controlling air fuel ratio of engine |
JPS5877150A (en) * | 1981-10-30 | 1983-05-10 | Nissan Motor Co Ltd | Air-fuel ratio controller of engine |
US4452207A (en) * | 1982-07-19 | 1984-06-05 | The Bendix Corporation | Fuel/air ratio control apparatus for a reciprocating aircraft engine |
-
1983
- 1983-10-31 JP JP58205082A patent/JPS6095168A/en active Granted
-
1984
- 1984-10-29 US US06/666,039 patent/US4572135A/en not_active Expired - Lifetime
- 1984-10-31 DE DE19843439840 patent/DE3439840A1/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6095168A (en) | 1985-05-28 |
DE3439840A1 (en) | 1985-05-09 |
US4572135A (en) | 1986-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03271544A (en) | Control device of internal combustion engine | |
JPH08189396A (en) | Air fuel ratio feedback control device for internal combustion engine | |
JPH0518234A (en) | Secondary air control device for internal combustion engine | |
JPS647217B2 (en) | ||
JPS61132745A (en) | Air-fuel ratio controller of internal-conbustion engine | |
JP4315088B2 (en) | Engine air-fuel ratio control device | |
JP4345629B2 (en) | Engine air-fuel ratio control device | |
JP4371027B2 (en) | Engine air-fuel ratio control device | |
JPH07151000A (en) | Control device for air-fuel ratio of internal combustion engine | |
JPH0514099B2 (en) | ||
JP2910034B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS582443A (en) | Engine air-fuel control | |
JP3612785B2 (en) | Control device for internal combustion engine | |
JP4371028B2 (en) | Engine air-fuel ratio control device | |
JPS58217745A (en) | Air-fuel ratio control method for internal-combustion engine | |
JP3011340B2 (en) | Engine air-fuel ratio control device | |
JP3014541B2 (en) | Air-fuel ratio control method for internal combustion engine | |
JPS623159A (en) | Intake secondary air supply device for internal-combustion engine | |
JPH0518235A (en) | Secondary air control device for internal combustion engine | |
JP2006097513A (en) | Air-fuel ratio control device of engine | |
JP3632065B2 (en) | Engine exhaust purification system | |
JPH01247730A (en) | Control device for fuel feed of internal combustion engine | |
JPS6095169A (en) | Control device of air-fuel ratio | |
JP2006063821A (en) | Fuel supply amount control device for internal combustion engine | |
JPS6321342A (en) | Air fuel ratio control device for internal combustion engine |