JPH02232902A - Manufacture of magnetic metal powder for magnetic recording - Google Patents

Manufacture of magnetic metal powder for magnetic recording

Info

Publication number
JPH02232902A
JPH02232902A JP1054334A JP5433489A JPH02232902A JP H02232902 A JPH02232902 A JP H02232902A JP 1054334 A JP1054334 A JP 1054334A JP 5433489 A JP5433489 A JP 5433489A JP H02232902 A JPH02232902 A JP H02232902A
Authority
JP
Japan
Prior art keywords
metal
magnetic powder
producing
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1054334A
Other languages
Japanese (ja)
Inventor
Masatake Maruo
丸尾 正剛
Toshihiko Kawamura
河村 俊彦
Haruki Ichinose
一ノ瀬 治紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP1054334A priority Critical patent/JPH02232902A/en
Publication of JPH02232902A publication Critical patent/JPH02232902A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic powder having an excellent oxidation-resisting property by a method wherein a specific organic acid metal compound is hydrolyzed in a specific alkaline atmosphere, the decomposed substance is coated on the surface of magnetic metal powder, the moisture contained therein is removed using a specific solvent, a specific heat treatment is conducted, and the magnetic metal powder is coated with a uniformly densed oxidation- resistant film. CONSTITUTION:Co, Ni, Cu and Mn slat of organic acid such as acetic acid, oxalic acid and the like, having C6 or lower, are hydrolyzed in the state wherein ammonia water, and the surface of magnetic metal powder grains of iron alloy is coated with a metal hydroxide. Besides ammonia water, ammonia and organic amine may be used. Also, as a polarity organic solvent to be used for a liquid-phase treatment, 5C or lower monovalent aliphatic alcohol, polyhydric alcohol, esters, ethylene glycol monoether and ketones can be selected. After the prescribed quantity of ammonia water, which is the neutralization equivalent of organic metal compound or more, has been added to the slurry which is obtained by suspending the magnetic powder of substrate grains, organic acid metal compound is added. After the above-mentioned material has been washed with methyl alcohol and the like, it is treated in N2 at 250 to 500 deg.C and then it is subjected to a slow oxidation in an O2/N2 less than 1vol.%. Using the above-mentioned constitution, the magnetic powder for magnetic recording, having excellent oxidation-resistant property, can be obtained.

Description

【発明の詳細な説明】 〔発明の技術的分野〕 本発明は、耐酸化性に優れた磁気記録用に好適な金属磁
性粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a metal magnetic powder having excellent oxidation resistance and suitable for magnetic recording.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体は、近年高記録密度化による小型化、高性
能化の指向が一段と強まってきている.これとあいまっ
て磁気記録用磁性粉末として、従来の酸化鉄系磁性粉末
に比し、飽和磁化が大きく、かつ高保伊力化が容易な鉄
または鉄系金属磁性粉末(以下金属磁性粉末という)が
注目されており、デジタルオーディオテープや8m/m
ビデオテープなどへの実用化がはかられつつあるが、近
時さらに高画質ビデオテープ、高記録密度ディスク用な
ど高性能記録媒体への適用が一層期待されている。
In recent years, there has been a growing trend towards smaller size and higher performance magnetic recording media due to higher recording densities. In conjunction with this, iron or iron-based metal magnetic powders (hereinafter referred to as metal magnetic powders) are used as magnetic powders for magnetic recording, which have a higher saturation magnetization and are easier to achieve high magnetic retention than conventional iron oxide-based magnetic powders. It is attracting attention, and digital audio tape and 8m/m
Although efforts are being made to put it to practical use in video tapes and the like, in recent years, there are even more expectations for its application to high-performance recording media such as high-definition video tapes and high-density disks.

ところで、このような金属磁性粉末は、通常約0.5μ
m以下(長径)、さらには9.3μm以下の微細粒子で
あるのが望ましく、かつこのものを磁性塗料としたとき
の分散性、塗膜での配向性、充填性等に優れたものであ
ることが望まれている。しかしながらこのような微細粒
子は表面活性が強く、このために経時的に酸化が進むこ
とにより、これにともなって飽和磁化、保磁力などの磁
気特性が低下し、いわゆる経時安定性(以下耐酸化性と
いう)の悪化がさけられなかったりする。またさらに著
しい場合には、前記酸化反応が急激に進むと自然発火、
燃焼に至るなど取扱操作、工程管理上種々のトラブルを
惹起したりする。
By the way, such metal magnetic powder usually has a thickness of about 0.5μ.
It is desirable that the particles be fine particles with a diameter of 1.5 m or less (longer diameter), and more preferably 9.3 μm or less, and have excellent dispersibility, orientation in a coating film, filling property, etc. when used as a magnetic paint. It is hoped that However, such fine particles have strong surface activity, and as a result, oxidation progresses over time, resulting in a decrease in magnetic properties such as saturation magnetization and coercive force, resulting in so-called stability over time (hereinafter referred to as oxidation resistance). ) may be unavoidable. In even more severe cases, if the oxidation reaction proceeds rapidly, spontaneous combustion may occur.
This can cause various problems in handling operations and process control, such as combustion.

これらの問題点を改良するために、既に多くの提案がな
されている。例えば、(1)還元により製造した直後の
金属磁性粉末の粒子表面を、徐酸化して薄い酸化被膜を
形成させたり、(2)金属磁性粉末の粒子表面を例えば
シリコン系化合物や高級脂肪酸系化合物等の有機物質で
被覆したり、さらには(3)金属磁性粉末の粒子表面に
、耐食性金属化合物を湿式あるいは乾式の種々の方法に
よって被着せしめる,方法等が知られている。しかしな
がら、これらの方法によっても耐酸化性が十分満足され
るものでなかったり、十分な耐酸化性を付与しようとす
ると金属磁性粉末のもつ高飽和磁化、高保磁力などの優
れた磁気特性や塗料化時の分散性などがそこなわれ易か
ったりするなど、未だ改善を要する問題点が少なくない
.ことに、さらに高S/N比化、高出力化が一段と要請
されることとあいまって、金属磁性粉末のより微粒子化
が指向されており前記問題点の解決が強く希求されてい
る.〔発明の目的〕 本発明は、前記問題点を解決し、耐酸化性に優れた磁気
記録媒体用に好適な金属磁性粉末の製造方法を提供する
ことにある. 〔発明の概要〕 本発明者等はかねてより、金属磁性粉末本来の優れた特
性をそこなうことなく、前記問題点を解決すべく種々検
討を進めてきているが、耐酸化性を付与する上で、種々
の金属の水酸化物や酸化物を金属磁性粉末粒子上に、均
一に被着させることがきわめて重要であることに着目し
、さらに検討を進めた.その結果、液相系から均一被着
処理をおこなう場合に、処理後の濾過ケーキを加熱乾燥
したり、さらには乾燥状物を熱処理したりする場合に、
該被着処理系から持込まれるケーキ中の含有水分によっ
て発生する水蒸気などで酸化が急激に進み易く、保磁力
や飽和磁化などの磁気特性の大巾な低下がさけられない
こと、さらにCo+Ni+Cu+Mnなどの水酸化物や
酸化物を被着して耐酸化性の付与を図る上でたとえばア
ルコキシド系のような易加水分解性の処理剤を用いるこ
とも注目されるが、処理剤コストが高く、また処理剤の
保管安定性が低いなど、なお改善を要する問題点の少な
くないことがわかった.しかして、本発明は、前記のよ
うな種々の問題点に鑑みてなされたものであって、特定
の有機酸金属化合物を、特定のアルカリ性雰囲気下で加
水分解せしめて、その分解物を金属磁性粉末粒子表面に
被着し、しかる後該被着物を特定の組成の溶媒で洗浄し
て含水分を効率的に除去せしめるとともに、このものを
特定の条件下で熱処理することによって、比較的簡潔な
操作でもって経済的有利に、均一で緻密な耐酸化性被膜
を形成して、耐酸化性を容易に付与し得ることの知見を
得、本発明を完成したものである。
Many proposals have already been made to improve these problems. For example, (1) the particle surface of the metal magnetic powder immediately after being produced by reduction may be slowly oxidized to form a thin oxide film, or (2) the particle surface of the metal magnetic powder may be coated with, for example, a silicon-based compound or a higher fatty acid-based compound. There are known methods in which (3) a corrosion-resistant metal compound is deposited on the surface of the metal magnetic powder particles by various wet or dry methods. However, even with these methods, the oxidation resistance cannot be fully satisfied, and when trying to impart sufficient oxidation resistance, it is difficult to obtain the excellent magnetic properties of metal magnetic powder such as high saturation magnetization and high coercive force, or to make it into a paint. There are still many problems that need to be improved, such as the difficulty in dispersing time. In particular, in conjunction with the demand for higher S/N ratios and higher outputs, there is a trend toward finer particles of metal magnetic powder, and there is a strong desire to solve the above problems. [Object of the Invention] An object of the present invention is to solve the above-mentioned problems and provide a method for producing metal magnetic powder suitable for use in magnetic recording media with excellent oxidation resistance. [Summary of the Invention] The present inventors have been conducting various studies for some time in order to solve the above-mentioned problems without impairing the inherent excellent properties of metal magnetic powders, but they have We focused on the extremely important importance of uniformly depositing various metal hydroxides and oxides onto metal magnetic powder particles, and proceeded with further investigation. As a result, when carrying out uniform adhesion treatment from a liquid phase system, when heating and drying a filter cake after treatment, or when heat-treating a dried product,
Oxidation tends to proceed rapidly due to water vapor generated by the moisture contained in the cake brought in from the adhesion treatment system, and a large drop in magnetic properties such as coercive force and saturation magnetization cannot be avoided. The use of easily hydrolyzable processing agents such as alkoxides is attracting attention in order to impart oxidation resistance by depositing hydroxides or oxides, but the cost of the processing agents is high, and the treatment It was found that there were many problems that still needed improvement, such as low storage stability of the drug. The present invention has been made in view of the various problems described above, and involves hydrolyzing a specific organic acid metal compound in a specific alkaline atmosphere and converting the decomposition product into metal magnetic material. It adheres to the surface of powder particles, and then the adhered material is washed with a solvent of a specific composition to efficiently remove water content, and this material is heat-treated under specific conditions. The present invention has been completed based on the knowledge that oxidation resistance can be easily imparted by forming a uniform and dense oxidation-resistant coating in an economically advantageous manner.

すなわち本発明は、 (1)金属磁性粉末を、液相系でCoINx+Cuおよ
びMnの少なくとも1種の有機酸金属化合物とアルカリ
とで処理して金属磁性粉末の粒子表面に該金属の水酸化
物を被着し、次いで得られた前記被着処理スラリーを濾
過した後、極性溶媒と水との共沸組成以上の該有機溶媒
を含む混合溶媒で洗浄し、しかる後このものを非酸化性
雰囲気下250〜500℃で加熱処理することを特徴と
する磁気記録用金属磁性粉末の製造方法。
That is, the present invention provides the following features: (1) A metal magnetic powder is treated in a liquid phase system with CoINx + at least one organic acid metal compound of Cu and Mn and an alkali to form a hydroxide of the metal on the particle surface of the metal magnetic powder. After coating, the resulting coating treatment slurry is filtered, washed with a mixed solvent containing the organic solvent having an azeotropic composition of a polar solvent and water, and then washed under a non-oxidizing atmosphere. 1. A method for producing metal magnetic powder for magnetic recording, the method comprising heating at 250 to 500°C.

《2》有機酸金属化合物が炭素数6以下の有機酸の金属
塩であることを特徴とする請求項{1}に記載の磁気記
録用金属磁性粉末の製造方法。
<<2>> The method for producing a metal magnetic powder for magnetic recording according to claim {1}, wherein the organic acid metal compound is a metal salt of an organic acid having 6 or less carbon atoms.

《3)有機酸金属化合物が酢酸の金属塩であることを特
徴とする請求項(2)に記載の磁気記録用金属磁性粉末
の製造方法. 《4》有機酸金属化合物がCoの金属塩であることを特
徴とする請求項(1)、《2》または(3)に記載の磁
気記録用金属磁性粉末の製造方法。
<3) The method for producing a metal magnetic powder for magnetic recording according to claim (2), wherein the organic acid metal compound is a metal salt of acetic acid. <<4>> The method for producing a metal magnetic powder for magnetic recording according to claim (1), <2>, or (3), wherein the organic acid metal compound is a Co metal salt.

(5)アルカリがアンモニア、アンモニア水、有機アミ
ンであることを特徴とする請求項《1》に記載の磁気記
録用金属磁性粉末の製造方法。
(5) The method for producing a metal magnetic powder for magnetic recording according to claim <1>, wherein the alkali is ammonia, aqueous ammonia, or an organic amine.

(6)アルカリがアンモニア水であることを特徴とする
請求項《5》に記載の磁気記録用金属磁性粉末の製造方
法。
(6) The method for producing a metal magnetic powder for magnetic recording according to claim <5>, wherein the alkali is aqueous ammonia.

《7》極性有機溶媒が1価アルコール類、多価アルコー
ル類、エステル類、エーテル類、ケトン類であることを
特徴とする請求項(1)に記載の磁気記録用金属磁性粉
末の製造方法。
<<7>> The method for producing a metal magnetic powder for magnetic recording according to claim (1), wherein the polar organic solvent is a monohydric alcohol, a polyhydric alcohol, an ester, an ether, or a ketone.

(8)1価アルコール類が炭素数5以下の脂肪族アルコ
ールであることを特徴とする請求項(7)に記載の磁気
記録用金属磁性粉末の製造方法。
(8) The method for producing a metal magnetic powder for magnetic recording according to claim (7), wherein the monohydric alcohol is an aliphatic alcohol having 5 or less carbon atoms.

(9)エーテル類がエチレングリコールモノエーテルで
あることを特徴とする請求項(7)に記載の磁気記録用
金属磁性粉末の製造方法。
(9) The method for producing a metal magnetic powder for magnetic recording according to claim (7), wherein the ether is ethylene glycol monoether.

顛非酸化性雰囲気下で加熱処理した後、該処理物を酸化
性雰囲気下で徐酸化処理することを特徴とする請求項(
1)に記載の磁気記録用金属磁性粉末の製造方法である
A claim characterized in that after heat treatment in a non-oxidizing atmosphere, the treated product is subjected to gradual oxidation treatment in an oxidizing atmosphere (
1) A method for producing a metal magnetic powder for magnetic recording according to item 1).

本発明において、被処理物として使用する金属磁性粉末
(以下基体粒子という)は、種々の方法によって製造さ
れる鉄または鉄を主体とする鉄系合金類の金属磁性粉末
であって、もっとも一般的には針状晶の形状のものであ
るが、さらに前記針状晶形状のもののほか、例えば紡錘
状、米粒状、球状、・棒状、平板状、サイコロ状など種
々の形状のものを使用することができる.なお、これら
の基体粒子は、担持処理に先立って、必要に応じ、たと
えば酸素含有ガスで徐酸化処理しておくこともできる。
In the present invention, the metal magnetic powder (hereinafter referred to as base particles) used as the object to be treated is a metal magnetic powder of iron or iron-based alloys mainly composed of iron, which is manufactured by various methods, and the most commonly used In addition to the above-mentioned needle-shaped crystals, various shapes such as spindle-shaped, rice grain-shaped, spherical, rod-shaped, plate-shaped, dice-shaped, etc. can be used. Can be done. It should be noted that these base particles may be subjected to gradual oxidation treatment, for example, with an oxygen-containing gas, if necessary, prior to the supporting treatment.

本発明において、用い7る有機金属化合物としては、脂
肪族炭化水素系のもの、芳香族炭化水素系のもの、脂環
式炭化水素系のものなど種々のGo.Ni+Cu+Mn
の有機酸金属塩であって、これらの化合物の処理剤は、
それらを単独で用いても、あるいは2種以上混合しても
よい前記の有機酸金属塩としては、好まし《は炭素数が
6以下の脂肪族炭化水素系の有機酸の金属塩である、こ
れらの具体例としではたとえば酢酸、蓚酸、クエン酸な
どのCo,Ni.Cu.Mn塩を挙げることができる.
また前記有機酸金属化合物を用いて、金属磁性粉末の粒
子表面に該金属の水酸化物を被着させるには、前記基体
粒子を含む液相系で有機酸金属化合物をアルカリ性物質
の存在下で加水分解させることによっておこなうことが
できる。前記のアルカリ性物質としては、種々のものを
使用し得るが、好ましくはアンモニア、アンモニア水、
有機アミン、とくに好ましくはアンモニア水、アンモニ
アを挙げることができ、これらは混用することもできる
。また前記液相系処理に使用する溶媒としては、ケトン
類、エーテル類、エステル類、アルコール類などの極性
有機溶媒、水またはそれら極性有機溶媒を含む水性媒液
などを挙げることができ、これらは混用することもでき
る。
In the present invention, the organometallic compounds used include various Go. Ni+Cu+Mn
The processing agent for these compounds is an organic acid metal salt of
The above-mentioned organic acid metal salts, which may be used alone or in combination of two or more, are preferably metal salts of aliphatic hydrocarbon organic acids having 6 or less carbon atoms. Specific examples of these include Co, Ni, such as acetic acid, oxalic acid, and citric acid. Cu. Mention may be made of Mn salts.
Further, in order to deposit the hydroxide of the metal on the particle surface of the metal magnetic powder using the organic acid metal compound, the organic acid metal compound is applied in the presence of an alkaline substance in a liquid phase system containing the base particles. This can be done by hydrolysis. Various alkaline substances can be used as the alkaline substance, but preferably ammonia, aqueous ammonia,
Organic amines, particularly preferably aqueous ammonia and ammonia, can be used, and these can also be used in combination. Examples of the solvent used in the liquid phase treatment include polar organic solvents such as ketones, ethers, esters, and alcohols, water, and aqueous media containing these polar organic solvents. They can also be used together.

しかして前記液相系での被着処理方法としては、種々の
方法によっておこなうことができるが、好ましくはたと
えば、前記液相系処理溶媒に基体粒子の金属磁性粉末を
懸濁させたスラリーに、有機金属化合物の中和当量以上
の所定量のアルカリ性物質を添加し、しかる後有機酸金
属化合物を添加するか、あるいは前記基体粒子の懸濁ス
ラリーに、有機金属化合物と前記所定量のアルカリ性物
質とを同時添加することによっておこなうことができる
.なお前記被着処理系において、窒素ガスなどの不活性
ガスを通気させながら、必要に応じ加熱下でたとえば8
0℃以下、望ましくは60℃以下でおこなうのが好まし
い. 次いで前記のようにCo.Ni,CuもしくはMnの金
属水酸化物被着処理したスラリーは、必要に応じ、熟成
後、濾過し、しかる後この濾別ケーキを極性有機溶媒と
水との共沸組成以上の有機溶媒を含む混合溶媒で洗浄し
て、濾別ケーキ中の未反応物などを除去するとともに、
包含する水分を混合溶媒と置換する。前記極性溶媒とし
ては、種々のものを使用し得るが、好ましくはたとえば
1価アルコール類、多価アルコール類、エステル類、ケ
トン類などであって、とくに、1価アルコール類が炭素
数5以下の脂肪族アルコール、たとえばメチルアルコー
ル、エチルアルコール、イソプロビオアルコール、プチ
ルアルコール、イソアミルアルコールや、エーテル類が
エチレングリコールモノエーテル、たとえばエチレング
リコールエチルエーテル、エチレングリコールメチルエ
ーテル、エチレングリコールモノブチルエーテルなどを
挙げることができる.前記混合溶媒の組成が、共沸組成
系よりも水を多く含む場合は、引続く乾燥、加熱処理工
程において、発生する水蒸気などによって基体粒子の酸
化が急激に進み易《、保磁力や飽和磁化などの低下が大
きく好ましくない.なお前記混合溶媒による洗浄にひき
つづいて、さらに必要に応じ若干量の極性溶媒で洗浄す
ることもできる。
The liquid-phase deposition treatment method can be carried out by various methods, but preferably, for example, a slurry in which metal magnetic powder of the base particles is suspended in the liquid-phase treatment solvent, Either a predetermined amount of an alkaline substance equal to or greater than the neutralization equivalent of the organometallic compound is added, and then an organic acid metal compound is added, or the organometallic compound and the predetermined amount of the alkaline substance are added to the suspension slurry of the base particles. This can be done by adding simultaneously. In the above-mentioned deposition treatment system, for example 8
It is preferable to carry out the process at a temperature of 0°C or lower, preferably 60°C or lower. Co. as previously described. The slurry treated with Ni, Cu or Mn metal hydroxide is, if necessary, aged and filtered, and the filtered cake is then filtered into a slurry containing an organic solvent having an azeotropic composition higher than that of a polar organic solvent and water. Washing with a mixed solvent removes unreacted substances in the filtered cake, and
The contained water is replaced with a mixed solvent. Various kinds of polar solvents can be used as the polar solvent, but monohydric alcohols, polyhydric alcohols, esters, ketones, etc. are preferable, and in particular monohydric alcohols having 5 or less carbon atoms are preferred. Aliphatic alcohols, such as methyl alcohol, ethyl alcohol, isoprobioalcohol, butyl alcohol, isoamyl alcohol, and ethers include ethylene glycol monoethers, such as ethylene glycol ethyl ether, ethylene glycol methyl ether, ethylene glycol monobutyl ether, etc. can. If the composition of the mixed solvent contains more water than the azeotropic composition, oxidation of the base particles is likely to proceed rapidly due to generated water vapor in the subsequent drying and heat treatment steps. etc., which is undesirable. Incidentally, following the washing with the mixed solvent described above, further washing with a small amount of a polar solvent can be carried out if necessary.

また前記洗浄に供した混合溶媒は、蒸溜して回収し、必
要に応じ有機溶媒を若干量補充して再利用することがで
き、処理コストの節減を図り得、甚だ工業的に有利であ
る。本発明において、前記金属水酸化物の被着量は、基
体粒子の金属磁性粉末の粒子の形状、大きさ、比表面積
などによって異なり、一概に言えないが、該基体粒子の
重量基準に対して、Co,Ni.Cu,Mnの金属とし
て1〜30%、好ましくは3〜20%である。被着量が
前記範囲より多きにすぎると、飽和磁化などの磁気特性
がそこなわれ易かったりするので好ましくない。
Further, the mixed solvent used in the washing can be recovered by distillation and reused by supplementing a small amount of organic solvent as necessary, which can reduce processing costs and is very industrially advantageous. In the present invention, the amount of the metal hydroxide deposited varies depending on the shape, size, specific surface area, etc. of the metal magnetic powder particles of the base particles, and cannot be definitively stated, but with respect to the weight standard of the base particles. , Co., Ni. The content of Cu and Mn as metals is 1 to 30%, preferably 3 to 20%. If the amount of coating is too much than the above range, magnetic properties such as saturation magnetization may be easily damaged, which is not preferable.

前記のようにして洗浄処理した湿ケーキは、必要に応じ
たとえば、窒素などの不活性ガスや微還元性ガス(たと
えばII z / N z = 1容積%以下)の通気
下で乾燥したり、あるいは減圧下で乾燥した後、非酸化
性ガス雰囲気下で250〜500℃で加熱処理をおこな
う。前記加熱処理をおこなうことによって、飽和磁化や
保磁力などの磁気特性の経時変化を一層好ましいものと
することができるとともに、被着処理系や洗浄系で用い
られた処理溶媒や処理剤にもとづく有機物を、実質的に
全部揮散せしめることができ、その結果磁性塗料調製時
の分散性等への悪影響を回避することができる。また加
熱処理温度が、前記範囲より低きに過ぎると被着層の金
゜属水酸化物が金属酸化物へ実質的に転換されず、その
結果前記せる所望の効果がもたらされず、また前記範囲
より高きに過ぎると粒子焼結や、さらには被着層の金属
酸化物の基体粒子内への拡散が惹起され易《、保磁力や
角形比などの低下や、磁気特性の熱的安定性の低下がさ
けられなかったりする.なお前記加熱処理した金属磁性
粉末は、さらに酸化性ガス雰囲気中で徐酸化処理する場
合には、耐酸化安定性を一層好ましいものとすることが
できる。また前記徐酸化処理は、場合によっては、前記
非酸化性雰囲気下での加熱処理に先立っておこなうこと
もできる.なお前記徐酸化処理は、たとえばOx/To
l容積%以下の低酸素濃度ガス雰囲気下に調節しながら
おこなうことができる.前記の本発明の方法にもとづい
て製造される金属磁性粉末は、種々のバインダー樹脂、
例えば塩化ビニルー酢酸ビニル共重合体系樹脂、ポリウ
レタン系樹脂、ポリエステル系樹脂、アクリル系樹脂、
セルローズ系樹脂などのバインダー成分と、種々の添加
剤、例えば分散剤、潤滑剤、研磨剤、帯電防止剤などを
添加して磁性塗料を調製し、ポリエチレンテレフタレー
トフィルム、アセテートフィルムなど種々の非磁性支持
体上に、所定厚み(通常は乾燥後の厚み2〜5μm)に
塗布し、配向処理後乾燥して磁性層を形成し、さらにカ
レンダー処理、スリフティング加工を経て磁気記録媒体
、例えば磁気テープを得ることができる.なお、前記磁
気テープは、必要に応じさらに帯電防止、走行安定性等
をはかるべく、該支持体の磁性層側の反対の面に、いわ
ゆるバックコート層を形成してもよい。
The wet cake washed as described above may be dried under aeration of an inert gas such as nitrogen or a slightly reducing gas (for example, II z / N z = 1% by volume or less), or After drying under reduced pressure, heat treatment is performed at 250 to 500°C in a non-oxidizing gas atmosphere. By performing the heat treatment, changes in magnetic properties such as saturation magnetization and coercive force over time can be made more favorable, and organic substances based on the processing solvent and processing agent used in the adhesion treatment system and cleaning system can be made more favorable. can be volatilized substantially completely, and as a result, an adverse effect on the dispersibility and the like during the preparation of magnetic paint can be avoided. Furthermore, if the heat treatment temperature is lower than the above range, the metal hydroxide in the deposited layer will not be substantially converted to metal oxide, and as a result, the desired effect described above will not be brought about. If the temperature is too high, particle sintering and further diffusion of the metal oxide of the adhered layer into the base particles are likely to occur. The decline may be unavoidable. Note that when the heat-treated metal magnetic powder is further subjected to gradual oxidation treatment in an oxidizing gas atmosphere, the oxidation resistance stability can be made even more preferable. In some cases, the gradual oxidation treatment may be performed prior to the heat treatment in a non-oxidizing atmosphere. Note that the slow oxidation treatment is performed using, for example, Ox/To
It can be carried out under a controlled gas atmosphere with a low oxygen concentration of less than 1% by volume. The metal magnetic powder produced according to the method of the present invention described above can be prepared using various binder resins,
For example, vinyl chloride-vinyl acetate copolymer resin, polyurethane resin, polyester resin, acrylic resin,
Magnetic paints are prepared by adding binder components such as cellulose resin and various additives such as dispersants, lubricants, abrasives, antistatic agents, etc., and various non-magnetic supports such as polyethylene terephthalate films and acetate films are prepared. The magnetic layer is coated on the body to a predetermined thickness (usually 2 to 5 μm after drying), and dried after orientation treatment to form a magnetic layer, and then subjected to calendering and thrifting to form a magnetic recording medium, such as a magnetic tape. Obtainable. In addition, the magnetic tape may be provided with a so-called back coat layer on the opposite surface of the support from the magnetic layer side in order to further improve antistatic properties, running stability, etc., if necessary.

以下に実施例及び比較例を挙げて本発明をさらに説明す
る。
The present invention will be further explained by giving examples and comparative examples below.

〔本発明の実施例〕[Example of the present invention]

実施例1 硫酸第一鉄水溶液を水酸化ナトリウム水溶液で中和し、
さらに酸化性ガスを導入して酸化しα−FeOOIIを
生成し、次いでこのものを加熱脱水してα−Fe.0.
とし、しかる後水素気流中で加熱還元して得られた針状
の金属鉄磁性粉末(比表面積: IIE755m”/g
、平均長軸粒子径0.16μ、平均軸比9、保磁力12
370e、飽和磁化1B4.7emu/g−角形比0.
485)を基体粒子とし、このもの20gをエチレング
リコ一ルモノエチルエーテル(以下エチルセロソルブと
いう) 200 1Rlに懸濁した.この懸濁液を攪拌
機を付した四つ口フラスコに入れ、さらに窒素ガスを導
入して非酸化性雰囲気を保持しながら、攪拌下にアンモ
ニア水(N II sとして34g/ 12 ) 0.
 1−を添加し、次いで4℃/分で50℃まで昇温し、
この温度を保持しながら酢酸コバルト水溶液(Goとし
て3.5重量%)をIWiZ分およびアンモニア水(N
 tl 3として34g/ l )を約1.21n!/
分の速度で1時間にわたって同時添加し、その後室温で
20分間保持して基体粒子上にコバルト水酸化物を被着
処理した。
Example 1 A ferrous sulfate aqueous solution was neutralized with a sodium hydroxide aqueous solution,
Further, an oxidizing gas is introduced and oxidized to produce α-FeOOII, which is then heated and dehydrated to produce α-FeOOII. 0.
After that, the needle-shaped metal iron magnetic powder (specific surface area: IIE755 m"/g) was obtained by heating reduction in a hydrogen stream.
, average major axis particle diameter 0.16μ, average axial ratio 9, coercive force 12
370e, saturation magnetization 1B4.7emu/g - squareness ratio 0.
485) was used as a base particle, and 20 g of this material was suspended in 200 1Rl of ethylene glycomonoethyl ether (hereinafter referred to as ethyl cellosolve). This suspension was placed in a four-necked flask equipped with a stirrer, and while nitrogen gas was introduced to maintain a non-oxidizing atmosphere, aqueous ammonia (34 g/12 as N II s) was added with stirring.
1- was added, then the temperature was raised to 50°C at 4°C/min,
While maintaining this temperature, aqueous cobalt acetate solution (3.5% by weight as Go) was added to IWiZ and aqueous ammonia (N
34g/l as tl 3) to about 1.21n! /
The cobalt hydroxide was added simultaneously over a period of 1 hour at a rate of 1 minute, and then held at room temperature for 20 minutes to deposit cobalt hydroxide onto the substrate particles.

得られたスラリーを濾過後、エチルセロソルプ/水(3
5/65容積比)の混合溶媒100rn1で洗浄した.
次いで洗浄ケーキを風乾した。
After filtering the resulting slurry, ethyl cellosolp/water (3
The sample was washed with 100rn1 of a mixed solvent (volume ratio: 5/65).
The washed cake was then air dried.

前記のようにして得られた被着処理粉末10gを、管状
電気炉中で窒素ガスを通気しながら400℃で2時間加
熱処理して目的の金属磁性粉末を得た(試料A). 実施例2 実栴例lにおいて、エチルセロソルプの代わりに脱イオ
ン水を用いて基体粒子の懸濁液を調製したこと、および
濾過後の洗浄にエチルセルソルブ/水の混合溶媒に代え
て、エタノール/水(97/3容積比)の混合溶媒を用
いたことのほかは、同例の場合と同様に処理して目的の
金属磁性粉末を得た(試料B). 実施例3 実施例1において、酢酸コバルト水溶液とアンモニア水
の添加速度を、それぞれ1.5mf/分と約1.8mj
/分としたこと、さらに洗浄にエチルセロソルブ/水(
35/65容積比)を用いたことのほかは同例の場合と
同様に処理して目的の金属磁性粉末を得た(試料C). 実施例4 実施例1において、エチルセロソルブの代わりにブタノ
ールを用いて基体粒子の懸濁液を調製したこと、および
濾過後の洗浄にエチルセルソルブ/水の混合溶媒の代わ
りに、ブタノール/水(60/40容積比)の混合溶媒
を用いたことのほかは同例の場合と同様に処理して目的
の金属磁性粉末を得た(試料D). 実施例5 実施例2において、脱イオン水の代わりにエタノールを
用いて基体粒子の懸濁液を調製したこと、および濾過後
の洗浄にエタノール/水(98/2容積比)の混合溶媒
を用いたことのほかは同例の場合と同様に処理して目的
の金属磁性粉末を得た(試料E). 比較例l 実施例1において、酢酸コバルトに代えて塩化コバルト
(CoC j2 z)を用いたことのほかは、同例の場
合と同様に処理して目的の金属磁性粉末を得た(試料F
). 比較例2 実施例2において、エタノール/水の混合溶媒に代えて
、脱イオン水を用いて洗浄したことのほかは、同例の場
合と同様に処理して目的の金属磁性粉末を得た(試料G
). 比較例3 実施例2において、濾過後の洗浄に、エタノ−ル/水(
50/50容積比)の混合溶媒を用いたことのほかは、
同例の場合と同様に処理して目的の金属磁性粉末を得た
(試料H). 比較例4 実施例1において、酢酸コバルトとアンモニア水とを添
加しなかったことのほかは、同例の場合と同様に処理し
て目的の金属磁性粉末を得た(試料I). 比較例5 基体粒子の金属磁性粉末10gをトルエン30rn1に
浸漬後、室温で風乾した(試料J). 前記実施例および比較例の金属磁性粉末について、常法
により飽和磁化(σs : e+++u/g)、保磁力
(H c : Oe)、角形比(Rs)を測定した。ま
た酸化安定性を評価するために、温度60℃、相対湿度
80%の環境下で、1週間放置してσs ,H C %
Rsについて促進経時変化を測定し、飽和磁化の劣化率
ΔσS (%)を下記の式によって求めた。
10 g of the coated powder obtained as described above was heat-treated at 400° C. for 2 hours while passing nitrogen gas in a tubular electric furnace to obtain the desired metal magnetic powder (Sample A). Example 2 In Example 1, deionized water was used instead of ethyl cellosolve to prepare a suspension of the substrate particles, and ethanol/cellosolve was used instead of the ethyl cellosolve/water mixed solvent for washing after filtration. The desired metal magnetic powder was obtained in the same manner as in the same example except that a mixed solvent of water (97/3 volume ratio) was used (Sample B). Example 3 In Example 1, the addition rates of cobalt acetate aqueous solution and ammonia water were 1.5 mf/min and about 1.8 mj, respectively.
/ minute, and ethyl cellosolve/water (
The desired metal magnetic powder was obtained by processing in the same manner as in the same example except that 35/65 volume ratio) was used (Sample C). Example 4 In Example 1, a suspension of substrate particles was prepared using butanol instead of ethyl cellosolve, and butanol/water (butanol/water) was used instead of the mixed solvent of ethyl cellosolve/water for washing after filtration. The desired metal magnetic powder was obtained in the same manner as in the same example except that a mixed solvent (60/40 volume ratio) was used (Sample D). Example 5 In Example 2, a suspension of substrate particles was prepared using ethanol instead of deionized water, and a mixed solvent of ethanol/water (98/2 volume ratio) was used for washing after filtration. The desired metal magnetic powder was obtained by processing in the same manner as in the same example (Sample E). Comparative Example 1 The desired metal magnetic powder was obtained in the same manner as in Example 1, except that cobalt chloride (CoC j2 z) was used in place of cobalt acetate (Sample F).
). Comparative Example 2 The desired metal magnetic powder was obtained in the same manner as in Example 2, except that deionized water was used instead of the ethanol/water mixed solvent for washing. Sample G
). Comparative Example 3 In Example 2, ethanol/water (
In addition to using a mixed solvent (50/50 volume ratio),
The desired metal magnetic powder was obtained by processing in the same manner as in the same example (Sample H). Comparative Example 4 The desired metal magnetic powder was obtained in the same manner as in Example 1, except that cobalt acetate and aqueous ammonia were not added (Sample I). Comparative Example 5 10 g of metal magnetic powder as base particles was immersed in 30 rn1 of toluene and then air-dried at room temperature (Sample J). The saturation magnetization (σs: e+++u/g), coercive force (H c : Oe), and squareness ratio (Rs) of the metal magnetic powders of the Examples and Comparative Examples were measured by conventional methods. In addition, in order to evaluate the oxidation stability, it was left for one week in an environment with a temperature of 60°C and a relative humidity of 80%, and σs, H C %
The accelerated change over time of Rs was measured, and the saturation magnetization deterioration rate ΔσS (%) was determined using the following formula.

これらの結果を表1に示す. σ sO  −σ S (式中、σS0は経時前のσSであり、σS”は経時後
のσSである) 〔発明の効果〕 本発明によって得られる金属磁性粉末は、耐酸化性が著
しく改善されたものであり、したがって優れた磁気特性
を長期間保持し得るとともに、それ自体貯蔵安定性に優
れ、取扱い操作上、工程管理上甚だ好ましいものである
こと、さらに媒体への分散性も良好なものであって高出
力の高記録密度磁気媒体を製造する上で極めて好適なも
のである.また本発明は、比較的簡素な手段でもって優
れた性能の磁性粉末を経済的に有利に製造することがで
きるものであり、甚だ工業的意義の大きいものである.
These results are shown in Table 1. σ sO −σ S (In the formula, σS0 is σS before aging, and σS” is σS after aging.) [Effects of the Invention] The metal magnetic powder obtained by the present invention has significantly improved oxidation resistance. Therefore, it is capable of retaining excellent magnetic properties for a long period of time, has excellent storage stability, is extremely favorable in terms of handling and process control, and has good dispersibility in media. Therefore, it is extremely suitable for producing high-output, high-recording-density magnetic media.The present invention also provides an economically advantageous method for producing magnetic powder with excellent performance using relatively simple means. It is of great industrial significance.

Claims (10)

【特許請求の範囲】[Claims] (1)金属磁性粉末を、液相系でCo,Ni,Cuおよ
びMnの少なくとも1種の有機酸金属化合物とアルカリ
とで処理して金属磁性粉末の粒子表面に該金属の水酸化
物を被着し、次いで得られた前記被着処理スラリーを濾
過した後、極性溶媒と水との共沸組成以上の該有機溶媒
を含む混合溶媒で洗浄し、しかる後このものを非酸化性
雰囲気下250〜500℃で加熱処理することを特徴と
する磁気記録用金属磁性粉末の製造方法。
(1) Metal magnetic powder is treated in a liquid phase system with at least one organic acid metal compound of Co, Ni, Cu, and Mn and an alkali to coat the particle surface of the metal magnetic powder with the hydroxide of the metal. After filtering the obtained coating treatment slurry, it is washed with a mixed solvent containing the organic solvent having an azeotropic composition of a polar solvent and water or higher, and then this slurry is heated for 250 min in a non-oxidizing atmosphere. A method for producing metal magnetic powder for magnetic recording, characterized by heat treatment at ~500°C.
(2)有機酸金属化合物が炭素数6以下の有機酸の金属
塩であることを特徴とする請求項(1)に記載の磁気記
録用金属磁性粉末の製造方法。
(2) The method for producing a metal magnetic powder for magnetic recording according to claim (1), wherein the organic acid metal compound is a metal salt of an organic acid having 6 or less carbon atoms.
(3)有機酸金属化合物が酢酸の金属塩であることを特
徴とする請求項(2)に記載の磁気記録用金属磁性粉末
の製造方法。
(3) The method for producing a metal magnetic powder for magnetic recording according to claim (2), wherein the organic acid metal compound is a metal salt of acetic acid.
(4)有機酸金属化合物がCoの金属塩であることを特
徴とする請求項(1)、(2)または(3)に記載の磁
気記録用金属磁性粉末の製造方法。
(4) The method for producing a metal magnetic powder for magnetic recording according to claim (1), (2) or (3), wherein the organic acid metal compound is a Co metal salt.
(5)アルカリがアンモニア、アンモニア水、有機アミ
ンであることを特徴とする請求項(1)に記載の磁気記
録用金属磁性粉末の製造方法。
(5) The method for producing a metal magnetic powder for magnetic recording according to claim (1), wherein the alkali is ammonia, ammonia water, or an organic amine.
(6)アルカリがアンモニア水であることを特徴とする
請求項(5)に記載の磁気記録用金属磁性粉末の製造方
法。
(6) The method for producing a metal magnetic powder for magnetic recording according to claim (5), wherein the alkali is aqueous ammonia.
(7)極性有機溶媒が1価アルコール類、多価アルコー
ル類、エステル類、エーテル類、ケトン類であることを
特徴とする請求項(1)に記載の磁気記録用金属磁性粉
末の製造方法。
(7) The method for producing a metal magnetic powder for magnetic recording according to claim (1), wherein the polar organic solvent is a monohydric alcohol, a polyhydric alcohol, an ester, an ether, or a ketone.
(8)1価アルコール類が炭素数5以下の脂肪族アルコ
ールであることを特徴とする請求項(7)に記載の磁気
記録用金属磁性粉末の製造方法。
(8) The method for producing a metal magnetic powder for magnetic recording according to claim (7), wherein the monohydric alcohol is an aliphatic alcohol having 5 or less carbon atoms.
(9)エーテル類がエチレングリコールモノエーテルで
あることを特徴とする請求項(7)に記載の磁気記録用
金属磁性粉末の製造方法。
(9) The method for producing a metal magnetic powder for magnetic recording according to claim (7), wherein the ether is ethylene glycol monoether.
(10)非酸化性雰囲気下で加熱処理した後、該処理物
を酸化性雰囲気下で徐酸化処理することを特徴とする請
求項(1)に記載の磁気記録用金属磁性粉末の製造方法
(10) The method for producing metal magnetic powder for magnetic recording according to claim (1), characterized in that after heat treatment in a non-oxidizing atmosphere, the treated product is subjected to gradual oxidation treatment in an oxidizing atmosphere.
JP1054334A 1989-03-07 1989-03-07 Manufacture of magnetic metal powder for magnetic recording Pending JPH02232902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054334A JPH02232902A (en) 1989-03-07 1989-03-07 Manufacture of magnetic metal powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054334A JPH02232902A (en) 1989-03-07 1989-03-07 Manufacture of magnetic metal powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPH02232902A true JPH02232902A (en) 1990-09-14

Family

ID=12967704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054334A Pending JPH02232902A (en) 1989-03-07 1989-03-07 Manufacture of magnetic metal powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH02232902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736995A (en) * 2014-01-24 2014-04-23 浙江工业大学 Method for preparing composite magnet from surface tinned magnetic powder through hot embossing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736995A (en) * 2014-01-24 2014-04-23 浙江工业大学 Method for preparing composite magnet from surface tinned magnetic powder through hot embossing
CN103736995B (en) * 2014-01-24 2016-07-06 浙江工业大学 The magnetic heat-die compaction of a kind of electroplating surfaces with tin is for the method for built-up magnet

Similar Documents

Publication Publication Date Title
JPH02232902A (en) Manufacture of magnetic metal powder for magnetic recording
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPS5812723B2 (en) Cobalt - Cobalt
JPH02162703A (en) Manufacture of metallic magnetic powder
JP2982070B2 (en) Ferromagnetic metal powder and magnetic recording medium
JPH04157615A (en) Treating method of magnetic powder
JPH01274402A (en) Magnetic metal powder
JPH01220408A (en) Metal magnetic powder, manufacture thereof and use thereof
JP2001192211A (en) Method for manufacturing powdery particle of iron- based compound
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JPH01222407A (en) Metal magnetic powder, and manufacture and usage thereof
JP2660714B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPS6323139B2 (en)
JPS6349722B2 (en)
JPS63143202A (en) Production of magnetic iron powder
JPS63143203A (en) Production of magnetic iron powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS61132521A (en) Magnetic iron oxide particle powder for magnetic recording medium and production thereof
JPH0448602A (en) Manufacture of metallic magnetic powder for magnetic recording
JPS6323138B2 (en)
JPS5935404A (en) Manufacture of cobalt-coated magnetic iron oxide powder
JPH01231301A (en) Metallic magnetic powder and usage thereof
JPS6135132B2 (en)
JPS60204803A (en) Production of magnetic particle powder of acicular crystal metal consisting essentially of metallic iron
JPH0834145B2 (en) Method for producing metal magnetic powder for magnetic recording