JP2005155493A - Exhaust emission control device of engine - Google Patents

Exhaust emission control device of engine Download PDF

Info

Publication number
JP2005155493A
JP2005155493A JP2003396084A JP2003396084A JP2005155493A JP 2005155493 A JP2005155493 A JP 2005155493A JP 2003396084 A JP2003396084 A JP 2003396084A JP 2003396084 A JP2003396084 A JP 2003396084A JP 2005155493 A JP2005155493 A JP 2005155493A
Authority
JP
Japan
Prior art keywords
temperature
desorption
air
fuel ratio
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003396084A
Other languages
Japanese (ja)
Inventor
Ken Inukai
憲 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003396084A priority Critical patent/JP2005155493A/en
Publication of JP2005155493A publication Critical patent/JP2005155493A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of reducing the discharge level of HC and NOx by reasonably supplying oxygen corresponding to desorption of HC when providing an HC adsorptive catalyst which adsorbs HC under exhaust in a cooled condition and desorbs and purifies HC at the temperature not lower than the HC desorption starting temperature T1 in an exhaust passage of an engine. <P>SOLUTION: The temperature of an HC adsorption catalyst is detected or estimated. The air-fuel ratio is gradually shifted to the lean side from the HC desorption starting temperature T1 so as to respond to the increase of the desorption. The lean-shift quantity of the air-fuel ratio is maintained at a predetermined maximum value between the temperature T2 at which the desorption reaches a peak and the temperature T3 at which the desorption is started to decrease. The lean-shift quantity is gradually reduced so as to return to stoichiometric amount of air at the desorption completion temperature T4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エンジンの排気浄化装置に関し、特にHC吸着触媒を備えるものに関する。   The present invention relates to an exhaust emission control device for an engine, and more particularly to an engine equipped with an HC adsorption catalyst.

HC吸着触媒は、HC吸着機能と酸化機能とを持ち、機関の始動直後などの冷間時に排気中のHCを吸着し、HC脱離開始温度以上でHCを脱離浄化する。
特許文献1では、HC吸着触媒でのHCの脱離を判定したら、脱離開始時に一時的に空燃比のリーン度合を大きくし、その後は脱離中のHC濃度に対応したより小さなリーン化度合に空燃比を制御することにより、脱離HCの浄化効率を高めるとしている。
特開2000−2138号公報(特に図8)
The HC adsorption catalyst has an HC adsorption function and an oxidation function, adsorbs HC in the exhaust when it is cold, such as immediately after starting the engine, and desorbs and purifies HC above the HC desorption start temperature.
In Patent Document 1, when it is determined that HC is desorbed by the HC adsorption catalyst, the lean degree of the air-fuel ratio is temporarily increased at the start of the desorption, and then a smaller lean degree corresponding to the concentration of HC being desorbed. In addition, the purification efficiency of desorbed HC is increased by controlling the air-fuel ratio.
JP 2000-2138 A (particularly FIG. 8)

しかしながら、HC吸着触媒でのHCの脱離は緩やかに開始し、温度上昇と共に徐々に増大してピークを迎え、引き続く温度上昇と共に徐々に減少するので、脱離開始時に一時的に空燃比のリーン化度合を大きくすると、触媒内が酸素過剰状態となって、NOx排出量の増大を招き、逆に、その後にHC脱離量が多くなったときに酸素不足を生じると、脱離HCの一部がそのまま排出される恐れがあるという問題点があった。   However, HC desorption at the HC adsorption catalyst starts slowly, gradually increases with temperature rise, reaches a peak, and gradually decreases with subsequent temperature rise. If the degree of chemical conversion is increased, the inside of the catalyst will be in an oxygen excess state, leading to an increase in NOx emissions, and conversely, if there is an oxygen shortage when the amount of HC desorption increases, There was a problem that the part might be discharged as it is.

本発明は、このような従来の問題点に鑑み、HC吸着触媒からのHC脱離時に過不足なく酸素を供給して、HC及びNOxの排出レベルの低減を図り得るようにすることを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to supply oxygen without excess or deficiency when desorbing HC from an HC adsorption catalyst so as to reduce the HC and NOx emission levels. To do.

このため、本発明では、HC吸着触媒の温度を検出又は推定し、HC脱離開始温度から空燃比を脱離量(単位時間当たりの脱離量)の増大に対応させて徐々にリーン側にシフトし、その後の脱離量の減少に合わせて、脱離完了温度でストイキに戻るようにリーンシフト量を徐々に減少させる構成とする。   For this reason, in the present invention, the temperature of the HC adsorption catalyst is detected or estimated, and the air-fuel ratio is gradually increased from the HC desorption start temperature to the lean side corresponding to the increase in the desorption amount (desorption amount per unit time). The lean shift amount is gradually decreased so as to return to stoichiometry at the desorption completion temperature in accordance with the subsequent decrease in the desorption amount.

本発明によれば、HC吸着触媒からのHCの脱離量に対応させて、リーンシフトすることにより、HC吸着触媒内に過不足なく酸素を供給することができ、HC及びNOxの排出レベルの低減を図ることができる。   According to the present invention, by performing a lean shift in accordance with the amount of HC desorbed from the HC adsorption catalyst, oxygen can be supplied into the HC adsorption catalyst without excess or deficiency, and the HC and NOx emission levels can be reduced. Reduction can be achieved.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すエンジンのシステム図である。
エンジン(内燃機関)1の吸気通路2には吸入空気量を制御する電制スロットル弁3が設置され、エンジン1の燃焼室4には点火プラグ5と共に燃料噴射弁6が設置されている。但し、燃料噴射弁6は吸気通路(吸気ポート)に各気筒毎に設置してもよい。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an engine system diagram showing an embodiment of the present invention.
An electric throttle valve 3 for controlling the amount of intake air is installed in the intake passage 2 of the engine (internal combustion engine) 1, and a fuel injection valve 6 is installed in the combustion chamber 4 of the engine 1 together with a spark plug 5. However, the fuel injection valve 6 may be installed in each intake cylinder (intake port) for each cylinder.

燃料噴射弁6は、エンジンコントロールユニット(以下ECUという)10からエンジン回転に同期して出力される噴射パルス信号によりソレノイドに通電されて開弁し、所定圧力に調圧された燃料を噴射するようになっている。従って、噴射パルス信号のパルス幅により燃料噴射量が制御される。
ECU10には、アクセルペダルセンサ11により検出されるアクセル開度Apo、クランク角センサ12により検出されるエンジン回転数Ne、エアフローメータ13により検出される吸入空気量Qa、水温センサ14により検出されるエンジン冷却水温度(水温)Twが入力されている。更に、排気通路7(三元触媒8上流)に排気空燃比のリッチ・リーンに応じた信号を出力する酸素センサ9が設けられ、この信号もECU10に入力されている。尚、酸素センサ9はヒータを内蔵しており、始動時からヒータに通電して素子温度を上昇させることで早期活性化を図ることができる。
The fuel injection valve 6 is energized to open a solenoid by an injection pulse signal output in synchronization with engine rotation from an engine control unit (hereinafter referred to as ECU) 10 so as to inject fuel adjusted to a predetermined pressure. It has become. Therefore, the fuel injection amount is controlled by the pulse width of the injection pulse signal.
The ECU 10 includes an accelerator opening Apo detected by an accelerator pedal sensor 11, an engine speed Ne detected by a crank angle sensor 12, an intake air amount Qa detected by an air flow meter 13, and an engine detected by a water temperature sensor 14. The cooling water temperature (water temperature) Tw is input. Further, an oxygen sensor 9 is provided in the exhaust passage 7 (upstream of the three-way catalyst 8) to output a signal corresponding to the rich / lean exhaust air-fuel ratio. This signal is also input to the ECU 10. The oxygen sensor 9 has a built-in heater, and can be activated early by energizing the heater from the start and increasing the element temperature.

ECU10による電制スロットル弁3の開度制御について説明すると、ECU10では、主にアクセル開度Apoに基づいて、目標スロットル開度を設定し、これに従ってスロットル開度を制御する。
ECU10による燃料噴射弁6の燃料噴射量の制御について説明すると、ECU10では、実際の吸入空気量Qaとエンジン回転数Neとから、ストイキ相当の基本燃料噴射量Tp=K×Qa/Ne(Kは定数)を演算し、これに空燃比フィードバック補正係数αを乗じることで、次式のごとく、最終的な燃料噴射量Tiを演算する。尚、実際には、空燃比フィードバック補正係数α以外に各種補正係数が用いられるが、ここでは説明を省略する。
The opening control of the electric throttle valve 3 by the ECU 10 will be described. The ECU 10 sets a target throttle opening mainly based on the accelerator opening Apo, and controls the throttle opening according to this.
The control of the fuel injection amount of the fuel injection valve 6 by the ECU 10 will be described. In the ECU 10, the basic fuel injection amount Tp = K × Qa / Ne (K is equivalent to the stoichiometry) from the actual intake air amount Qa and the engine speed Ne. Constant) and multiplying this by the air-fuel ratio feedback correction coefficient α, the final fuel injection amount Ti is calculated as in the following equation. In practice, various correction coefficients are used in addition to the air-fuel ratio feedback correction coefficient α, but the description thereof is omitted here.

Ti=Tp×α
空燃比フィードバック補正係数αは、空燃比フィードバック制御による燃料噴射量の補正値であり、空燃比フィードバック制御条件のときに、酸素センサ9からのリッチ・リーン信号に従って、増減設定される。空燃比フィードバック制御条件でないときは、空燃比フィードバック補正係数αを1に固定することで、オープン制御となる。
Ti = Tp × α
The air-fuel ratio feedback correction coefficient α is a correction value of the fuel injection amount by the air-fuel ratio feedback control, and is increased or decreased according to the rich / lean signal from the oxygen sensor 9 under the air-fuel ratio feedback control condition. When the air-fuel ratio feedback control condition is not satisfied, the air-fuel ratio feedback correction coefficient α is fixed to 1 to achieve open control.

燃料噴射量Tiが演算されると、このTiに対応するパルス幅の噴射パルス信号により燃料噴射弁6を駆動する。
一方、燃焼後の排気は、排気通路7へ排出されるが、排気通路7には、比較的上流側に三元触媒8が設けられ、下流側にHC吸着触媒9が配置されている。
三元触媒8は、空燃比がストイキ付近のときに排気中のHC、COを酸化し、NOxを還元することができる。
When the fuel injection amount Ti is calculated, the fuel injection valve 6 is driven by an injection pulse signal having a pulse width corresponding to this Ti.
On the other hand, the exhaust gas after combustion is discharged to the exhaust passage 7. The exhaust passage 7 is provided with a three-way catalyst 8 on the relatively upstream side and an HC adsorption catalyst 9 on the downstream side.
The three-way catalyst 8 can oxidize HC and CO in the exhaust and reduce NOx when the air-fuel ratio is near stoichiometric.

HC吸着触媒9は、三元触媒に、HC吸着材(例えばゼオライト)を添加したもので、HC吸着機能と三元触媒機能(少なくとも酸化機能)とを持つ。すなわち、冷間時に排気中のHCを吸着し、HC脱離開始温度T1(例えば100℃)以上でHCを脱離浄化する機能を有する。尚、HC吸着材(ゼオライト)は通常の三元触媒に比べ耐熱性に劣るため、三元触媒8を早期活性化が可能な上流側(高温側)に配置し、HC吸着触媒9を下流側(低温側)に配置している。   The HC adsorption catalyst 9 is obtained by adding an HC adsorbent (for example, zeolite) to a three-way catalyst, and has an HC adsorption function and a three-way catalyst function (at least an oxidation function). That is, it has a function of adsorbing HC in the exhaust when cold and desorbing and purifying HC at an HC desorption start temperature T1 (for example, 100 ° C.) or higher. In addition, since the HC adsorbent (zeolite) is inferior in heat resistance compared with a normal three-way catalyst, the three-way catalyst 8 is arranged on the upstream side (high temperature side) where early activation is possible, and the HC adsorption catalyst 9 is placed on the downstream side. It is arranged on the (low temperature side).

図5は始動後のタイムチャートであり、始動後のエンジン回転数Ne、HC排出量(エンジン出口でのHC排出量、及び、テールパイプでのHC排出量)、HC吸着触媒の温度(触媒温度)Tcの変化を示している。尚、T1<T2<T3<T4である。
始動後、触媒温度TcがHC脱離開始温度T1(例えば100℃)に達するまでの間は、HC吸着触媒にHCが吸着される。従って、エンジン出口でのHC排出量に比べ、テールパイプでのHC排出量が大幅に低減され、その差が、HC吸着量となる。
FIG. 5 is a time chart after the start, in which the engine speed Ne after the start, the HC emission amount (HC discharge amount at the engine outlet and the HC discharge amount at the tail pipe), the temperature of the HC adsorption catalyst (catalyst temperature). ) Shows a change in Tc. Note that T1 <T2 <T3 <T4.
After the start-up, HC is adsorbed by the HC adsorption catalyst until the catalyst temperature Tc reaches the HC desorption start temperature T1 (for example, 100 ° C.). Therefore, compared with the HC discharge amount at the engine outlet, the HC discharge amount at the tail pipe is greatly reduced, and the difference becomes the HC adsorption amount.

HC脱離開始温度T1からHCの脱離が開始し、温度T2(例えば200℃)で脱離量(単位時間当たりの脱離量)がほぼ一定のピークに達し、温度T3(例えば300℃)で脱離量が減少を開始し、温度T4で脱離量が0となって脱離を完了する。従って、脱離HCの浄化がなされないとすると、この間、エンジン出口でのHC排出量に比べ、テールパイプでのHC排出量が増大し、その差が脱離量となる。   The desorption of HC starts from the HC desorption start temperature T1, the desorption amount (desorption amount per unit time) reaches a substantially constant peak at the temperature T2 (for example, 200 ° C.), and the temperature T3 (for example, 300 ° C.). Then, the desorption amount starts to decrease, and at temperature T4, the desorption amount becomes zero and the desorption is completed. Therefore, if the desorbed HC is not purified, the HC discharge amount at the tail pipe increases during this period compared to the HC discharge amount at the engine outlet, and the difference becomes the desorption amount.

本発明では、HC吸着触媒からのHCの脱離量に対応させて、空燃比をリーン側へシフトすることにより、HC吸着触媒内に過不足なく酸素を供給することにより、脱離HCの浄化効率を最適なものとして、テールパイプでのHC排出量を図5の実線のレベルから点線のレベルまで低減する。
図2は始動後の空燃比リーンシフト制御のフローチャートである。
In the present invention, by desorbing HC by supplying oxygen into the HC adsorption catalyst without excess or deficiency by shifting the air-fuel ratio to the lean side in accordance with the amount of HC desorption from the HC adsorption catalyst. For optimum efficiency, the amount of HC emissions in the tailpipe is reduced from the solid line level in FIG. 5 to the dotted line level.
FIG. 2 is a flowchart of air-fuel ratio lean shift control after startup.

S1では、スタートスイッチのON→OFFなどを監視して、エンジンの始動が完了したか否かを判定し、始動が完了した場合に、S2へ進む。
S2では、水温Twが所定値(例えば40℃)以下か否かを判定する。この結果、水温Twが所定値を超えていて、いわゆるホットリスタート時の場合は、S3で空燃比のリーンシフト量LS=0として、制御を終了する。水温Twが所定値以下で、冷間時の場合は、S4へ進む。
In S1, it is determined whether or not the start of the engine has been completed by monitoring whether the start switch is turned on or off. If the start is completed, the process proceeds to S2.
In S2, it is determined whether or not the water temperature Tw is a predetermined value (for example, 40 ° C.) or less. As a result, if the water temperature Tw exceeds the predetermined value and is a so-called hot restart, the air-fuel ratio lean shift amount LS = 0 is set in S3 and the control is terminated. If the water temperature Tw is equal to or lower than the predetermined value and cold, the process proceeds to S4.

S4では、HC吸着触媒の温度(触媒温度)Tcを例えば次のようにして推定する。
(1)エンジン回転数Ne、及び、負荷相当の基本燃料噴射量Tpを読込む。
(2)Ne、Tpから、予め用意したマップを参照して、排気温度(又は、HC吸着触媒へ流入する排気熱量)を算出する。尚、高回転、高負荷ほど、排気温度が高くなる(排気熱量が大となる)ことはいうまでもない。
(3)上記で求めた排気温度を一次遅れ処理することにより、触媒温度を算出する。又は、排気熱量を積算し、その積算値に基づいてテーブルを参照するなどして、触媒温度を算出する。
In S4, the temperature (catalyst temperature) Tc of the HC adsorption catalyst is estimated as follows, for example.
(1) The engine speed Ne and the basic fuel injection amount Tp corresponding to the load are read.
(2) The exhaust temperature (or the amount of exhaust heat flowing into the HC adsorption catalyst) is calculated from Ne and Tp with reference to a map prepared in advance. Needless to say, the higher the rotation speed and the higher the load, the higher the exhaust temperature (the greater the exhaust heat amount).
(3) The catalyst temperature is calculated by subjecting the exhaust gas temperature obtained above to a first-order lag process. Alternatively, the catalyst temperature is calculated by integrating the exhaust heat amount and referring to the table based on the integrated value.

尚、これに限らず各種の推定方法を用いることができ、排気温度をセンサにより検出してもよい。また、触媒温度センサを用いて触媒温度(床温度)を直接検出するようにしてもよい。
S5では、空燃比フィードバック制御(λ制御)中か否かを判定する。尚、空燃比フィードバック制御は、少なくとも酸素センサが活性している条件で行われる。空燃比フィードバック制御中でない場合は、S6で空燃比のリーンシフト量LS=0として、S4へ戻る。本実施形態での空燃比のリーンシフトは後述するように空燃比フィードバック制御を利用して行うからである。空燃比フィードバック制御中の場合は、S7へ進む。
Note that the present invention is not limited to this, and various estimation methods can be used, and the exhaust temperature may be detected by a sensor. Further, the catalyst temperature (bed temperature) may be directly detected using a catalyst temperature sensor.
In S5, it is determined whether or not air-fuel ratio feedback control (λ control) is in progress. The air-fuel ratio feedback control is performed under the condition that at least the oxygen sensor is active. If the air-fuel ratio feedback control is not being performed, the air-fuel ratio lean shift amount LS = 0 is set in S6, and the process returns to S4. This is because the air-fuel ratio lean shift in the present embodiment is performed using air-fuel ratio feedback control as will be described later. If air-fuel ratio feedback control is being performed, the process proceeds to S7.

S7では、触媒温度TcがHC脱離開始温度T1(例えば100℃)未満か否かを判定し、T1未満の場合は、S8で空燃比のリーンシフト量LS=0として、S4へ戻る。
触媒温度TcがT1以上の場合は、S9へ進む。
S9では、触媒温度TcがHC脱離開始温度T1以上で、かつ脱離量がピークとなる温度T2(例えば200℃)未満か否かを判定する。T1≦Tc<T2の場合は、S10へ進み、空燃比のリーンシフト量LSを次式により算出する。
In S7, it is determined whether or not the catalyst temperature Tc is lower than the HC desorption start temperature T1 (for example, 100 ° C.). If it is lower than T1, the lean shift amount LS = 0 of the air-fuel ratio is set in S8 and the process returns to S4.
If the catalyst temperature Tc is equal to or higher than T1, the process proceeds to S9.
In S9, it is determined whether or not the catalyst temperature Tc is equal to or higher than the HC desorption start temperature T1 and lower than a temperature T2 (for example, 200 ° C.) at which the desorption amount reaches a peak. When T1 ≦ Tc <T2, the process proceeds to S10, and the air-fuel ratio lean shift amount LS is calculated by the following equation.

LS=LSmax ×(Tc−T1)/(T2−T1)
従って、図4に示すように、HC脱離開始温度T1から、脱離量がピークとなる温度T2までの間、温度の上昇に応じて、空燃比のリーンシフト量LSを0から予め定めた最大値LSmax まで一定の傾きで増大させることになる。
触媒温度TcがT2以上の場合は、S11へ進む。
LS = LSmax × (Tc−T1) / (T2−T1)
Therefore, as shown in FIG. 4, the lean shift amount LS of the air-fuel ratio is predetermined from 0 in accordance with the temperature rise from the HC desorption start temperature T1 to the temperature T2 at which the desorption amount reaches a peak. The maximum value LSmax is increased at a constant slope.
When the catalyst temperature Tc is equal to or higher than T2, the process proceeds to S11.

S11では、触媒温度Tcが脱離量がピークとなる温度T2以上で、かつ脱離量が減少を開始する温度T3(例えば300℃)未満か否かを判定する。T2≦Tc<T3の場合は、S12へ進み、空燃比のリーンシフト量LSを最大値LSmax とする(LS=LSmax )。
従って、図4に示すように、脱離量がピークとなる温度T2から、脱離量が減少を開始する温度T3までの間、空燃比のリーンシフト量LSを予め定めた最大値LSmax に維持することになる。
In S11, it is determined whether or not the catalyst temperature Tc is equal to or higher than a temperature T2 at which the desorption amount reaches a peak and is lower than a temperature T3 (for example, 300 ° C.) at which the desorption amount starts to decrease. When T2 ≦ Tc <T3, the routine proceeds to S12, where the air-fuel ratio lean shift amount LS is set to the maximum value LSmax (LS = LSmax).
Therefore, as shown in FIG. 4, the air-fuel ratio lean shift amount LS is maintained at a predetermined maximum value LSmax from the temperature T2 at which the desorption amount reaches a peak to the temperature T3 at which the desorption amount starts to decrease. Will do.

触媒温度TcがT3以上の場合は、S13へ進む。
S13では、触媒温度Tcが脱離量が減少を開始する温度T3以上で、かつ脱離完了温度T4(例えば400℃)未満か否かを判定する。T3≦Tc<T4の場合は、S14へ進み、空燃比のリーンシフト量LSを次式により算出する。
LS=LSmax ×(T4−Tc)/(T4−T3)
従って、図4に示すように、脱離量が減少を開始する温度T3から、脱離完了温度T4までの間、温度の上昇に応じて、空燃比のリーンシフト量LSを予め定めた最大値LSmax から0まで一定の傾きで減少させることになる。
If the catalyst temperature Tc is equal to or higher than T3, the process proceeds to S13.
In S13, it is determined whether or not the catalyst temperature Tc is equal to or higher than the temperature T3 at which the desorption amount starts to decrease and lower than the desorption completion temperature T4 (for example, 400 ° C.). When T3 ≦ Tc <T4, the process proceeds to S14, and the lean shift amount LS of the air-fuel ratio is calculated by the following equation.
LS = LSmax × (T4-Tc) / (T4-T3)
Therefore, as shown in FIG. 4, the lean shift amount LS of the air-fuel ratio is set to a predetermined maximum value as the temperature rises from the temperature T3 at which the desorption amount starts to decrease to the desorption completion temperature T4. From LSmax to 0, it is decreased with a constant slope.

触媒温度TcがT4以上の場合は、S15へ進む。S15では、暖機が完了し、触媒も完全活性状態にあるので、空燃比のリーンシフト量LS=0として、制御を終了する。
次に空燃比のリーンシフト量LSを用いて空燃比をリーン側にシフトする制御について説明する。
本実施形態では、酸素センサからの信号に基づいて空燃比のリッチ・リーンを判定し、その判定結果に基づいて燃料噴射量を補正して、空燃比をストイキにフィードバック制御する空燃比フィードバック制御を用い、空燃比のリーン側へのシフトは、リーン判定時に燃料噴射量を増大側に補正する制御ゲイン(比例分PR)に比べ、リッチ判定時に燃料噴射量を減少側に補正する制御ゲイン(比例分PL)を大きく設定することにより行う。
When the catalyst temperature Tc is equal to or higher than T4, the process proceeds to S15. In S15, since warm-up is completed and the catalyst is also in a fully activated state, the control is terminated with the lean shift amount LS = 0 of the air-fuel ratio.
Next, control for shifting the air-fuel ratio to the lean side using the air-fuel ratio lean shift amount LS will be described.
In this embodiment, air-fuel ratio feedback control is performed in which the rich / lean of the air-fuel ratio is determined based on the signal from the oxygen sensor, the fuel injection amount is corrected based on the determination result, and the air-fuel ratio is feedback-controlled. The air-fuel ratio shift to the lean side is a control gain (proportional) that corrects the fuel injection amount to the decreasing side at the rich determination, compared to the control gain (proportional amount PR) that corrects the fuel injection amount to the increase side at the lean determination. This is done by setting a large value (min PL).

図3は空燃比フィードバック制御のフローチャートであり、時間同期で繰り返し実行される。
S21では、酸素センサ出力に基づいてリーン/リッチを判定する。
リーンの場合は、S22へ進み、リッチ→リーンへの反転時(前回リッチ)か否かを判定する。
FIG. 3 is a flowchart of air-fuel ratio feedback control, which is repeatedly executed in time synchronization.
In S21, lean / rich is determined based on the oxygen sensor output.
In the case of lean, the process proceeds to S22, and it is determined whether or not the inversion from rich to lean (previous rich).

リッチ→リーンへの反転時の場合は、S23へ進んで、リッチ側への比例分PRを、次式のごとく、基本比例分P0からリーンシフト量LSを減算した値とする。
PR=P0−LS
そして、S24へ進んで、空燃比フィードバック補正係数αを比例分PR増加させて、更新する(α=α+PR)。
In the case of inversion from rich to lean, the process proceeds to S23, and the proportional amount PR toward the rich side is set to a value obtained by subtracting the lean shift amount LS from the basic proportional amount P0 as in the following equation.
PR = P0-LS
Then, the process proceeds to S24, where the air-fuel ratio feedback correction coefficient α is increased by a proportional amount PR and updated (α = α + PR).

リーン状態継続中の場合は、S25へ進んで、空燃比フィードバック補正係数αを微小の積分分I増加させて、更新する(α=α+I)。
リッチの場合は、S26へ進み、リーン→リッチへの反転時(前回リーン)か否かを判定する。
リーン→リッチへの反転時の場合は、S27へ進んで、リーン側への比例分PLを、次式のごとく、基本比例分P0にリーンシフト量LSを加算した値とする。
When the lean state is continuing, the routine proceeds to S25, where the air-fuel ratio feedback correction coefficient α is increased by a minute integral I and updated (α = α + I).
In the case of rich, the process proceeds to S26, and it is determined whether or not the time of reversal from lean to rich (previous lean).
In the case of inversion from lean to rich, the process proceeds to S27, and the proportional amount PL toward the lean side is set to a value obtained by adding the lean shift amount LS to the basic proportional amount P0 as in the following equation.

PL=P0+LS
そして、S28へ進んで、空燃比フィードバック補正係数αを比例分PL減少させて、更新する(α=α−PL)。
リッチ状態継続中の場合は、S29へ進んで、空燃比フィードバック補正係数αを微小の積分分I減少させて、更新する(α=α−I)。
PL = P0 + LS
Then, the process proceeds to S28, and the air-fuel ratio feedback correction coefficient α is updated by decreasing the proportional amount PL (α = α−PL).
When the rich state is continuing, the process proceeds to S29, and the air-fuel ratio feedback correction coefficient α is updated by decreasing by a minute integral I (α = α−I).

上記の制御により、リーンシフト量LS=0の場合は、リッチ側への比例分PR及びリーン側への比例分PRが共にP0となって等しくなるので、空燃比フィードバック制御により、空燃比はストイキに制御される。
これに対し、リーンシフト量LSが大きくなると、リッチ側の比例分PR=P0−LSに比べて、リーン側への比例分PL=P0+LSの方が大きくなり、リーン側へバランスが崩れて、空燃比フィードバック制御により、リーンシフト量LSに対応した分、空燃比がリーン側にシフトされる。
As a result of the above control, when the lean shift amount LS = 0, the proportion PR to the rich side and the proportion PR to the lean side are both equal to P0, so the air-fuel ratio is stoichiometrically controlled by the air-fuel ratio feedback control. Controlled.
On the other hand, when the lean shift amount LS increases, the proportional component PL = P0 + LS to the lean side becomes larger than the proportional component PR = P0-LS on the rich side, the balance is lost to the lean side, and the sky The air-fuel ratio is shifted to the lean side by the amount corresponding to the lean shift amount LS by the fuel ratio feedback control.

以上のように、HC吸着触媒の温度を検出又は推定し、HC脱離開始温度T1から空燃比を徐々にリーン側にシフトして、脱離量の増大に対応させ、その後の脱離量の減少に合わせて、脱離完了温度T4でストイキに戻るようにリーンシフト量を徐々に減少させることにより、HC吸着触媒からのHCの脱離量に対応させて、触媒内に過不足なく酸素を供給することができ、HC及びNOxの排出レベルの低減を図ることができる。従って、テールパイプでのHC排出量は図5の実線のレベルから点線のレベルまで低減する。   As described above, the temperature of the HC adsorption catalyst is detected or estimated, and the air-fuel ratio is gradually shifted to the lean side from the HC desorption start temperature T1 to cope with the increase in the desorption amount. In accordance with the decrease, the lean shift amount is gradually decreased so as to return to the stoichiometry at the desorption completion temperature T4, so that oxygen is not excessively or deficient in the catalyst in accordance with the HC desorption amount from the HC adsorption catalyst. It can be supplied, and the emission level of HC and NOx can be reduced. Accordingly, the HC emission amount in the tail pipe is reduced from the solid line level in FIG. 5 to the dotted line level.

また、HC脱離開始温度T1から、脱離量がピークとなる温度T2までの間、温度の上昇に応じて、空燃比のリーンシフト量LSを0から最大値LSmax まで一定の傾きで増大させること、温度T2から、脱離量が減少を開始する温度T3までの間、空燃比のリーンシフト量LSを最大値LSmax に維持すること、及び、温度T3から、脱離完了温度T4までの間、温度の上昇に応じて、空燃比のリーンシフト量LSを最大値LSmax から0まで一定の傾きで減少させることにより、比較的簡単なロジックで制御することが可能となる。   In addition, from the HC desorption start temperature T1 to the temperature T2 at which the desorption amount reaches a peak, the air-fuel ratio lean shift amount LS is increased from 0 to the maximum value LSmax with a constant slope as the temperature rises. Between the temperature T2 and the temperature T3 at which the desorption amount starts to decrease, the air-fuel ratio lean shift amount LS is maintained at the maximum value LSmax, and between the temperature T3 and the desorption completion temperature T4. As the temperature rises, the lean shift amount LS of the air-fuel ratio is decreased from the maximum value LSmax to 0 with a constant slope, so that it can be controlled with relatively simple logic.

また、空燃比のリーン側へのシフトは、空燃比フィードバック制御を用い、リッチ側への制御ゲイン(比例分PR)に比べ、リーン側への制御ゲイン(比例分PL)を大きく設定することにより行うことで、空燃比をフィードバック制御しつつ所望のリーン空燃比を精度良く得ることができる。   In addition, the air-fuel ratio is shifted to the lean side by using air-fuel ratio feedback control and setting the control gain to the lean side (proportional part PL) larger than the control gain to the rich side (proportional part PR). By doing so, a desired lean air-fuel ratio can be obtained with high accuracy while performing feedback control of the air-fuel ratio.

本発明の一実施形態を示すエンジンのシステム図Engine system diagram showing an embodiment of the present invention 始動後の空燃比リーンシフト制御のフローチャートFlow chart of air-fuel ratio lean shift control after startup 空燃比フィードバック制御のフローチャートFlow chart of air-fuel ratio feedback control 触媒温度とリーンシフト量との関係を示す図Diagram showing the relationship between catalyst temperature and lean shift 始動後の制御のタイムチャートTime chart of control after starting

符号の説明Explanation of symbols

1 エンジン
2 吸気通路
6 燃料噴射弁
7 排気通路
8 三元触媒
9 HC吸着触媒
10 ECU
15 酸素センサ
1 engine
2 Intake passage
6 Fuel injection valve
7 Exhaust passage
8 Three-way catalyst
9 HC adsorption catalyst
10 ECU
15 Oxygen sensor

Claims (5)

エンジンの排気通路に、冷間時に排気中のHCを吸着し、HC脱離開始温度以上でHCを脱離浄化するHC吸着触媒を備えるエンジンの排気浄化装置において、
HC吸着触媒の温度を検出又は推定し、HC脱離開始温度から空燃比を脱離量の増大に対応させて徐々にリーン側にシフトして、その後の脱離量の減少に合わせて脱離完了温度でストイキに戻るようにリーンシフト量を徐々に減少させることを特徴とするエンジンの排気浄化装置。
In an engine exhaust gas purification apparatus provided with an HC adsorption catalyst that adsorbs HC in exhaust gas when it is cold and desorbs and purifies HC at an HC desorption start temperature or higher in an engine exhaust passage.
Detects or estimates the temperature of the HC adsorption catalyst, gradually shifts the air-fuel ratio from the HC desorption start temperature to the lean side in response to the increase in the desorption amount, and desorbs as the desorption amount thereafter decreases An exhaust emission control device for an engine, wherein the lean shift amount is gradually decreased so as to return to stoichiometry at a completion temperature.
HC脱離開始温度T1から、脱離量がピークとなる温度T2までの間、温度の上昇に応じて、空燃比のリーンシフト量を0から予め定めた最大値まで一定の傾きで増大させることを特徴とする請求項1記載のエンジンの排気浄化装置。   From the HC desorption start temperature T1 to the temperature T2 at which the desorption amount reaches a peak, the air-fuel ratio lean shift amount is increased from 0 to a predetermined maximum value with a constant slope as the temperature rises. The exhaust emission control device for an engine according to claim 1. 脱離量がピークとなる温度T2から、脱離量が減少を開始する温度T3までの間、空燃比のリーンシフト量を予め定めた最大値に維持することを特徴とする請求項1又は請求項2記載のエンジンの排気浄化装置。   2. The lean shift amount of the air-fuel ratio is maintained at a predetermined maximum value from a temperature T2 at which the desorption amount reaches a peak to a temperature T3 at which the desorption amount starts to decrease. Item 2. An exhaust emission control device for an engine according to Item 2. 脱離量が減少を開始する温度T3から、脱離完了温度T4までの間、温度の上昇に応じて、空燃比のリーンシフト量を予め定めた最大値から0まで一定の傾きで減少させることを特徴とする請求項1〜請求項3のいずれか1つに記載のエンジンの排気浄化装置。   Decreasing the air-fuel ratio lean shift amount from a predetermined maximum value to 0 with a constant slope between the temperature T3 at which the desorption amount starts decreasing and the desorption completion temperature T4 as the temperature increases. The engine exhaust gas purification apparatus according to any one of claims 1 to 3. 排気通路に設けた酸素センサからの信号に基づいて空燃比のリッチ・リーンを判定し、その判定結果に基づいて燃料噴射量を補正して、空燃比をストイキにフィードバック制御する空燃比フィードバック制御手段を備え、
空燃比のリーン側へのシフトは、リーン判定時に燃料噴射量を増大側に補正する制御ゲインに比べ、リッチ判定時に燃料噴射量を減少側に補正する制御ゲインを大きく設定することにより行うことを特徴とする請求項1〜請求項4のいずれか1つに記載のエンジンの排気浄化装置。
Air-fuel ratio feedback control means for determining rich / lean of the air-fuel ratio based on a signal from an oxygen sensor provided in the exhaust passage, correcting the fuel injection amount based on the determination result, and feedback-controlling the air-fuel ratio With
The shift of the air-fuel ratio to the lean side is performed by setting a control gain that corrects the fuel injection amount to the decreasing side at the time of the rich determination is set larger than the control gain that corrects the fuel injection amount to the increase side at the time of the lean determination. The exhaust emission control device for an engine according to any one of claims 1 to 4, wherein the exhaust emission control device is an engine.
JP2003396084A 2003-11-26 2003-11-26 Exhaust emission control device of engine Pending JP2005155493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396084A JP2005155493A (en) 2003-11-26 2003-11-26 Exhaust emission control device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396084A JP2005155493A (en) 2003-11-26 2003-11-26 Exhaust emission control device of engine

Publications (1)

Publication Number Publication Date
JP2005155493A true JP2005155493A (en) 2005-06-16

Family

ID=34721680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396084A Pending JP2005155493A (en) 2003-11-26 2003-11-26 Exhaust emission control device of engine

Country Status (1)

Country Link
JP (1) JP2005155493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029829A (en) * 2018-08-23 2020-02-27 トヨタ自動車株式会社 Exhaust emission control device and exhaust emission control method for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029829A (en) * 2018-08-23 2020-02-27 トヨタ自動車株式会社 Exhaust emission control device and exhaust emission control method for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3470597B2 (en) Exhaust gas purification device for internal combustion engine
JP5001183B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008280983A (en) Exhaust emission control device of internal combustion engine
WO2012144269A1 (en) Internal combustion engine exhaust gas purification control apparatus
JP2010013974A (en) Filter regenerating system and filter regenerating method
JP4344953B2 (en) Exhaust gas purification device for internal combustion engine
EP0931921B1 (en) Exhaust gas purifying apparatus of lean-burn internal combustion engine
JP2008111351A (en) Exhaust control device of internal combustion engine
JPH1181992A (en) Exhaust gas purifying device in internal combustion engine
JP3778012B2 (en) Air-fuel ratio control device for internal combustion engine
JP5116868B2 (en) Air-fuel ratio control device for internal combustion engine
JP4292671B2 (en) Hydrocarbon emission reduction device for internal combustion engine
JP3610740B2 (en) Air-fuel ratio control device for internal combustion engine
JP2005155493A (en) Exhaust emission control device of engine
US6675574B2 (en) Control unit for internal combustion engine
JP2005002867A (en) Exhaust emission control system of internal combustion engine
JP5392021B2 (en) Fuel injection control device for internal combustion engine
JP2010031737A (en) Air-fuel ratio control device and hybrid vehicle
JPH0681637A (en) Exhaust emission control device for internal combustion engine
JPH10184424A (en) Air-fuel ratio control device for internal combustion engine
JP2005147106A (en) Exhaust emission control device for internal combustion engine
JP3632065B2 (en) Engine exhaust purification system
JP2004116295A (en) Exhaust emission control device of internal combustion engine
JP3770256B2 (en) Engine exhaust purification system
JP2004353516A (en) Exhaust emission control device of vehicular engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006