JPS5864222A - Manufacture of magnetic iron oxide powder containing cobalt - Google Patents

Manufacture of magnetic iron oxide powder containing cobalt

Info

Publication number
JPS5864222A
JPS5864222A JP56162554A JP16255481A JPS5864222A JP S5864222 A JPS5864222 A JP S5864222A JP 56162554 A JP56162554 A JP 56162554A JP 16255481 A JP16255481 A JP 16255481A JP S5864222 A JPS5864222 A JP S5864222A
Authority
JP
Japan
Prior art keywords
cobalt
iron oxide
magnetic iron
oxide powder
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56162554A
Other languages
Japanese (ja)
Other versions
JPS6411573B2 (en
Inventor
Kokichi Miyazawa
宮沢 功吉
Kazuo Nakada
中田 和男
Tsuneo Ishikawa
石川 恒夫
Ichiro Honma
一郎 本間
Masaharu Hirai
平井 正治
Makoto Ogasawara
誠 小笠原
Toshihiko Kawamura
河村 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP56162554A priority Critical patent/JPS5864222A/en
Priority to US06/427,537 priority patent/US4501774A/en
Priority to DE19823237618 priority patent/DE3237618A1/en
Priority to GB08228999A priority patent/GB2109780B/en
Priority to FR8216979A priority patent/FR2515412B1/en
Priority to KR8204593A priority patent/KR890000702B1/en
Publication of JPS5864222A publication Critical patent/JPS5864222A/en
Publication of JPS6411573B2 publication Critical patent/JPS6411573B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To considerably increase the coercive force of magnetic iron oxide powder contg. a phosphorus component in the surface by depositing a cobalt compound on the powder after treating the powder with an aqueous medium. CONSTITUTION:Magnetic iron oxide powder contg. a phosphorus component in the surface is treated with an acidic or alkaline liq. medium contg. water, alcohol, aqueous acetone or the like as a solvent to liberate and remove the P component as a soluble salt. The acid or alkali concn. of the medium is adjusted to about 0.05-1N, and >= about 35wt% as P of the phosphorous component is removed. The treated particles are dispersed in an aqueous cobalt compound soln., and by adding an aqueous alkali soln. to the dispersion, the cobalt compound is deposited on the particles. Cobalt sulfate, cobalt acetate or the like is used as the cobalt compound, and in case of the cobalt compound alone, the cobalt compound is deposited by about 0.5-10% as Co basing on the total amount of Fe in the particles.

Description

【発明の詳細な説明】 本発明は磁気記録媒体用磁性材料として有用なコバルト
含有磁性酸化鉄粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cobalt-containing magnetic iron oxide powder useful as a magnetic material for magnetic recording media.

コバルト含有磁性酸化鉄粉末は、高保磁力な有しまた高
周波領域での忠実度がすぐれていることから、近年ビデ
オテープなどの磁気記録媒体の分管などでさかんに使用
されている。
Cobalt-containing magnetic iron oxide powder has a high coercive force and excellent fidelity in the high frequency range, and has recently been widely used in the tubes of magnetic recording media such as video tapes.

磁性酸化鉄にコバルトを含有させるには種々なる方法が
知られているが、通常磁性酸化鉄粉末の粒子表面にコバ
ルト含有化合物を被着させたり、さらにその被着物を結
晶成長させたり−fることが多い、そしてこのコバルト
化合物を被着する基体の磁性酸化鉄粉末は、通常湿式法
によって得られる針状含水酸化鉄を加熱処理し、脱水1
. テre−FezQsとし1次いで還元してに’es
04とする。さらに酸化してr−FezOsとしたもの
、あるいはベルトライド系化合物(FeOx 1. s
a<x< 1.55 ’)としたものが使用されている
。これらのものは前記の加熱処理過程において粒子間の
焼結による枝状粒子の発生、形骸孔の形成、粗大粒子の
成長などを抑制するために、通常加熱処理6二際してそ
の前段物質である針状の含水酸化鉄やα−Felonに
リン化合物を添加処理されている。したがってそれらの
リン化合物を添加処理した後、加熱処理して得られる磁
性酸化鉄粉末の粒子表面には1通常、リン分がP換算重
量基準で0.1〜0.8弗含有されている。
Various methods are known for incorporating cobalt into magnetic iron oxide powder, but usually a cobalt-containing compound is deposited on the particle surface of magnetic iron oxide powder, and the deposit is further grown into crystals. The magnetic iron oxide powder used as the substrate on which the cobalt compound is applied is usually obtained by heat-treating acicular hydrated iron oxide obtained by a wet method, and then dehydrating it.
.. Terre-FezQs and then reduce and'es
04. It is further oxidized to r-FezOs, or a bertolide compound (FeOx 1.s
a<x<1.55') is used. In order to suppress the generation of branched particles due to sintering between particles, the formation of bulky pores, and the growth of coarse particles during the heat treatment process, these materials are usually used as materials in the preceding stage of heat treatment 6. Phosphorous compounds are added to certain acicular hydrated iron oxides and α-Felon. Therefore, the particle surface of the magnetic iron oxide powder obtained by adding these phosphorus compounds and then heat-treating the particles usually contains 0.1 to 0.8 F of phosphorus on a P-equivalent weight basis.

一方、近時磁気記録媒体の高密度化の要求はいちじるし
く、これとあいまってコバルト含有磁性酸化鉄の性能の
向上が一層強く要求されてきている。本発明者等はコバ
ルト含有磁性酸化鉄の性能の改善について種々検討の結
果、リン分を表面に含有した磁性酸化鉄粒子(以下前駆
体という)にコバルト化合物を被着する場合(:。
On the other hand, in recent years there has been a significant demand for higher densities in magnetic recording media, and in conjunction with this, there has been an even stronger demand for improved performance of cobalt-containing magnetic iron oxides. As a result of various studies on improving the performance of cobalt-containing magnetic iron oxide, the present inventors found that when a cobalt compound is attached to magnetic iron oxide particles (hereinafter referred to as precursor) containing phosphorus on the surface (:

前駆体を予め水性媒液で処理して前駆体の粒子表面に存
在するリン分を可溶性塩・・・・・として遊離せしめ、
その一部または全部を除去してからコバルト化合物を被
着させる場合に目コバルト化合物の被着による保磁力な
どの磁気特性の向上がいちじるしく大きいことの知Mk
得1本発明を完成したものである。すなわち本発明は1
粒子表面にリン分を含有する磁性酸化鉄粒子粉末を、水
性媒液で処理した後に、コバルト化合物な被着すること
を特徴とするコバルト含有磁性酸化鉄粉末の製造方法で
ある。
The precursor is previously treated with an aqueous medium to liberate the phosphorus present on the particle surface of the precursor as a soluble salt,
It is known that when a part or all of the cobalt compound is removed and then a cobalt compound is applied, the improvement in magnetic properties such as coercive force due to the adhesion of the cobalt compound is significantly large.
This completes the present invention. That is, the present invention has 1
This is a method for producing cobalt-containing magnetic iron oxide powder, which comprises treating magnetic iron oxide particles containing phosphorus on the particle surface with an aqueous medium and then depositing a cobalt compound on the particle surface.

本発明は、リン分を含有する磁性酸化鉄粒子な前駆体と
してコバルト被着する場合に、比較! 的簡潔な操作で前駆体を水性媒液で前処理を行なうこと
によって磁性酸化鉄系磁気記録媒体における熱的、機械
的安定性などを損なうことなく、保磁力などの磁気特性
の優れた磁性酸化鉄粉末を製造し得るものであり、甚だ
工業的に石川な方法である。なお本発明の改良がもたら
される理由は明らかではないが、前駆体の粒子表面には
リン化合物の被膜が形成されており、このものが水性媒
液による浸出処理によって該粒子表面より可溶性リン酸
塩として遊離されて該粒子表面が被着反応に対してより
活性化し、コバルト化合物が一層均一にしかも強固に基
体粒子に被着され易すくなり、それとあいまって基体の
磁性酸化鉄粒子とその粒子表面のコバルト被着層とによ
る磁気特性の相乗作用がより効果的にもたらされるため
ではないかと推察される。
In the present invention, when cobalt is deposited as a precursor of magnetic iron oxide particles containing phosphorus, comparison! By pre-treating the precursor with an aqueous medium in a simple and simple operation, magnetic oxidation with excellent magnetic properties such as coercive force can be achieved without impairing the thermal and mechanical stability of magnetic iron oxide-based magnetic recording media. It is a method that can produce iron powder, and is a very industrially difficult method. Although the reason for the improvement of the present invention is not clear, a film of a phosphorus compound is formed on the surface of the precursor particle, and this film is removed from the surface of the particle by leaching with an aqueous medium. The cobalt compound is more easily adhered to the base particles evenly and firmly, and the magnetic iron oxide particles of the base and their particle surfaces are released as It is speculated that this is because the synergistic effect of the magnetic properties with the cobalt adhesion layer is more effectively brought about.

本発明方法においてコバルト化合物を被着−fる前駆体
として使用する磁性酸化鉄粒子粉末としては、第一鉄塩
とアルカリとの湿式反応によって製造される針状含水酸
化鉄(α、β、 r−FeOOH)もしくはそれを加熱
脱水したα−Fetusにリン化合物を被着処理した後
に加熱還元してre s Oaとしたもの、またはそれ
をさらに加熱酸化して。
The magnetic iron oxide particles used as a precursor for depositing cobalt compounds in the method of the present invention include acicular hydrated iron oxides (α, β, r -FeOOH) or α-Fetus, which is heated and dehydrated, coated with a phosphorus compound and then heated and reduced to res Oa, or further heated and oxidized.

r−Ve!omとしたもの、あるいは中間的酸化物であ
るへl&トドライドPeOx (1,88(X < 1
.56 )などがある。
r-Ve! om, or the intermediate oxide hel & todride PeOx (1,88(X < 1
.. 56) etc.

本発明方法において、前記前駆体を水性媒液で処理する
には種々の方法によって行なうことができるが、11)
例えば水、水性アルコール、アセトンなどを溶媒とし、
それらの酸性またはアルカリ性の媒液で処理することが
できる。なおこれらの媒液による処理はそれら寺組合せ
て多段処理することもできるが、アルカリ性媒液で処理
する場合は次いで酸性媒液で処理するのが望ましい。(
2)水性媒液の酸またはアルカリの濃度は1通常0.0
5〜l規定望ましくはO1〜0.6規定であり、その濃
度が前記範囲より低きにすぎると所望の効果が得られず
、また高きにすぎると経済的に有利でないばかりか磁性
酸化鉄粒□子が部分的に溶解して粒子形状が損なわれた
りする。
In the method of the present invention, the precursor can be treated with an aqueous medium by various methods, but 11)
For example, using water, aqueous alcohol, acetone, etc. as a solvent,
They can be treated with acidic or alkaline media. Note that the treatment with these media can be carried out in multiple stages by combining them, but in the case of treatment with an alkaline medium, it is preferable to perform the treatment with an acidic medium next. (
2) The concentration of acid or alkali in the aqueous medium is 1 usually 0.0
If the concentration is too low than the above range, the desired effect cannot be obtained, and if it is too high, it is not economically advantageous and the magnetic iron oxide grains are □The particles may be partially dissolved and the particle shape may be impaired.

■用いられる酸としては種々の無機酸、有機酸およびそ
れらの塩などがあるが11通常例えば塩酸、硫#II、
弗酸、硝酸、塩化第一鉄、硫酸アルミニウムなどを単独
でもまたはそれらを組合せて使用することができる。ま
たアルカリとしては、檜々のアルカリ金属、アルカリ土
類金属の水酸化物、炭酸塩、アンモニウム化合物などが
挙げられるが1通常例えば水酸化す)9ウム。
■Acids that can be used include various inorganic acids, organic acids, and their salts.11 Usually, for example, hydrochloric acid, sulfur #II,
Hydrofluoric acid, nitric acid, ferrous chloride, aluminum sulfate, and the like can be used alone or in combination. Examples of the alkali include hydroxides, carbonates, and ammonium compounds of alkali metals such as cypress, alkaline earth metals, and usually, for example, hydroxide.

水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、
炭酸カリウムなどを単独でもそれらを組合せて使用する
ことができる。
Potassium hydroxide, calcium hydroxide, sodium carbonate,
Potassium carbonate and the like can be used alone or in combination.

141該処理は1例えば前駆体の磁性酸化鉄粉末を水性
媒液中で攪拌上浸漬処理しても、前駆体粉の固定床また
は流動床を形成しこれに水性媒液を流通させることによ
って処理してもよい。いづれにしても前駆体の粒子表向
に存在するリン化合物を可溶性塩・・−―・としてその
表面より遊離させ、その一部または全部を該水性媒体系
より除去してやることが必要であり、該水性分散系は媒
液で十分浸出処理した後に、e過し、さらに望ましくは
水洗して、該前駆体表面にli在するリン分の少なくと
も85%、望ましくけ少なくとも50%、特に望ましく
は少なくとも60働(いづれもP換算重量基準)が該粒
子表面より除去されていることが好ましい。
141 This treatment can be carried out by forming a fixed bed or fluidized bed of the precursor powder and passing the aqueous medium through it, even if the magnetic iron oxide powder as a precursor is stirred and immersed in an aqueous medium. You may. In any case, it is necessary to liberate the phosphorus compound present on the surface of the precursor particles from the surface as a soluble salt, and remove some or all of it from the aqueous medium system. After the aqueous dispersion has been thoroughly leached with a medium, it is filtered and preferably washed with water so that the phosphorus content present on the surface of the precursor is at least 85%, preferably at least 50%, particularly preferably at least 60%. It is preferable that the particles have been removed from the surface of the particles.

本発明方法において、前記の水性媒液による処理を行な
った磁性酸化鉄基体粒子(以下基体粒子という)にコバ
ルト化合物な被着させる(二は1種々の方法によって行
なうことができる。
In the method of the present invention, a cobalt compound is deposited on the magnetic iron oxide base particles (hereinafter referred to as base particles) that have been treated with the aqueous medium (2).This can be done by various methods.

例えば(1)基体粒子をコバルト化合物水溶液に分散さ
せ、これにアルカリ水溶液を加える方法。
For example, (1) a method in which base particles are dispersed in an aqueous cobalt compound solution and an aqueous alkali solution is added thereto.

■基体粒子をコバルト化合物とアルカリ水SOとの混合
液に分散させる方法、■基体粒子な水に分散させ、これ
)ニコバルト水溶液とアルカリ水溶液とを添加する方法
、(4)基体粒子をアルカリ水溶液に分散させ、これに
コバルト化合物水溶液を添加する方法、+51基体粒子
をコバルト化合物水溶液に分散させ、この分散液をアル
カリ水溶液中に滴下する方法などがあり、またその際第
一鉄、その他の金属化合物を、コバルト化合物と同時に
またはそれらを適宜順次被着処理したりすることができ
る。いづれにしてもアルカリを添加されたコバルトなど
の金属化合物に対して当量もしくは当量以上を添加して
中和し、それらの反応生成物が該基体粒子表面に被着さ
れる。該反応が十分性なわれた後、被着スラリーは濾過
、洗浄、乾燥され、更に必要に応じ通常の熱処理例えば
非酸化性雰囲気あるいは酸化性雰囲気下で150〜80
0℃で加熱される。
■ A method of dispersing the base particles in a mixed solution of a cobalt compound and alkaline water SO, ■ A method of dispersing the base particles in water and then adding a nicobalt aqueous solution and an aqueous alkali solution, (4) A method of dispersing the base particles in an alkaline aqueous solution. There are methods such as dispersing the +51 base particles in an aqueous cobalt compound solution and adding a cobalt compound aqueous solution thereto, and dispersing the +51 base particles in a cobalt compound aqueous solution and dropping this dispersion into an alkaline aqueous solution. can be applied simultaneously with the cobalt compound or sequentially as appropriate. In any case, an equivalent amount or more than an equivalent amount of the alkali-added metal compound such as cobalt is added to neutralize the compound, and the reaction product thereof is deposited on the surface of the base particle. After the reaction is complete, the deposited slurry is filtered, washed, dried and, if necessary, subjected to a conventional heat treatment such as 150-800℃ under a non-oxidizing atmosphere or an oxidizing atmosphere.
Heated at 0°C.

本発明方法において使用するコバルト化合物としては、
コバルト無機塩あるいは有機塩例えば硫酸コバルト、塩
化コバルト、酢酸コバルトなどがある。なおコバルト化
合物に組合せてコバルト以外の金属化合物を被着させる
場合には、例えば硫酸第一鉄、塩化第一鉄、硫酸第一鉄
マンガン、塩化第一鉄マンガンなどを併せ使用すること
ができる。これらの化合物の添加量は。
The cobalt compounds used in the method of the present invention include:
Cobalt inorganic or organic salts include cobalt sulfate, cobalt chloride, cobalt acetate, and the like. When a metal compound other than cobalt is deposited in combination with a cobalt compound, for example, ferrous sulfate, ferrous chloride, ferrous manganese sulfate, ferrous manganese chloride, etc. can be used in combination. What are the amounts of these compounds added?

通常コバルト化合物単独の場合は、基体粒子の全Fa量
に対して、Coとして0.5〜10%、また例えばコバ
ルト化合物と第一鉄化合物とを組合せて被着する場合に
は、前者なCoとして05〜lOs、後者をI?eとし
て1〜20伽とするのが適当である。
Usually, when a cobalt compound is used alone, the amount of Co is 0.5 to 10% based on the total amount of Fa in the base particles, and when a combination of a cobalt compound and a ferrous compound is used, the former Co 05~lOs, the latter as I? It is appropriate to set e to 1 to 20.

次に実施例および比較例を早げて本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

−1,前駆体の調製 +1)  1モル/lの硫酸第一針水溶液に、水酸化ナ
トリウム水溶液を加えて液温88℃において空気酸化し
てPH7の反応母液から針状含水酸化第二鉄粒子(α−
Fe00H)を生成させた。このものを濾過、水洗した
のちオル)9ン酸の所定量(α−Fe00Hに対するP
換算重量基準でθ、8*)を加えてα−Fe OOH粒
子に吸着させ2時間還元してマグネタイ) (Fesσ
0を得た。(試料A:P換算重量基準で0.85%)■
) 試料Aを2.50℃で2時間空気中で熱処理してy
 −Fa x Osに再酸化した。(試料B;P換算重
量基準で0.8z優) +31  前記(1)のa−Fe00Hを609℃で2
時間加熱脱水してα−Fe00Hとし、こめ水性スラリ
ーにオルトリン酸の所定量(α−Fe意Osに対してP
換算重量基準で0.27%)を加えて、α−Fe*Os
粒子に#Ik1させた0次いで水素ガス雰囲気中で41
0℃で2時間熱処理して還元し、さらに250℃で3時
間空気中で熱処理して再酸化し、γ−Fat(Jsを得
た。(試料C:P換算重量基準で0.27%))4) 
 前記(υのα−Fe00Hに対して、リン分をP換算
重量基準でO,S *相当のオルトリン酸を加えてa 
−re OOH粒子に吸着させた。このものは前記?の
場合と同様にして加熱脱水、還元次いで酸化してy−F
esOs粉末を得た。(試料D:P換算重量基準0.6
7qb) 151  前記■のα−Pestsにオルトリン酸を添
加することなく850℃で2時間水素ガス雰囲気中で還
元し、さら1:空気中250℃で2時間酸化し、1−F
@gosを得た。(試料E:P換算璽置装準で0.(1
) 2、コバルト被着方゛法 (1)  試料A−Hの磁性酸化鉄粉末(前駆体)を、
所定の水性媒液中で所定時間浸漬したのちr過、水洗し
た湿ケーキを、l 0011/Iの水性スラリーとし、
該スラリーへ1モル/lの硫酸コバルト水溶液60−と
1モル/lの硫酸第一鉄水溶液185−とを加え、さら
に5モル/lの水酸化す)9ウム水溶液8 Q Oli
tを加えて不活性ガス雰囲気中、25℃で反応を行なわ
せ、引続きその状態で反応液を10時間熟成したのちf
過、水洗し1次いで110℃で10時間乾燥を行なった
-1, Preparation of precursor +1) Add a sodium hydroxide aqueous solution to a 1 mol/l sulfuric acid first needle aqueous solution and air oxidize the solution at a temperature of 88°C to obtain acicular hydrated ferric oxide particles from the reaction mother liquor with a pH of 7. (α−
Fe00H) was generated. After filtering and washing with water, a predetermined amount of (or)9-acid (P for α-Fe00H)
(Fesσ
I got 0. (Sample A: 0.85% based on P equivalent weight)■
) Sample A was heat treated in air at 2.50℃ for 2 hours.
- Reoxidized to Fa x Os. (Sample B; 0.8z better on P conversion weight basis) +31 A-Fe00H of (1) above was heated to 2
After heating and dehydrating for a period of time to obtain α-Fe00H, a predetermined amount of orthophosphoric acid (P for α-Fe and Os) was added to the aqueous slurry.
0.27% on a converted weight basis), α-Fe*Os
Particles were given #Ik1 0 and then 41 in a hydrogen gas atmosphere.
It was heat-treated at 0°C for 2 hours to reduce, and then heat-treated at 250°C for 3 hours in air to reoxidize to obtain γ-Fat (Js. (Sample C: 0.27% based on P equivalent weight) )4)
To α-Fe00H of the above (υ), add orthophosphoric acid equivalent to O, S* on a P-equivalent weight basis to make the phosphorus content a
-re Adsorbed onto OOH particles. Is this one mentioned above? In the same manner as in the case of
esOs powder was obtained. (Sample D: P conversion weight standard 0.6
7qb) 151 The α-Pests of (1) above were reduced at 850°C for 2 hours in a hydrogen gas atmosphere without adding orthophosphoric acid, and further 1: Oxidized in air at 250°C for 2 hours to form 1-F.
Got @gos. (Sample E: 0.(1
) 2. Cobalt deposition method (1) Magnetic iron oxide powder (precursor) of samples A-H was
The wet cake that has been immersed in a predetermined aqueous medium for a predetermined time, filtered and washed with water is made into an aqueous slurry of l 0011/I,
A 1 mol/l cobalt sulfate aqueous solution 60- and a 1 mol/l ferrous sulfate aqueous solution 185- are added to the slurry, and then a 5 mol/l 9ium hydroxide aqueous solution 8Q Oli is added.
The reaction was carried out at 25°C in an inert gas atmosphere by adding t, and the reaction solution was then aged in that state for 10 hours.
It was filtered, washed with water, and then dried at 110°C for 10 hours.

■ 前記B−111において、硫酸第一鉄水溶液に代え
て1モル/!の硫酸マンガン水111液851Ltを加
えることのほかは、同様に処理した。
■ In the above B-111, 1 mol/! in place of the ferrous sulfate aqueous solution. The same treatment was carried out except that 851 Lt of 111 manganese sulfate water solution was added.

実施例1 試料Bの磁性酸化鉄粉末(前駆体)を0.5規スラリ一 定濃度の塩酸水溶液に懸濁させて1001/l/、とし
攪拌下に2!5℃で5時間浸漬した。しかるのちスラリ
ーはr過、水洗し、次いで前記! −(11の方法にし
たがって被着処理を行ない、目的とする磁性酸化鉄粉末
を得た。
Example 1 Magnetic iron oxide powder (precursor) of Sample B was suspended in a 0.5N slurry in an aqueous hydrochloric acid solution with a constant concentration of 1001/l/l, and immersed at 2.5°C for 5 hours with stirring. After that, the slurry is filtered, washed with water, and then the above! -(A deposition treatment was performed according to method 11 to obtain the desired magnetic iron oxide powder.

実施例( 度の硫酸水溶液を使用することのほかは、実施例1の場
合と同様にして目的とするコバルト含有磁性酸化鉄粉末
を得た。
Example (1) The desired cobalt-containing magnetic iron oxide powder was obtained in the same manner as in Example 1, except for using a sulfuric acid aqueous solution.

実施例8 実施例1において、水性媒液として0.5規定濃度の弗
酸水溶液を使用することのほかは、実施例1の場合と同
様にして目的とするコバルト含有磁性酸化鉄粉末を得た
Example 8 The desired cobalt-containing magnetic iron oxide powder was obtained in the same manner as in Example 1, except that a 0.5 normal concentration hydrofluoric acid aqueous solution was used as the aqueous medium. .

実施例会 実施例1において水性媒液として0.5規定の水酸化ナ
トリウム水溶液を使用することのほかは、実施例1の場
合と同様にして目的とするコバルト含有磁性酸化鉄粉末
な得た。
EXAMPLE The desired cobalt-containing magnetic iron oxide powder was obtained in the same manner as in Example 1, except that a 0.5N aqueous sodium hydroxide solution was used as the aqueous medium.

実施例5 実施例1(:おける水性液媒として、0.5規定濃度の
塩化第一、−水溶液を使用することのほかは、実施例1
の場合と同様書ニして目的の磁性酸化鉄粉末を得た。
Example 5 Example 1 except that an aqueous solution of dichloride having a concentration of 0.5N was used as the aqueous liquid medium in Example 1 (:
The desired magnetic iron oxide powder was obtained in the same manner as in the case of .

実施例6 実施例1において、水性媒液による処理なO2規定濃度
の水酸化ナトリウム水溶液中で5時間浸漬し、次いで0
.1規定濃度の硫酸水溶液中で10時間浸漬処理するこ
とのほかは、実施例1の場合と同様C二して目的とする
磁性酸化鉄粉末を得た。
Example 6 In Example 1, the sample was immersed in an aqueous sodium hydroxide solution with a normal concentration of O2 for 5 hours, and then treated with an aqueous medium.
.. The desired magnetic iron oxide powder was obtained by carrying out C2 in the same manner as in Example 1, except that it was immersed in a 1N sulfuric acid aqueous solution for 10 hours.

実施例? 実施例1において前駆体の磁性酸化鉄として試料人(P
est4)を使用することのほかは、実施例1の場合と
同様にして目的とするコバルト含有磁性酸化鉄粉末を得
た。
Example? In Example 1, sample man (P
The desired cobalt-containing magnetic iron oxide powder was obtained in the same manner as in Example 1 except that est4) was used.

実施例8 実施例1において前駆体の磁性酸化鉄として試料C(γ
−FewOs)を使用することのほかは、実施例1の場
合と同様にして目的とするコバルト含有磁性酸化鉄粉末
を得た。
Example 8 Sample C (γ
The desired cobalt-containing magnetic iron oxide powder was obtained in the same manner as in Example 1, except that -FewOs) was used.

実施例9 実施例1において前駆体の磁性酸化鉄として試料D (
y−Pesoりを使用することのほかは、実施例1の場
合と同様にして目的とするコバルト含有磁性酸化鉄粉末
を得た。
Example 9 Sample D (
The desired cobalt-containing magnetic iron oxide powder was obtained in the same manner as in Example 1 except that y-Peso was used.

実施例10 実施例1において、前記被着方法2−111にしたがっ
て被着処理を行なうことのほかは、実施例1の場合と同
様にして目的とするコバルト含有磁性酸化鉄粉末を得た
Example 10 The desired cobalt-containing magnetic iron oxide powder was obtained in the same manner as in Example 1, except that the deposition treatment was carried out in accordance with the deposition method 2-111.

比較例1 前駆体の磁性酸化鉄として試料Bについて水性媒液によ
る処理を行なうことなく、前記コバルト被着方法2−(
Bにしたがって被着処理して、コバルト含有磁性酸化鉄
粉末とした。
Comparative Example 1 The cobalt deposition method 2-(
A cobalt-containing magnetic iron oxide powder was obtained by the deposition treatment according to B.

比較例2 前駆体の磁性酸化鉄として試料Bについて水性媒液によ
る処理を行なうことなく、前記コバルト被着方法2−田
にしたがって被着処理して、コバルト含有磁性酸化鉄粉
末とした。
Comparative Example 2 Sample B as a magnetic iron oxide precursor was coated according to the cobalt deposition method 2-1 above without being treated with an aqueous medium to obtain a cobalt-containing magnetic iron oxide powder.

前記の実施例および比較例で得られた磁性酸化鉄粉末に
ついて、常法により保磁力(Hc )熱特性(Tp )
を測定し、さらに決起の配合組成で磁性塗料を調製した
The coercive force (Hc) and thermal properties (Tp) of the magnetic iron oxide powders obtained in the above Examples and Comparative Examples were determined by conventional methods.
were measured, and a magnetic paint was prepared using a proprietary composition.

磁性酸化鉄粉末        100重量部酢ビー塩
ビ共重合体−脂   10.5#大豆レジテイ    
     1.6#ジオクデルフタレート     4
1 界面活性剤          4 #メチルエテルケ
トン     84  lトルエン         
 98 #各々の磁性塗料を、ボリエデレンフイルムに
通常の方法により塗布し、配向処理して、8μの膜厚を
有する磁気記録体を得た。これらの磁気記録体重ついて
通常の方法により保磁力(Hc)。
Magnetic iron oxide powder 100 parts by weight Vinegar-vinyl chloride copolymer-fat 10.5# Soybean resin
1.6# Diocdelphthalate 4
1 Surfactant 4 #Methyl ether ketone 84 l toluene
Each of the 98 # magnetic paints was coated on a polyethylene film using a conventional method and subjected to orientation treatment to obtain a magnetic recording medium having a film thickness of 8 μm. The coercive force (Hc) of these magnetic recordings is determined by the usual method.

角形比(Br/Bm )、配向比(0几)を調定し、ま
た化学分析によって脱リン率(水性媒液処理前後の含有
P率)を求めた。これらの結果を表1に示す、なお、熱
特性とは保磁力の温度依存性のことであり(125℃の
保磁力)+(室温の保磁力)X 100で示される値(
働)である。
The squareness ratio (Br/Bm) and orientation ratio (0 liters) were adjusted, and the dephosphorization rate (the content of P before and after treatment with an aqueous medium) was determined by chemical analysis. These results are shown in Table 1.Thermal characteristics refer to the temperature dependence of coercive force, and the value expressed as (coercive force at 125°C) + (coercive force at room temperature) x 100 (
work).

表1の結果から明らかなように、本発明方法によれば、
熱特性が損なわれることなくコノくルト化合物の被着に
よる磁性酸化鉄粉の保磁力のト昇fを大きくすることが
でき、し力・も磁気テープの角形片、配向比も優れ友も
のであることがわかる。
As is clear from the results in Table 1, according to the method of the present invention,
It is possible to increase the coercive force f of magnetic iron oxide powder by adhering the conorct compound without impairing its thermal properties, and the magnetic tape's rectangular piece and orientation ratio are also excellent. I understand that there is something.

特許出願人 石原産業株式会社Patent applicant: Ishihara Sangyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 粒子表面にリン分を含有する磁性酸化鉄粒子粉末を水性
媒液で処理した後に、コバルト化合物を被着することを
特徴とするコバルト含有磁性酸化鉄粉末の製造方法。
A method for producing cobalt-containing magnetic iron oxide powder, which comprises treating magnetic iron oxide particles containing phosphorus on the surface of the particles with an aqueous medium and then depositing a cobalt compound thereon.
JP56162554A 1981-10-12 1981-10-12 Manufacture of magnetic iron oxide powder containing cobalt Granted JPS5864222A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56162554A JPS5864222A (en) 1981-10-12 1981-10-12 Manufacture of magnetic iron oxide powder containing cobalt
US06/427,537 US4501774A (en) 1981-10-12 1982-09-29 Process for the production of cobalt-containing magnetic iron oxide powder
DE19823237618 DE3237618A1 (en) 1981-10-12 1982-10-11 METHOD FOR PRODUCING A COBALTIC MAGNETIC IRON OXIDE POWDER
GB08228999A GB2109780B (en) 1981-10-12 1982-10-11 Production of cobalt-containing magnetic iron oxide
FR8216979A FR2515412B1 (en) 1981-10-12 1982-10-11 PROCESS FOR PRODUCING COBALT-CONTAINING MAGNETIC IRON OXIDE POWDER
KR8204593A KR890000702B1 (en) 1981-10-12 1982-10-12 Production for cobalt containing magnetic iron oxide power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162554A JPS5864222A (en) 1981-10-12 1981-10-12 Manufacture of magnetic iron oxide powder containing cobalt

Publications (2)

Publication Number Publication Date
JPS5864222A true JPS5864222A (en) 1983-04-16
JPS6411573B2 JPS6411573B2 (en) 1989-02-27

Family

ID=15756793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162554A Granted JPS5864222A (en) 1981-10-12 1981-10-12 Manufacture of magnetic iron oxide powder containing cobalt

Country Status (1)

Country Link
JP (1) JPS5864222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511335A (en) * 2001-04-13 2005-04-28 コーネル・リサーチ・ファンデーション・インコーポレイテッド Superparamagnetic nanostructured material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511335A (en) * 2001-04-13 2005-04-28 コーネル・リサーチ・ファンデーション・インコーポレイテッド Superparamagnetic nanostructured material

Also Published As

Publication number Publication date
JPS6411573B2 (en) 1989-02-27

Similar Documents

Publication Publication Date Title
JPS59130407A (en) Acicular ferry magnetic iron oxide particle for recording magnetic signal
JPH0832563B2 (en) Manufacturing method of needle-shaped α-Fe (bottom 2) O (bottom 3)
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPS5864222A (en) Manufacture of magnetic iron oxide powder containing cobalt
EP0154285B1 (en) Process for producing ferromagnetic metal powder
JPS6217364B2 (en)
JPH0270003A (en) Method for treating ferromagnetic iron powder
US4501774A (en) Process for the production of cobalt-containing magnetic iron oxide powder
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPS6135132B2 (en)
JPS62223025A (en) Manufacture of needle-like alpha-iron oxide (iii)
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS6132259B2 (en)
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JPS5935404A (en) Manufacture of cobalt-coated magnetic iron oxide powder
JPS6323139B2 (en)
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JPS6323138B2 (en)
JPS6349722B2 (en)
JPH0147882B2 (en)
JPS60170906A (en) Spindle shaped gamma-fe2o3 magnetic powder including co and manufacture of the same
JPH0425686B2 (en)
JPS5939730A (en) Manufacture of ferromagnetic iron oxide
JPH0553843B2 (en)
JPH02232902A (en) Manufacture of magnetic metal powder for magnetic recording