JPS62251415A - Exhaust gas purifying device for internal combustion engine - Google Patents
Exhaust gas purifying device for internal combustion engineInfo
- Publication number
- JPS62251415A JPS62251415A JP61094341A JP9434186A JPS62251415A JP S62251415 A JPS62251415 A JP S62251415A JP 61094341 A JP61094341 A JP 61094341A JP 9434186 A JP9434186 A JP 9434186A JP S62251415 A JPS62251415 A JP S62251415A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- fuel
- exhaust gas
- evaporative gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 14
- 239000000446 fuel Substances 0.000 claims abstract description 85
- 238000000746 purification Methods 0.000 claims abstract description 32
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 11
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 239000002828 fuel tank Substances 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 84
- 239000003054 catalyst Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000001603 reducing effect Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 239000003610 charcoal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000003134 recirculating effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は内燃機関の排ガス浄化!装置に係り、特に排ガ
ス中の有害成分を浄化するための触媒の性能を長期的に
維持することができる内燃機関の排ガス浄化装置に関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention purifies exhaust gas from internal combustion engines! The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device for an internal combustion engine that can maintain the performance of a catalyst for purifying harmful components in exhaust gas over a long period of time.
(従来の技術〕
従来より、機関から排出される排ガス中の有害酸−分を
浄化するために、酸化触媒や三元触媒を充填した触媒装
置が使用されている。三元触媒を充填した触媒装置は、
酸化作用と還元作用とによって排ガス中の有害成分であ
るCo、IC,No。(Prior art) Catalyst devices filled with oxidation catalysts or three-way catalysts have been used to purify harmful acids in exhaust gas emitted from engines.Catalysts filled with three-way catalysts The device is
Co, IC, and No. are harmful components in exhaust gas due to their oxidation and reduction effects.
の三成分を同時に浄化するものであり、混合気の空燃比
が理論空燃比より希薄(リーン)の場合は燃焼後もC2
の量が多くなって還元作用が不活発になることからN0
8の浄化率が悪化し、混合気の空燃比が理論空燃比より
濃い(リッチ)場合は酸化作用が不活発になることがら
C05HCの浄化率が悪化する。従って、三元触媒を充
填した触媒装置において、上記有害三成分を同時にかつ
効率よく浄化するためには、混合気の空燃比を理論空燃
比近傍に制御して混合気を燃焼させる必要がある。この
ように、空燃比を理論空燃比近傍に制御することにより
、排ガス中の有害三成分を同時にかつ効率よく浄化する
ことができると共に、触媒性能を長期的に維持すること
ができる。If the air-fuel ratio of the air-fuel mixture is leaner than the stoichiometric air-fuel ratio, C2 will be purified even after combustion.
Since the amount of N0 increases and the reducing action becomes inactive,
If the air-fuel ratio of the air-fuel mixture is richer than the stoichiometric air-fuel ratio, the oxidation effect becomes inactive and the C05HC purification rate deteriorates. Therefore, in order to simultaneously and efficiently purify the three harmful components in a catalyst device filled with a three-way catalyst, it is necessary to control the air-fuel ratio of the air-fuel mixture to near the stoichiometric air-fuel ratio and combust the air-fuel mixture. In this way, by controlling the air-fuel ratio to near the stoichiometric air-fuel ratio, the three harmful components in the exhaust gas can be simultaneously and efficiently purified, and the catalyst performance can be maintained over a long period of time.
しかしながら、車両減速時等の過渡時には、吸入空気量
が急変するため空燃比を理論空燃比近傍に制御できなく
なり、これによって有害三成分の浄化率が低下していた
。また、上記の過渡状態が頻繁に発生すると触媒がOt
過多の雰囲気やII C過多の雰囲気に曝される時間が
長くなり、触媒の寿命が短くなる、という問題があった
。However, during transient times such as during vehicle deceleration, the amount of intake air changes suddenly, making it impossible to control the air-fuel ratio to near the stoichiometric air-fuel ratio, thereby reducing the purification rate of the three harmful components. Also, if the above transient state occurs frequently, the catalyst may become overheated.
There is a problem in that the time of exposure to an excessively large atmosphere or an excessively high IIC atmosphere increases, resulting in a shortened catalyst life.
このため、従来では、排気系に2次空気を供給してCo
、HCの浄化率を向上させたり、EGR装置を用いて吸
気系に排ガスを再M環させてNo。For this reason, in the past, secondary air was supplied to the exhaust system to reduce CO
, by improving the purification rate of HC and by recirculating exhaust gas into the intake system using an EGR device.
の排出量を抑止させることが行われている。Efforts are being made to reduce emissions.
〔発明が解決しようとする問題点〕
しかしながら、従来のE G Rg置を用いたNo工の
浄化率を向上させる方法では、吸気系に排ガスが供給さ
れることになるため、機関出力が低下したり、また燃焼
が不安定になることからドライバビリティが悪化すると
共にHC,Coエミンションが悪化する、という問題が
あった。[Problems to be solved by the invention] However, in the conventional method of improving the purification rate of the No. Furthermore, there are problems in that drivability deteriorates and HC and Co emissions deteriorate due to unstable combustion.
従って、本発明は、機関出力の低下、トライバビリティ
の悪化およびHC,、Goエミッションの悪化を生しさ
せることなく空燃比リーン時でのN011の浄化率を向
上させることができる内sti閏の排ガス浄化装置を提
供することを目的とする。Therefore, the present invention provides an internal sti-conductor that can improve the purification rate of N011 at a lean air-fuel ratio without causing a decrease in engine output, deterioration in triability, and deterioration in HC, Go emissions. The purpose is to provide an exhaust gas purification device.
上記目的を達成するために本発明は、空燃比を検出する
空燃比検出手段と、排ガス中の有害成分を浄化する排ガ
ス浄化手段と、前記排ガス浄化手段の上流側へ燃料蒸発
ガスを供給するための蒸発ガス供給手段と、前記空燃比
が理論空燃比より希YMのときに前記排ガス浄化手段の
上流側へ燃料蒸発ガスが供給されるように前記蒸発ガス
供給手段を制御する制御手段と、を含んで構成したもの
である。To achieve the above object, the present invention provides an air-fuel ratio detection means for detecting an air-fuel ratio, an exhaust gas purification means for purifying harmful components in exhaust gas, and a means for supplying fuel evaporative gas to the upstream side of the exhaust gas purification means. evaporative gas supply means, and control means for controlling the evaporative gas supply means so that fuel evaporative gas is supplied to the upstream side of the exhaust gas purification means when the air-fuel ratio is leaner YM than the stoichiometric air-fuel ratio. It is composed of:
本発明によれば、空燃比検出手段によって空燃比が検出
され、検出された空燃比が理論空燃比より希薄のとき、
すなわちNOxの浄化率が低下する場合には、制御手段
によって蒸発ガス供給手段が制filされ、排ガス中の
有害成分を浄化する排ガス浄化手段の上流側へ燃料蒸発
ガスが供給され、排ガスと燃料蒸発ガスとの混合気体が
排ガス浄化手段へ導入される。このときの排ガスは、理
論空燃比より希薄の混合気を燃焼させて生成されたガス
であるため、0□の量が多く還元作用が不活発になるが
、この排ガスに燃料蒸発ガス、すなわちHCが混合され
るため、このI Cによって還元作用が活発になりNO
8の浄化率を向上させることができる。また、空燃比が
理論空燃比より希薄の混合気を燃焼させたときに生成さ
れる排ガスと燃料蒸発ガスとの混合気体は、燃料蒸発ガ
ス量を適当に定めることにより、空燃比が理論空燃比と
等しい混合気を燃焼させたときに生成される徘ガスと等
価にすることができるため、上記で説明したように触媒
性能を長期的に維持することができる。According to the present invention, when the air-fuel ratio is detected by the air-fuel ratio detection means and the detected air-fuel ratio is leaner than the stoichiometric air-fuel ratio,
That is, when the NOx purification rate decreases, the evaporative gas supply means is controlled by the control means, and the fuel evaporative gas is supplied to the upstream side of the exhaust gas purification means that purifies harmful components in the exhaust gas, and the exhaust gas and fuel evaporative gas are The mixed gas with the gas is introduced into the exhaust gas purification means. The exhaust gas at this time is a gas generated by burning a mixture leaner than the stoichiometric air-fuel ratio, so the amount of 0□ is large and the reducing action is inactive. This IC activates the reducing action and NO
The purification rate of 8 can be improved. In addition, by appropriately determining the amount of fuel evaporative gas, the air-fuel ratio can be adjusted to the stoichiometric air-fuel ratio by appropriately determining the amount of fuel evaporative gas. This can be made equivalent to the wandering gas generated when a mixture equal to
以上説明したように本発明によれば、排ガスを吸気系に
導入させることなくNO8の浄化率を向上させることが
できるため、No、の浄化率を向上させる場合に機関出
力の低下、ドライバビリティの悪化およびl(Cエミッ
ションの悪化を生じさせないようにすることができる、
という効果が得られる。As explained above, according to the present invention, it is possible to improve the purification rate of NO8 without introducing exhaust gas into the intake system, so when improving the purification rate of No. deterioration and l(C emission deterioration can be prevented from occurring,
This effect can be obtained.
ところで、本発明者等がEGl’?装置を備えた内燃機
関において減速時の排気エミッションを計測したところ
、スロットル弁を閉じた瞬間に第2図に示すようにピー
ク的にNO□の浄化率が悪くなってN Oxの排出量が
増加することを見出した。By the way, the present inventors have developed EGl'? When we measured exhaust emissions during deceleration in an internal combustion engine equipped with this device, we found that the moment the throttle valve was closed, the NO□ purification rate peaked and the NOx emissions increased, as shown in Figure 2. I found out what to do.
この原因は、EGR装置は吸気系に排ガスを再循環させ
て燃焼温度を低下させることによりNO8の発生を抑止
させるものであるが、混合気の空燃比がy1論空燃比よ
り希薄の場合は排ガスを供給しても混合気は依然として
希薄の状態であり、この混合気を燃焼させても触媒はO
t過多の雰囲気中に曝されることになり、このため排気
ガス再循環によるNO8抑止効果が大きくなるまで、す
なわち燃焼温度が低下するまでNOxが排出されてピー
ク的にNO8の排出量が増加するものと考えられる。The reason for this is that the EGR device suppresses the generation of NO8 by recirculating the exhaust gas into the intake system and lowering the combustion temperature, but if the air-fuel ratio of the mixture is leaner than the stoichiometric air-fuel ratio, the exhaust gas Even if the mixture is supplied, the mixture remains lean, and even if this mixture is burned, the catalyst will
As a result, NOx is emitted until the NO8 suppression effect of exhaust gas recirculation becomes large, that is, until the combustion temperature decreases, and the amount of NO8 emissions increases at its peak. considered to be a thing.
このようなピーク的なN OXの排出を防止するために
、本発明のB様では、制御手段が、空燃比が理論空燃比
より希薄でかつ減速状態のときに排ガス浄化手段の上流
側へ燃料蒸発ガスが供給されるように蒸発ガス供給手段
を制御するようにしている。In order to prevent such peak NOx emissions, in case B of the present invention, the control means directs the fuel to the upstream side of the exhaust gas purification means when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio and the engine is in a deceleration state. The evaporative gas supply means is controlled so that evaporative gas is supplied.
本態様によれば、空燃比が理論空燃比より希薄でかつ減
速状態の時、すなわちピーク的にNOXの排出量が増加
する状態で燃料蒸発ガスが排ガス浄化装置の上流側へ供
給されるため排ガスに燃料蒸発ガスが混合されて排ガス
浄化手段に導入されることになり、還元作用が活発にな
ってN011の浄化率を向上させてピーク的なNo、の
排出量を減少させることができる。According to this aspect, when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio and is in a deceleration state, that is, when the amount of NOx emissions increases at its peak, the fuel evaporative gas is supplied to the upstream side of the exhaust gas purification device, so that the exhaust gas Fuel evaporated gas is mixed with the fuel and introduced into the exhaust gas purification means, and the reduction action becomes active, improving the purification rate of N011 and reducing the peak emission amount of No.
したがって、上記態様によれば、減速時に発生するピー
ク的なNO,の排出量を低減することができる、という
特有の効果が得られる。Therefore, according to the above aspect, a unique effect can be obtained in that the peak amount of NO, which occurs during deceleration, can be reduced.
以下図面を参照して本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.
第3図は本発明が適応可能な排ガス浄化装置を備えた内
燃機関(エンジン)を示すもので、エアクリーナ(図示
せず)の下流側には、スロットル弁8を備えたスロット
ルボディlOが配置されている。このスロットルボディ
10には、スロットル弁8の開度を検出するポテンショ
メータ等で構成されたリニアスロットル開度センサ12
が取付けられている。スロットルボディ10の下流側に
はサージタンクが配置され、このサージタンクには吸気
管絶対圧力を検出する半導体歪抵抗式の圧力センサ14
が取付けられている。サージタンクはインテークマニホ
ールド1B及び吸気ボートを介してエンジン本体16の
燃焼室に連通されている。そして、このインテークマニ
ホールド18には、インテークマニホールド内に突出す
るように各気筒毎に燃料噴射弁20が取付けられている
。FIG. 3 shows an internal combustion engine equipped with an exhaust gas purification device to which the present invention can be applied, in which a throttle body lO equipped with a throttle valve 8 is arranged downstream of an air cleaner (not shown). ing. This throttle body 10 has a linear throttle opening sensor 12 configured with a potentiometer or the like that detects the opening of the throttle valve 8.
is installed. A surge tank is arranged downstream of the throttle body 10, and this surge tank includes a semiconductor strain resistance type pressure sensor 14 that detects the intake pipe absolute pressure.
is installed. The surge tank is communicated with the combustion chamber of the engine body 16 via the intake manifold 1B and the intake boat. A fuel injection valve 20 is attached to the intake manifold 18 for each cylinder so as to protrude into the intake manifold.
エンジン本体16の燃焼室は、排気ボート及びエキゾー
ストマニホールド22、排気管24を介して三元触媒を
充填した触媒袋W126に連通されている。このエキゾ
ーストマニホールド22には、理論空燃比に対応する排
ガス中の残留酸素濃度を境に反転した空燃比信号を出力
する0!センサ28が取付けられている。The combustion chamber of the engine body 16 is communicated with a catalyst bag W126 filled with a three-way catalyst via an exhaust boat, an exhaust manifold 22, and an exhaust pipe 24. This exhaust manifold 22 outputs an air-fuel ratio signal that is inverted at the residual oxygen concentration in the exhaust gas corresponding to the stoichiometric air-fuel ratio. A sensor 28 is attached.
エンジン本体16の出力軸にはプーリ30が取付けられ
ており、このプーリ30はVベルト32を介してエアポ
ンプ34の駆動軸に取付けられたプーリ36に連結され
ている。このエアポンプ34は、電磁クラッチが係合さ
れたときに、エンジンによって回転されるプーリ30、
Vベルト32およびプーリ36を介して駆動されるもの
である。A pulley 30 is attached to the output shaft of the engine body 16, and this pulley 30 is connected via a V-belt 32 to a pulley 36 attached to the drive shaft of an air pump 34. This air pump 34 includes a pulley 30 that is rotated by the engine when the electromagnetic clutch is engaged.
It is driven via a V-belt 32 and a pulley 36.
エアポンプ34のインレットは、蒸発ガス導入管38を
介して燃料タンク及びチャコールキャニスタ40に連通
されている。また、エアポンプ34のアウトレットは、
蒸発ガス供給管42を介して触媒装置26の上、流側の
排気管24に連通されている。この蒸発ガス供給管42
には、第4図に詳細を示す蒸発ガス供給バルブ44が配
置されている。The inlet of the air pump 34 is communicated with a fuel tank and a charcoal canister 40 via an evaporative gas introduction pipe 38. In addition, the outlet of the air pump 34 is
It is connected to the exhaust pipe 24 on the upper and downstream side of the catalyst device 26 via the evaporative gas supply pipe 42 . This evaporative gas supply pipe 42
An evaporative gas supply valve 44, the details of which are shown in FIG. 4, is disposed at.
上記蒸発ガス供給バルブ44は、第4図に示すように、
可動子44Aに固定された弁体44Bとこの可動子44
Aを移動させて弁体44Bを移動させるソレノイド44
Cとを備えており、ソレノイド44Cの一端はシリコン
整流子44Dを介して接地されている。なお、44Bは
可動子バネ、44Fはセットねしである。The evaporative gas supply valve 44 is, as shown in FIG.
Valve body 44B fixed to mover 44A and this mover 44
Solenoid 44 that moves valve body 44B by moving A
One end of the solenoid 44C is grounded via a silicon commutator 44D. Note that 44B is a movable spring, and 44F is a set screw.
上記のチャコールキャニスタ40は、管路46を介して
スロットルボディ10に連通されており、通常のように
スロットル弁の開度に応じて燃料蒸発ガスを吸気系に供
給する。The charcoal canister 40 is connected to the throttle body 10 via a conduit 46, and supplies evaporative fuel gas to the intake system in accordance with the opening degree of the throttle valve, as usual.
上記のスロットル開度センサ12、圧力センサ14及び
02センサ28はマイクロコンピュータで構成されたi
#1m回路48に接続されている。そして、制御回路4
8は燃料噴射弁20、エアポンプ34の電磁クラッチ及
び蒸発ガス供給バルブ44のソレノイド44Cにti″
Ixされている。The throttle opening sensor 12, pressure sensor 14, and 02 sensor 28 are configured by a microcomputer.
It is connected to the #1m circuit 48. And the control circuit 4
8 is ti'' to the fuel injection valve 20, the electromagnetic clutch of the air pump 34, and the solenoid 44C of the evaporative gas supply valve 44.
Ix has been done.
上記の制御回路48は、第5図に示すように、人力イン
タフェース回路50、アナログデジタル変換ff1ii
(A/Dコンバータ)52、出力インクフェース回路5
4、入力インタフェース回路56、リードオンリメモリ
等のメモリを備えた中央処理装置(CPU)58及び低
電圧電源60から構成されている。上記の人力インタフ
ェース回路50には、圧力センサ14及びスロットル開
度センサI2が接続され、人力インタフェース回路56
には02センサ28が接続され、また出力インタフェー
ス回路54には蒸発ガス供給バルブ44のソレノイド4
4C及びエアポンプ34の電磁クラッチが接続されてい
る。上記のメモリには第6図に示すようにスロットル開
度の変化速度ΔSと吸気管圧力とで表された減速度の領
域を示すマツプや以下で説明する制御ルーチンのプログ
ラムが予め記憶されている。第6図の減速度のマツプは
減速度が最大のAfl]′I域、減速度が中間の値のB
領域及び減速度が最小のC領域に分割されている。また
、」二記のメモリには、第7図に示すように第6図のへ
領域、B ml域及びC領域に応じて予め定められたエ
アポンプ34を作動させるための時間Tp及び蒸発ガス
供給バルブ44を開弁するための時間TVを定めたテー
ブルが予め記憶されている。As shown in FIG.
(A/D converter) 52, output ink face circuit 5
4, an input interface circuit 56, a central processing unit (CPU) 58 including a memory such as a read-only memory, and a low voltage power supply 60. The pressure sensor 14 and the throttle opening sensor I2 are connected to the human power interface circuit 50, and the human power interface circuit 56
The 02 sensor 28 is connected to the output interface circuit 54, and the solenoid 4 of the evaporative gas supply valve 44 is connected to the output interface circuit 54.
4C and the electromagnetic clutch of the air pump 34 are connected. As shown in FIG. 6, the above memory stores in advance a map showing the deceleration area expressed by the rate of change ΔS of the throttle opening and the intake pipe pressure, as well as a program for the control routine described below. . The deceleration map in Figure 6 shows the Afl]'I area where the deceleration is maximum, and the B area where the deceleration is at an intermediate value.
The area and deceleration are divided into C areas where the minimum deceleration is possible. In addition, as shown in FIG. 7, the memory shown in ``2'' also contains the time Tp for operating the air pump 34 and the evaporative gas supply, which are predetermined according to the region F, Bml region, and C region in FIG. A table defining the time TV for opening the valve 44 is stored in advance.
次に、第1図を参照して本実施例の燃料蒸発ガス供給ル
ーチンについて説明する。まず、ステップlOOにおい
てo2センサ出カを取込み、ステップ102において0
2センサ出カが空燃比り一ンを示しているか否かを判断
する。o2センサ出力が空燃比リーンを示していると判
断された時は、ステップ104において圧力センサ14
出力をA/D変換することによりメモリに記憶されてい
る現在の吸気管圧力Viを取込み、ステップ106にお
いてスロットル開度センサ12出力をA/D変換するこ
とによりメモリに記憶されている現在のスロットル開度
Siを取込む。そして、ステップ108において現在の
スロットル開度Siがら前回のスロットル開度S、−1
を減算することによりスロットル開度の変化速度ΔSを
求める。次のステップ110ではステップ104におい
て取込まれた現在の吸気管圧力Viとステップ108で
演算されたスロットル開度の変化速度ΔSとに基づいて
減速度G(ΔS、Vi)を算出し、この減速度Gが第6
図のマツプのどの領域に属しているか否かを判断する。Next, the fuel evaporative gas supply routine of this embodiment will be explained with reference to FIG. First, in step lOO, the o2 sensor output is taken in, and in step 102, the o2 sensor output is taken in.
It is determined whether the output of the second sensor indicates that the air-fuel ratio is equal to or not. When it is determined that the o2 sensor output indicates a lean air-fuel ratio, the pressure sensor 14 is
The current intake pipe pressure Vi stored in the memory is acquired by A/D converting the output, and the current intake pipe pressure Vi stored in the memory is acquired by A/D converting the output of the throttle opening sensor 12 in step 106. Take in the opening degree Si. Then, in step 108, the previous throttle opening S is -1 from the current throttle opening Si.
By subtracting , the speed of change ΔS of the throttle opening is determined. In the next step 110, the deceleration G (ΔS, Vi) is calculated based on the current intake pipe pressure Vi taken in in step 104 and the rate of change ΔS of the throttle opening calculated in step 108. The speed G is the 6th
Determine which area of the map it belongs to.
ステップ112ではステップ+10で判断された減速度
Gの領域に基づいて第7図のテーブルからエアポンプ3
4を駆動する時間T’ p及び蒸発ガス供給バルブ44
を開弁する時間TVを演算する。そして、ステップ11
4においてエアポンプ34の電磁クラッチを係合させる
ことによりエアポンプ34を作動させると共に、蒸発ガ
ス供給バルブ44のソレノイドを励磁して蒸発ガス供給
バルブ44を開弁する。ステップllGではステップ1
12で演算された時間Tp1Tvが経過したか否かを判
断し、これらの時間が経過していればステップ118で
エアポンプ34の電磁クラッチを切ってエアポンプ34
の作動を停止させると共に蒸発ガス供給バルブ44のソ
レノイドを消磁して蒸発ガス供給バルブ44を閉弁する
。エアポンプ34を作動させて蒸発ガス供給バルブ44
を開弁することにより蒸発ガス導入管38を介して燃料
タンク内の燃料蒸発ガス及びチャコールキャニスタ40
に吸着されている燃料蒸発ガスがエアポンプ34内に導
入され、さらに蒸発ガス供給管42および蒸発ガス供給
バルブ44を介して触媒装置26の上流側の排気管24
に燃料蒸発ガスが供給される。In step 112, based on the area of deceleration G determined in step +10, the air pump 3 is
4 and the evaporative gas supply valve 44
Calculate the time TV for opening the valve. And step 11
At step 4, the electromagnetic clutch of the air pump 34 is engaged to operate the air pump 34, and at the same time, the solenoid of the evaporative gas supply valve 44 is energized to open the evaporative gas supply valve 44. In step llG, step 1
It is determined whether the time Tp1Tv calculated in step 12 has elapsed, and if these times have elapsed, the electromagnetic clutch of the air pump 34 is disengaged in step 118, and the air pump 34 is turned off.
At the same time, the solenoid of the evaporative gas supply valve 44 is demagnetized to close the evaporative gas supply valve 44. Operate the air pump 34 to close the evaporative gas supply valve 44.
By opening the valve, fuel evaporative gas in the fuel tank and charcoal canister 40 are transferred through the evaporative gas introduction pipe 38.
The fuel evaporative gas adsorbed in the catalytic converter 26 is introduced into the air pump 34 , and is further passed through the evaporative gas supply pipe 42 and the evaporative gas supply valve 44 to the exhaust pipe 24 on the upstream side of the catalyst device 26 .
Fuel evaporative gas is supplied to the
以上の結果、空燃比がリーンの時には、スロットル開度
の変化速度ΔSが大きくがっ吸気管圧力■が大きい程触
媒装置26の上流側の排気管24へ供給される燃料の蒸
発ガスの供給量が増加される。As a result of the above, when the air-fuel ratio is lean, the speed of change ΔS of the throttle opening increases. is increased.
上記のように制御した時の蒸発ガス供給バルブ44の開
弁時間を車速、o2センサ出力、圧力センサ出力および
スロットル開度センサ出力の変化と共に第8図に示す。FIG. 8 shows the opening time of the evaporative gas supply valve 44 when controlled as described above, along with changes in vehicle speed, O2 sensor output, pressure sensor output, and throttle opening sensor output.
なお、上記では空燃比が理論空燃比よりもり−ンの時に
減速度Gに応じて燃料蒸発ガスの供給計を変化させる例
について説明したが、本発明はこれに限定されるもので
はなり、減速度に応じて燃料蒸発ガスの供給量を変化さ
せることなく空燃比が理論空燃比よりもリーンの時のみ
燃料蒸発ガスを供給するようにしてもよい。すなわち、
減速以外の空燃比リーン時にも燃料蒸発ガスを供給する
ようにしてもよい。また、エアポンプを作動させると共
に蒸発ガス供給パルプを開弁じて燃料蒸発ガスを供給す
る例について説明したが、常時エアポンプを作動させて
おいて蒸発ガス供給パルプのソレノイドに供給する制御
信号のデユーティ比を変化させて燃料蒸発ガスの供給量
を変化させるようにしてもよい。さらに、上記では各領
域で一定の燃料蒸発ガスを供給する例について説明した
が、本発明はこれに限定されるものではなく各領域で減
速度Gに応じてまたは領域に関係なく減速度に応じて燃
料蒸発ガスの供給量を変化させるようにしてもよい。In addition, although the example in which the fuel evaporative gas supply meter is changed in accordance with the deceleration G when the air-fuel ratio is higher than the stoichiometric air-fuel ratio has been described above, the present invention is not limited to this, and the present invention is not limited to this. The fuel vapor gas may be supplied only when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, without changing the supply amount of the fuel vapor gas depending on the speed. That is,
Fuel evaporative gas may also be supplied when the air-fuel ratio is lean other than during deceleration. In addition, we have explained an example in which the air pump is operated and the evaporative gas supply pulp is opened to supply fuel evaporative gas. The supply amount of fuel evaporative gas may be changed by changing the amount of fuel evaporative gas. Further, although an example in which constant fuel evaporative gas is supplied in each region has been described above, the present invention is not limited to this, and the present invention can be applied in each region according to the deceleration G or regardless of the region. The amount of fuel evaporative gas supplied may also be changed.
第1図は本発明の実施例の燃料蒸発ガス供給ルーチンを
示す流れ図、第2図は従来のピーク的NO8の発生状態
を示す線図、第3図は本発明が適応可能な排ガス浄化装
置を備えたエンジンの概略図、第4図は第3図の蒸発ガ
ス供給パルプの詳細を示す断面図、第5図は第3図の制
御回路の詳細を示すブロック図、第60ば′OJi速度
に対応する領域を示す線図、第7図は第6図の領域に対
応するエアポンプ及び蒸発ガス供給パルプの動作時間の
テーブルを示す線図、第8図は本実施例の各部の波形を
示すタイミングチャートである。
8 ・・・スロットル弁、
lO・・・スロットルボディ、
14・・・圧力センサ、
20・・・燃料噴射弁、
26・・・触媒装置、
28・・・o2センサ、
34・・・エアポンプ、
38・・・蒸発ガス導入管、
42・・・蒸発ガス供給管、
44・・・蒸発ガス供給パルプ、
48・・・制御回路。Fig. 1 is a flowchart showing a fuel evaporative gas supply routine according to an embodiment of the present invention, Fig. 2 is a diagram showing a conventional peak NO8 generation state, and Fig. 3 is an exhaust gas purification device to which the present invention can be applied. 4 is a cross-sectional view showing details of the evaporative gas supply pulp shown in FIG. 3; FIG. 5 is a block diagram showing details of the control circuit shown in FIG. 3; A diagram showing the corresponding regions, FIG. 7 is a diagram showing a table of operating times of the air pump and evaporative gas supply pulp corresponding to the regions in FIG. 6, and FIG. 8 is a timing diagram showing waveforms of various parts in this example. It is a chart. 8... Throttle valve, lO... Throttle body, 14... Pressure sensor, 20... Fuel injection valve, 26... Catalyst device, 28... O2 sensor, 34... Air pump, 38 ... Evaporative gas introduction pipe, 42... Evaporative gas supply pipe, 44... Evaporative gas supply pulp, 48... Control circuit.
Claims (2)
有害成分を浄化する排ガス浄化手段と、前記排ガス浄化
手段の上流側へ燃料蒸発ガスを供給するための蒸発ガス
供給手段と、前記空燃比が理論空燃比より希薄のときに
前記排ガス浄化手段の上流側へ燃料蒸発ガスが供給され
るように前記蒸発ガス供給手段を制御する制御手段と、
を含む内燃機関の排ガス浄化装置。(1) an air-fuel ratio detection means for detecting an air-fuel ratio; an exhaust gas purification means for purifying harmful components in exhaust gas; an evaporative gas supply means for supplying fuel evaporative gas to the upstream side of the exhaust gas purification means; A control means for controlling the evaporative gas supply means so that the evaporative gas is supplied to the upstream side of the exhaust gas purification means when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio;
Exhaust gas purification equipment for internal combustion engines, including
薄でかつ減速状態のときに前記排ガス浄化手段の上流側
へ燃料蒸発ガスが供給されるように前記蒸発ガス供給手
段を制御する特許請求の範囲第(1)項記載の内燃機関
の排ガス浄化装置。(2) The control means controls the evaporative gas supply means so that the fuel evaporative gas is supplied to the upstream side of the exhaust gas purification means when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio and is in a deceleration state. An exhaust gas purification device for an internal combustion engine according to claim (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61094341A JPS62251415A (en) | 1986-04-23 | 1986-04-23 | Exhaust gas purifying device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61094341A JPS62251415A (en) | 1986-04-23 | 1986-04-23 | Exhaust gas purifying device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62251415A true JPS62251415A (en) | 1987-11-02 |
Family
ID=14107587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61094341A Pending JPS62251415A (en) | 1986-04-23 | 1986-04-23 | Exhaust gas purifying device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62251415A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04156922A (en) * | 1990-10-19 | 1992-05-29 | Sangyo Souzou Kenkyusho | Method for removing nitrogen oxide in waste combustion gas |
US5201802A (en) * | 1991-02-04 | 1993-04-13 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system for an internal combustion engine |
WO1995008703A1 (en) * | 1993-09-21 | 1995-03-30 | Orbital Engine Company (Australia) Pty. Limited | Catalytic treatment of engine exhaust gas |
WO1996025593A1 (en) * | 1995-02-15 | 1996-08-22 | Hitachi, Ltd. | Method and device for purifying exhaust gas of natural-gas engine |
-
1986
- 1986-04-23 JP JP61094341A patent/JPS62251415A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04156922A (en) * | 1990-10-19 | 1992-05-29 | Sangyo Souzou Kenkyusho | Method for removing nitrogen oxide in waste combustion gas |
US5201802A (en) * | 1991-02-04 | 1993-04-13 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system for an internal combustion engine |
WO1995008703A1 (en) * | 1993-09-21 | 1995-03-30 | Orbital Engine Company (Australia) Pty. Limited | Catalytic treatment of engine exhaust gas |
WO1996025593A1 (en) * | 1995-02-15 | 1996-08-22 | Hitachi, Ltd. | Method and device for purifying exhaust gas of natural-gas engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0518234A (en) | Secondary air control device for internal combustion engine | |
JP2951831B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH11280452A (en) | Exhaust emission control device for engine | |
JPH05240031A (en) | Secondary air control device of internal combustion engine | |
JPH1089156A (en) | Control device of internal combustion engine | |
US6170260B1 (en) | Exhaust emission control apparatus for combustion engine | |
JPS61132745A (en) | Air-fuel ratio controller of internal-conbustion engine | |
JPS62251415A (en) | Exhaust gas purifying device for internal combustion engine | |
JP2000282958A (en) | Exhaust gas recirculating device for internal combustion engine | |
JPH07269416A (en) | Egr control device for fuel injection type engine | |
US11286829B2 (en) | System and method for controlling the emissions of a spark-ignition internal combustion engine of a motor-vehicle | |
JPH07151000A (en) | Control device for air-fuel ratio of internal combustion engine | |
JPS61247839A (en) | Fuel ratio control system | |
JP3106823B2 (en) | Evaporative fuel processor for engine | |
JPS59165852A (en) | Fuel supply device for gas engine | |
JP3306146B2 (en) | Control device for engine with evaporative fuel supply device | |
JPH0494444A (en) | Vaporized fuel processing control device for internal combustion engine | |
JPS6113691Y2 (en) | ||
JPH04112959A (en) | Evaporated fuel process controller | |
JP4110566B2 (en) | Combustion control device | |
JPS63215810A (en) | Air-fuel ratio controlling device for internal combustion engine | |
JPH05106431A (en) | Secondary air feeding control device for catalyst converter | |
JP2657711B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS6030443Y2 (en) | Exhaust gas purification device | |
JPS6142093B2 (en) |