JPS60204803A - Production of magnetic particle powder of acicular crystal metal consisting essentially of metallic iron - Google Patents

Production of magnetic particle powder of acicular crystal metal consisting essentially of metallic iron

Info

Publication number
JPS60204803A
JPS60204803A JP59062569A JP6256984A JPS60204803A JP S60204803 A JPS60204803 A JP S60204803A JP 59062569 A JP59062569 A JP 59062569A JP 6256984 A JP6256984 A JP 6256984A JP S60204803 A JPS60204803 A JP S60204803A
Authority
JP
Japan
Prior art keywords
metallic iron
main component
acicular
particles
metal magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59062569A
Other languages
Japanese (ja)
Other versions
JPS6354041B2 (en
Inventor
Hiroyuki Kondo
博之 近藤
Atsushi Takedoi
竹土井 篤
Katsumi Yamashita
勝巳 山下
Hiroshi Kawasaki
浩史 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP59062569A priority Critical patent/JPS60204803A/en
Publication of JPS60204803A publication Critical patent/JPS60204803A/en
Publication of JPS6354041B2 publication Critical patent/JPS6354041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce titled particle powder consisting essentially of metallic iron having excellent oxidation stability by reducing acicular crystal ferric oxide particles under heating and treating the particles to an immersion treatment in an org. solvent then treating the particles in an aq. soln. contg. ferrous hydroxide under adequate conditions. CONSTITUTION:Acicular crystal ferric oxide particles consisting essentially of Fe2O3 are used as a starting material and are reduced in a reducing gas under heating. The particles consisting essentially of the resulting metallic iron are subjected to an immersion treatment in an org. solvent and are dried at 20-50 deg.C after filtration. The dried particles are dispersed into an aq. soln. contg. ferrous hydroxide. The dispersion thereof is treated in a non-oxidative atmosphere in the range of 0.05-3.0mol/l concn. of an OH group and 50-100 deg.C. A magnetite film is formed on the particle surfaces by such treatment, by which the particles can be safely taken out into air and the decrease in the saturation magnetization sigmas owing to oxidation in the air is prevented. The magnetic particle powder of the acicular crystal metal consisting essentially of the metallic iron having excellent oxidation stability is obtd.

Description

【発明の詳細な説明】 本発明は、金属鉄を主成分とする針状晶金属磁性粒子粉
末の粒子表面に緻密で密着性のよい薄いマグネタイト被
膜を生成させることにより、空気中に安定して取り出す
ことができ、しかも、空気中に取り出した後の酸化によ
る飽和磁化σSの減少が防止される等の酸化安定性に優
れた金属鉄を主成分とする針状晶金属磁性粒子粉末の製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention creates a thin magnetite film that is dense and has good adhesion on the particle surface of acicular metal magnetic particles whose main component is metallic iron, so that they are stable in the air. A method for producing acicular metal magnetic particles whose main component is metallic iron, which can be taken out and has excellent oxidation stability, such as preventing a decrease in saturation magnetization σS due to oxidation after being taken out into the air. It is related to.

近年、磁気記録再生用機器の小型軽量化が進むにつれて
、記録媒体に対する高性能化の必要性が益々生じてきて
いる。すなわち、高密度記録、高出力特性、殊に、周波
数特性の向上が要求される。
In recent years, as magnetic recording and reproducing equipment has become smaller and lighter, there has been an increasing need for higher performance recording media. That is, high-density recording, high output characteristics, and especially improvement in frequency characteristics are required.

磁気記録媒体に対する上記のような要求を満足させる為
に適した磁性材料の特性は、大きな飽和磁化と高い保磁
力を有することである。
The characteristics of a magnetic material suitable for satisfying the above requirements for a magnetic recording medium are that it has a large saturation magnetization and a high coercive force.

ところで、従来から磁気記録媒体に用いられている磁性
材料は、マグネタイト、マグネタイト、二酸化クロム等
の磁性粉末であり、これらの磁性粉末は飽和磁化σs7
0〜85elIu/g、保磁力Hc 250〜5000
eををするものである。
By the way, the magnetic materials conventionally used in magnetic recording media are magnetic powders such as magnetite, magnetite, and chromium dioxide, and these magnetic powders have a saturation magnetization σs7
0-85elIu/g, coercive force Hc 250-5000
e.

殊に、上記酸化物磁性粒子粉末のσSは最大85emu
/ g程度であり、一般には(I s To〜80em
u/ gであることが再生出力並びに記録密度に限度を
与えている主因となっている。更に、Coを含存してい
るCo−マグネタイトやCo−マグヘマイト磁性粉末も
使用されているが、これらの磁性粒子粉末は保磁力Hc
が400〜8000eと高いという特徴を有するが、こ
れに反して飽和磁化σSが60〜80emu/ gと低
いものである。
In particular, the σS of the oxide magnetic particles is at most 85 emu.
/g, and generally (Is To~80em
The u/g ratio is the main reason for limiting the reproduction output and recording density. Furthermore, Co-magnetite and Co-maghemite magnetic powders containing Co are also used, but these magnetic particles have a coercive force Hc.
It is characterized by a high magnetization of 400 to 8000e, but on the other hand, the saturation magnetization σS is low at 60 to 80 emu/g.

、最近、高出力並びに高密度記録に適する特性を備えた
磁性粒子粉末すなわち、大きな飽和磁化と高い保磁力を
有する磁性粒子粉末の開発が盛んであり、そのような特
性を有する磁性粒子粉末には、Fearsを主成分とす
る針状晶酸化第二鉄粒子を還元性ガス中で加熱還元する
ことにより得られる金属鉄を主成分とする針状晶金属磁
性粒子粉末がある。
Recently, there has been active development of magnetic particles with characteristics suitable for high-output and high-density recording, that is, magnetic particles with large saturation magnetization and high coercive force. There is an acicular metal magnetic particle powder whose main component is metallic iron, which is obtained by heating and reducing acicular ferric oxide particles whose main component is , Fears, in a reducing gas.

上述するように金属鉄を主成分とする針状晶金属磁性粒
子粉末は現在、最も要求されている磁気記録材料として
の特性、すなわち、飽和磁化σSが著しく大きく (例
えば、90〜200 ea+u/ g ) 、保磁力H
cが高い(例えば、600〜20000e)という特徴
を有しており、磁気記録媒体として塗布とた場合、大き
い残留磁束密度Brと高い保磁力Hcを存する為、高密
度記録、高出力特性が得られるので注目をあびており、
近年実用化がなされている。
As mentioned above, the acicular metal magnetic particles whose main component is metallic iron currently have the most required properties as magnetic recording materials, that is, the saturation magnetization σS is extremely large (for example, 90 to 200 ea+u/g). ), coercive force H
It is characterized by a high c (for example, 600 to 20,000e), and when coated as a magnetic recording medium, it has a large residual magnetic flux density Br and a high coercive force Hc, so it can achieve high density recording and high output characteristics. It is attracting attention because it can be
It has been put into practical use in recent years.

上述した通り、金属鉄を主成分とする針状晶金属磁性粒
子粉末は、大きな飽和磁化と高い保磁力を有するもので
あるが、磁気記録媒体用に使用される金属鉄を主成分と
する針状晶金属磁性粒子粉末は1μm以下の非常に微細
な粒子である為、粒子の表面活性が非常に大きく、還元
後に空気中に取り出すと、空気中の酸素と急激に反応し
、発熱発火するという極めて不安定なものである。また
、同時に上記酸化反応により酸化物になってしまう為、
大幅な磁気特性、殊に飽和磁化の減少をきたし、目的と
する高保磁力、高飽和磁化の磁性粒子粉末を得ることが
できない。
As mentioned above, acicular metal magnetic particles mainly composed of metallic iron have large saturation magnetization and high coercive force. Because crystalline metal magnetic particles are extremely fine particles of 1 μm or less, the surface activity of the particles is extremely high, and when taken out into the air after reduction, it rapidly reacts with oxygen in the air, causing heat generation and ignition. It is extremely unstable. At the same time, because it becomes an oxide due to the above oxidation reaction,
This results in a significant decrease in magnetic properties, especially saturation magnetization, making it impossible to obtain magnetic particles with the desired high coercive force and high saturation magnetization.

従来、金属鉄を主成分とする針状晶金属磁性粒子粉末を
その特性を損なうことなく安定して空気中に取り出す方
法として各種の試みがなされており、代表的な方法とし
ては、 (1)金属鉄を主成分とする針状晶金属磁性粒子粉末を
有m溶媒に浸漬する方法。
In the past, various attempts have been made to stably extract acicular metal magnetic particles containing metallic iron as a main component into the air without impairing their properties, and representative methods include (1) A method in which acicular metal magnetic particles containing metallic iron as a main component are immersed in a solvent.

(2)金属鉄を主成分とする針状晶金属磁性粒子粉末を
酸素分圧を調整した雰囲気中で処理する方法。
(2) A method in which acicular metal magnetic particles containing metallic iron as a main component are treated in an atmosphere in which the partial pressure of oxygen is adjusted.

がある。There is.

いずれの場合にも、金属鉄を主成分とする針状晶金属磁
性粒子の粒子表面に酸化被膜を形成させるものである。
In either case, an oxide film is formed on the surface of the acicular metal magnetic particles containing metallic iron as a main component.

しかしながら、上記の方法による場合には、酸化被膜の
形成が十分ではなく、従って、空気中に取り出した後、
金属鉄を主成分とする針状晶金属磁性粒子は、空気によ
り徐々に酸化されて、飽和磁化σSが著しく減少してし
まうという欠点があった。
However, in the case of the above method, the formation of an oxide film is not sufficient, and therefore, after being taken out into the air,
Acicular metal magnetic particles containing metallic iron as a main component have the disadvantage that they are gradually oxidized by air, resulting in a significant decrease in saturation magnetization σS.

本発明者は、上述したところに鑑み、空気中に安定して
取り出すことができ、しかも、空気中に取り出した後の
酸化による飽和磁化σSの減少が防止された酸化安定性
の優れた金属鉄を主成分とする針状晶金属磁性粒子粉末
を得るべく、種々検討を重ねた結果、本発明に到達した
のである。
In view of the above, the present inventor has developed a metal iron with excellent oxidation stability that can be stably taken out into the air and prevents a decrease in saturation magnetization σS due to oxidation after being taken out into the air. The present invention was achieved as a result of various studies in order to obtain acicular metal magnetic particles containing as a main component.

即ち、本発明は、FezO3を主成分とする針状晶酸化
第二鉄粒子を出発原料とし、該出発原料を還元性ガス中
で加熱還元して得られた金属鉄を主成分とする針状晶金
属磁性粒子を有機溶剤中で浸漬処理し、炉別した後、2
0°C〜50℃の温度範囲で乾燥し、次いで、該粒子を
水酸化第一鉄を含む水溶液中に分散させ、該分散液のO
H基濃度0.05〜3.0mol/ 1.50〜100
℃の温度範囲において非酸化性雰囲気中で処理すること
により、上記金属鉄を主成分とする針状晶金属磁性粒子
の表面にマグネタイト被膜を生成させることよりなる金
属鉄を主成分とする針状晶金属磁性粒子粉末の製造法で
ある。
That is, the present invention uses acicular ferric oxide particles containing FezO3 as a main component as a starting material, and heat-reduces the starting material in a reducing gas to obtain acicular ferric oxide particles containing metallic iron as a main component. After immersing the crystalline metal magnetic particles in an organic solvent and separating them in a furnace, 2
Drying at a temperature range of 0°C to 50°C, the particles are then dispersed in an aqueous solution containing ferrous hydroxide, and the O
H group concentration 0.05-3.0 mol/1.50-100
Acicular crystals mainly composed of metallic iron are produced by forming a magnetite film on the surface of the above-mentioned acicular metallic magnetic particles mainly composed of metallic iron by processing in a non-oxidizing atmosphere in the temperature range of ℃. This is a method for producing crystalline metal magnetic particles.

本発明の構成、効果を説明すれば以下の通りである。The structure and effects of the present invention will be explained as follows.

先ず、本発明の基礎とする諸知見について述べる。First, various findings on which the present invention is based will be described.

本発明者は、前述した従来技術に迄みて、空気中に安定
して取り出すことができ、しかも、空気中に取り出した
後の酸化による飽和磁化σSの滅少が防止された酸化安
定性に優れた金属鉄を主成分とする針状晶金属磁性粒子
粉末を得る為には、粒子表面に形成される金属酸化物被
膜が空気等による酸化を完全に阻止することができる程
十分なものであり、且つ、金属鉄を主成分とする針状晶
金属磁性粒子粉末の特性を損なわないものでなければな
らないと考えた。そして、このような金属酸化物被膜の
特性としては、できるだけ緻密で密着性がよく薄いもの
が好ましいと考え、金属酸化物被膜の種類及び製造方法
について種々検討を重ねた。
The present inventor has found that, in comparison to the prior art described above, it can be stably taken out into the air, and has excellent oxidation stability that prevents the saturation magnetization σS from decreasing due to oxidation after being taken out into the air. In order to obtain acicular metal magnetic particles whose main component is metallic iron, the metal oxide film formed on the particle surface must be sufficient to completely prevent oxidation by air, etc. In addition, we thought that it must not impair the characteristics of the acicular metal magnetic particles whose main component is metallic iron. Considering the characteristics of such a metal oxide film, it is preferable that it be as dense as possible, have good adhesion, and be as thin as possible, and various studies have been conducted on the types and manufacturing methods of the metal oxide film.

色材協会誌49巻11号(1976年)の659〜66
8ページには「さび発生のメカニズム」について詳述さ
れているが、その中に「さび層形成の過程において電子
伝導性のよいFe5Oaが地金に密着し、これが均一に
全面分布すれば安定した保護性被膜となる」また、「密
着さび層は黒紫色を帯びSロメーターで測定すると数1
0Ω〜数100Ωの電子伝導性を持ち、地金に密着した
FezOaであることがわかる」という記載が見られる
Coloring Materials Association Journal Vol. 49 No. 11 (1976) 659-66
On page 8, the ``Mechanism of Rust Generation'' is explained in detail, ``During the process of rust layer formation, Fe5Oa, which has good electronic conductivity, adheres to the base metal, and if it is uniformly distributed over the entire surface, it becomes stable.'' It becomes a protective film.'' Also, ``The adhesive rust layer has a blackish-purple color, and when measured with an S rometer, it has a value of 1.
It can be seen that it is FezOa that has an electronic conductivity of 0Ω to several 100Ω and is in close contact with the base metal.”

本発明者は、この記載内容に着目し、緻密で密着性のよ
い薄い金属酸化物被膜の種類としては、マグネタイト被
膜が最適であると考えたのである。
The present inventor paid attention to this description and considered that a magnetite film is the most suitable type of thin metal oxide film that is dense and has good adhesion.

そこで、本発明者は、緻密で密着性のよい薄いマグネタ
イト被膜を形成する技術について種々検討を重ねた結果
、FezOaを主成分とする針状晶酸化第二鉄粒子を出
発原料とし、該出発原料を還元性ガス中で加熱還元して
得られた金属鉄を主成分とする針状晶金属磁性粒子を有
機溶剤中で浸漬処理し、炉別した後、20℃〜50℃の
温度範囲で乾燥し、次いで、該粒子を水酸化第一鉄を含
む水溶液中に分散させ、該分散液のOH基濃度0.05
〜3.0IIIol/l、50〜100℃の温度範囲に
おいて非酸化性雰囲気中で処理した場合には、粒子表面
に緻密で密着性のよい薄いマグネタイト被膜を形成する
ことができるので、空気中に安定して取り出すことがで
き、しかも、空気中に取り出した後の酸化による飽和磁
化σSの減少が防止された酸化安定性に優れた金属鉄を
主成分とする針状晶金属磁性粒子粉末を得ることができ
るという新しい知見を得たのである。
Therefore, as a result of various studies on techniques for forming a thin magnetite film that is dense and has good adhesion, the inventors of the present invention used needle-shaped ferric oxide particles containing FezOa as a main component as a starting material, and found that the starting material The acicular metal magnetic particles mainly composed of metallic iron obtained by heating reduction in a reducing gas are immersed in an organic solvent, separated in a furnace, and then dried at a temperature range of 20°C to 50°C. Then, the particles are dispersed in an aqueous solution containing ferrous hydroxide, and the OH group concentration of the dispersion is 0.05.
~3.0IIIol/l, when treated in a non-oxidizing atmosphere in the temperature range of 50 to 100°C, a thin magnetite film that is dense and has good adhesion can be formed on the particle surface. To obtain acicular crystalline metal magnetic particles whose main component is metallic iron, which can be stably taken out and which has excellent oxidation stability and is prevented from decreasing in saturation magnetization σS due to oxidation after being taken out into the air. We obtained new knowledge that it is possible.

次に、本発明におけるマグネタイト被膜の生成機構につ
いて述べる。
Next, the generation mechanism of the magnetite film in the present invention will be described.

本発明者は、長年に亘り、酸化鉄の製造及び開発にたず
されっているものであるが、その過程でアルカリ水溶液
(OH基を多く含んだ溶液)中でFexOaにFe (
OH) zを作用させた場合には、+11の反応式に従
ってマグネタイトが生成されるという知見を既に得てい
る。
The present inventor has been engaged in the production and development of iron oxide for many years, and in the process, Fe (
It has already been found that when OH)z is applied, magnetite is produced according to the reaction formula +11.

FezO3+Fe(OH)x −’ Fe3Oa ・・
” fl)このマグネタイトの生成機構は、FexOa
とFe (0)1) xとがOH基を媒介して縮重合反
応を生起し、FexOa中に第一鉄イオンが拡散してい
くためと考えている。
FezO3+Fe(OH)x −' Fe3Oa ・・
” fl) The generation mechanism of this magnetite is FexOa
It is believed that this is because a polycondensation reaction occurs between Fe (0) 1) x and OH groups, and ferrous ions diffuse into FexOa.

本発明によって金属鉄を主成分とする針状晶金属磁性粒
子粉末の粒子表面に生成された金属酸化物被膜の生成機
構は、上述した(1)式により説明することができる。
The formation mechanism of the metal oxide film formed on the particle surface of the acicular metal magnetic particle powder mainly composed of metallic iron according to the present invention can be explained by the above-mentioned equation (1).

即ち、本発明は、金属鉄を主成分とする針状晶金属磁性
粒子を有機溶剤中で処理し、炉別した後乾燥してから、
金属鉄を主成分とする針状晶金属磁性粒子の粒子表面で
は、有m溶媒を徐々に蒸発させることによって金属鉄を
主成分とする針状晶金属磁性粒子と空気とを穏やかに接
触させることによ;て酸化物被膜(Fego3)が生成
されているものと考えられる。
That is, in the present invention, acicular metal magnetic particles containing metallic iron as a main component are treated in an organic solvent, separated in a furnace, and then dried.
On the particle surface of the acicular metal magnetic particles whose main component is metallic iron, the acicular metal magnetic particles whose main component is metallic iron are brought into gentle contact with air by gradually evaporating the solvent. It is considered that an oxide film (Fego3) is formed by this process.

次いで、酸化物被膜(FezOi)が形成された金属鉄
を主成分とする針状晶金属磁性粒子は、水酸化第一鉄を
含む水溶液中に分散させ、該分散液のOH基濃度0.0
5〜3.0 mol/ 1.50〜100℃の温度範囲
において非酸化性雰囲気中で処理されるから、粒子表面
に生成された酸化物被膜(pezox)とFe (OH
) zとがOH基を媒介して縮重合反応を生起し、マグ
ネタイト被膜が生成されたものと考えられる。
Next, the acicular metal magnetic particles containing metallic iron as a main component and having an oxide film (FezOi) formed thereon are dispersed in an aqueous solution containing ferrous hydroxide, and the OH group concentration of the dispersion is reduced to 0.0.
Since it is treated in a non-oxidizing atmosphere at a temperature range of 5 to 3.0 mol/1.50 to 100°C, the oxide film (pezox) generated on the particle surface and Fe (OH
) It is thought that a condensation polymerization reaction occurred between z and OH groups, resulting in the formation of a magnetite film.

本発明におけるマグネタイト被膜の生成機構は、上述し
た通り、粒子表面に生成された酸化物被膜(peios
)とFe(OH)zとがOf(基を媒介して縮重合反応
するのであるから、Fe(OH)zのFe”が粒子表面
に生成された酸化物被膜(Feast)中に拡散してい
くものと考えられ、従って、緻密で密着性のよい薄いマ
グネタイト被膜が形成されるものと考えられる。
As mentioned above, the generation mechanism of the magnetite film in the present invention is based on the oxide film (peios) produced on the particle surface.
) and Fe(OH)z undergo a polycondensation reaction via the Of( group, so the Fe" of Fe(OH)z diffuses into the oxide film (Feast) generated on the particle surface. Therefore, it is thought that a thin magnetite film that is dense and has good adhesion is formed.

尚、従来、水溶液中で金属鉄を主成分とする針状晶金属
磁性粒子の粒子表面にマグネタイト被膜を生成するもの
としては、例えば、特公昭56−12282号公報及び
特開昭58−161704号公報に記載の方法がある。
Conventionally, methods for forming a magnetite film on the particle surface of acicular metal magnetic particles containing metallic iron as a main component in an aqueous solution include, for example, Japanese Patent Publication No. 56-12282 and Japanese Patent Application Laid-Open No. 58-161704. There is a method described in the official gazette.

特公昭56−12282号公報に記載の方法は、金属鉄
を主成分とする針状晶金属磁性粒子を、温度5℃〜70
℃であり、(OR−)濃度が0.01〜18規定である
水酸化すl−IJウム水溶液に懸濁させた後、該懸濁液
の温度を60℃〜100℃に調整し、次いで酸素含有ガ
スを通気することによりマグネタイト被膜を生成するも
のであるが、その生成機構は、金属鉄を主成分とする針
状晶金属磁性粒子を水酸化ナトリウム水溶液に懸濁させ
ることにより粒子表面では、水酸化ナトリウム水溶液中
に溶存しているわずかな酸素により酸素消費型の腐食反
応Fe+2H”” ’AO*”Fe” +H,0が生起
し、粒子表面に生成されたFe1は水溶液中の01(−
と結合してFe(010工となり、更に、酸素含有ガス
を通気することにより、上記Fe (OH) *が酸化
されてマグネタイト被膜が生成されるものである。
The method described in Japanese Patent Publication No. 56-12282 discloses that acicular metal magnetic particles containing metallic iron as a main component are heated at a temperature of 5°C to 70°C.
After suspending in an aqueous solution of sulfur-IJ hydroxide having a temperature of A magnetite film is produced by aerating oxygen-containing gas, and its production mechanism is such that acicular metal magnetic particles, whose main component is metallic iron, are suspended in an aqueous sodium hydroxide solution. , a small amount of oxygen dissolved in the sodium hydroxide aqueous solution causes an oxygen-consuming corrosion reaction Fe+2H""'AO*"Fe" +H,0, and the Fe1 generated on the particle surface becomes 01( −
When combined with Fe (010), the Fe (OH) * is oxidized to form a magnetite film by passing an oxygen-containing gas through the atmosphere.

特開昭58−161704号公報に記載の方法は、金属
鉄を主成分とする針状晶金属磁性粒子を液相ないし気相
中で酸素ガス量を調節しながら酸化処理して上記金属鉄
を主成分とする針状晶金属磁性粒子の表面に酸化被膜を
形成し、次に、この処理粒子を第一鉄塩とアルカリとを
含む水溶液中に分散させこれに酸化性ガスを吹き込んで
反応させることにより、マグネタイト被膜を生成させる
ものである。
The method described in JP-A-58-161704 involves oxidizing acicular metal magnetic particles containing metallic iron as a main component while controlling the amount of oxygen gas in a liquid phase or gas phase to remove the metallic iron. An oxide film is formed on the surface of the acicular metal magnetic particles that are the main component, and then the treated particles are dispersed in an aqueous solution containing ferrous salt and an alkali, and an oxidizing gas is blown into the solution to cause a reaction. This produces a magnetite film.

上記特開昭58−161704号公報に記載の発明にお
ける被膜の生成機構について考察すると、金属鉄を主成
分とする針状晶金属磁性粒子を液相ないし気相中で酸素
ガス量を調節しながら酸化処理することにより、粒子表
面にマグネタイト被膜を形成し、次いで該マグネタイト
被膜が形成された粒子を第一鉄塩とアルカリとを含む水
溶液中に分散させこれに酸化性ガスを吹き込んで反応さ
せることにより、粒子表面に生成させた前記マグネタイ
ト被膜を粒子の外部に向かってエピタキシャル成長させ
るものであると考えられる。
Considering the film formation mechanism in the invention described in JP-A-58-161704, it is found that acicular metal magnetic particles containing metallic iron as a main component are grown in a liquid phase or a gas phase while controlling the amount of oxygen gas. A magnetite coating is formed on the particle surface by oxidation treatment, and then the particles with the magnetite coating formed thereon are dispersed in an aqueous solution containing a ferrous salt and an alkali, and an oxidizing gas is blown into the solution to cause a reaction. It is thought that this causes the magnetite coating formed on the particle surface to grow epitaxially toward the outside of the particle.

金属鉄を主成分とする針状晶金属磁性粒子の粒子表面に
マグネタイト被膜を生成するという上記従来技術は、上
述した通りいずれも酸化反応であるから、酸素含有ガス
を通気する等の工程が必要であるが、本発明による場合
には、OH基を媒介とする縮重合反応であるから、酸素
含存ガスを通気する等の工程を必要としない。
The above-mentioned conventional techniques for producing a magnetite film on the particle surface of acicular metal magnetic particles containing metallic iron as a main component are all oxidation reactions as described above, and therefore require steps such as aeration of oxygen-containing gas. However, in the case of the present invention, since the polycondensation reaction is mediated by OH groups, steps such as aerating oxygen-containing gas are not required.

また、前出特開昭58−161704号公報記載の発明
によれば、金属鉄を主成分とする針状晶金属磁性粒子の
粒子表面にマグネタイト被膜を生成させた後、必ずアセ
トン洗浄をしており、これはマグネタイト被膜の十分な
生成が行われてぃながった為であろうと考えられる。
Furthermore, according to the invention described in the above-mentioned Japanese Patent Application Laid-Open No. 58-161704, after forming a magnetite film on the surface of the acicular metal magnetic particles containing metal iron as a main component, cleaning with acetone must be carried out. This is thought to be because the magnetite film was not sufficiently formed.

今、本発明者が行った数多くの実験例からその一部を例
示して説明すれば次の通りである。
The following is a description of some of the many experimental examples conducted by the present inventor.

図1は、金属鉄を主成分とする針状晶金属磁性粒子を空
気中に取り出した時の飽和磁化σSの経時による減少率
を温度50℃、相対湿度80%の条件下において飽和磁
化の変化する前後における差(ΔσS)を変化前の飽和
磁化で除した値を百分率で示したものである。
Figure 1 shows the change in saturation magnetization over time at a temperature of 50°C and a relative humidity of 80% when acicular metal magnetic particles containing metallic iron as the main component are taken out into the air. The value obtained by dividing the difference (ΔσS) before and after the change by the saturation magnetization before the change is expressed as a percentage.

図1中、曲線aは、金属鉄を主成分とする針状晶金属磁
性粒子の粒子表面に本発明の方法によりマグネタイト被
膜を生成した場合、曲bibは、金属鉄を主成分とする
針状晶金属磁性粒子を有機溶剤に取り出した場合である
In FIG. 1, curve a represents the case where a magnetite film is formed on the particle surface of acicular metal magnetic particles mainly composed of metallic iron, and curve bib represents the acicular crystalline metal magnetic particles mainly composed of metallic iron. This is a case where crystalline metal magnetic particles are taken out in an organic solvent.

図1から明らかな通り、本発明により得られた金属鉄を
主成分とする針状晶金属磁性粒子粉末は、空気中に安定
して取り出すことができ、しかも、空気中に取り出した
後の酸化による飽和磁化σSの減少が防止された酸化安
定性に優れたものであるから、非常に緻密で密着性のよ
い薄い被膜が形成されていることを示すものであり、こ
の被膜の組成は、前述の色材協会誌の記載から明らかな
ように、マグネタイトであることが理解できる。更に、
本発明方法により得られた金属鉄を主成分とする針状晶
金属磁性粒子粉末の飽和磁化が大きいことからもマグネ
タイトであることが理解できる。
As is clear from FIG. 1, the acicular metal magnetic particle powder containing metallic iron as a main component obtained by the present invention can be stably taken out into the air, and is not oxidized after being taken out into the air. This indicates that a very dense and thin film with good adhesion is formed because the decrease in saturation magnetization σS is prevented and the film has excellent oxidation stability. As is clear from the description in the Coloring Materials Association magazine, it can be understood that it is magnetite. Furthermore,
It can also be understood that the acicular metal magnetic particles obtained by the method of the present invention are magnetite from the fact that they have a large saturation magnetization.

次に、本発明方法実施にあたっての諸条件について述べ
る。
Next, various conditions for implementing the method of the present invention will be described.

本発明においてFezO1を主成分とする針状晶酸化第
二鉄粒子とは針状晶α−1β−1T−含水酸化第二鉄粒
子、針状晶へマタイト粒子、針状晶マグネタイト粒子、
針状晶マグヘマイト粒子並びにこれら粒子に従来から金
属鉄を主成分とする針状晶金属磁性粒子粉末の生成に際
し添加されるC01Mg、 AJ、Crs Zns N
i5Ti、 Mn、 Sn、 Pb等のFe以外の異種
金属を含むものをいう。
In the present invention, the acicular ferric oxide particles containing FezO1 as a main component include acicular α-1β-1T-hydrated ferric oxide particles, acicular hematite particles, acicular magnetite particles,
Acicular crystal maghemite particles and CO1Mg, AJ, Crs Zns N, which are conventionally added to these particles during the production of needle crystal metal magnetic particle powders containing metallic iron as a main component.
i5 Refers to those containing different metals other than Fe such as Ti, Mn, Sn, and Pb.

これらを出発原料として還元性ガス中で加熱還元して得
られたものは、針状晶金属鉄磁性粒子粉末及びこれにF
e以外の異種金属が固溶したものであり、本発明におい
てはこれらを金属鉄を主成分とする針状晶金属磁性粒子
粉末と総称した。
What is obtained by heating and reducing these starting materials in a reducing gas is acicular crystal metal iron magnetic particle powder and F
In the present invention, these particles are collectively referred to as acicular metal magnetic particles containing metal iron as a main component.

また、マグネタイト被膜は、出発原料の種類によって当
然にFe以外の異種金属が固溶したマグネタイト被膜と
なるが、本発明においてはこれらすべてをマグネタイト
被膜と総称した。
Further, depending on the type of starting material, the magnetite coating naturally becomes a magnetite coating in which different metals other than Fe are dissolved in solid solution, but in the present invention, all of these are collectively referred to as the magnetite coating.

本発明における有機溶剤としては、トルエン、キシレン
、メチルエチルケトン、酢酸ブチル等を使用することが
できる。
As the organic solvent in the present invention, toluene, xylene, methyl ethyl ketone, butyl acetate, etc. can be used.

本発明における有機溶剤処理後の乾燥温度は、20℃〜
50℃である。
The drying temperature after organic solvent treatment in the present invention is from 20°C to
The temperature is 50°C.

乾燥温度は、金属鉄を主成分とする針状晶金属磁性粒子
の粒子表面に生成されたFezO3被膜の厚さに関与す
るものであり、20℃以下である場合には、Fe2O3
被膜の生成が十分ではなく、50℃以上である場合には
、FezO3被膜の厚さが必要以上に厚くなり飽和磁化
σSの低下を招来することとなる。
The drying temperature is related to the thickness of the FezO3 coating formed on the particle surface of the acicular metal magnetic particles mainly composed of metallic iron, and if the drying temperature is 20°C or less, the Fe2O3
If the film is not sufficiently formed and the temperature is 50° C. or higher, the thickness of the FezO3 film becomes thicker than necessary, resulting in a decrease in saturation magnetization σS.

本発明における水酸化第一鉄を含む水溶液は、第一鉄塩
として硫酸第一鉄、塩化第一鉄を、アルカリとして水酸
化ナトリウム、水酸化カリウム等を用いて生成すること
ができる。本発明における金属鉄を主成分とする針状晶
金属磁性粒子の水酸化第一鉄による処理は、水酸化第一
鉄を含む水溶液に分散させるか、又は、アルカリ中に分
散させた後、第一鉄塩を添加するいずれの方法でもよい
The aqueous solution containing ferrous hydroxide in the present invention can be produced using ferrous sulfate, ferrous chloride as the ferrous salt, and sodium hydroxide, potassium hydroxide, etc. as the alkali. In the present invention, the acicular metal magnetic particles containing metallic iron as a main component are treated with ferrous hydroxide by dispersing them in an aqueous solution containing ferrous hydroxide or in an alkali. Any method of adding iron salt may be used.

本発明におけるOH基濃度は、0.05〜3.Omol
/1である。
The OH group concentration in the present invention is 0.05 to 3. Omol
/1.

0.05mol/ j!以下である場合には、縮重合反
応が十分生起せず、マグネタイト被膜の生成が十分では
ない。
0.05mol/j! If it is below, the polycondensation reaction will not occur sufficiently, and the magnetite film will not be formed sufficiently.

3.0 mol/ 1以上である場合もマグネタイト被
膜を生成させることはできるが、必要以上に添加する意
味はなく、後の水洗工程で多量の水を必要とする為、工
業的、経済的ではない。
Although it is possible to generate a magnetite film when the amount is 3.0 mol/1 or more, there is no point in adding more than necessary, and since a large amount of water is required in the subsequent washing process, it is not industrially or economically viable. do not have.

本発明における分散液の温度は、50〜100℃である
。分散液の温度は、処理時間に関与するものであり、温
度を50℃以下とすれば、本発明におけるマグネタイト
被膜の生成が難しく、生成するとしても極めて長時間の
処理を必要とする。
The temperature of the dispersion liquid in the present invention is 50 to 100°C. The temperature of the dispersion liquid is related to the processing time, and if the temperature is set to 50° C. or lower, it is difficult to form a magnetite film in the present invention, and even if it is formed, an extremely long processing time is required.

本発明方法を非酸化性雰囲気下で行うのは、分散液中の
水酸化第一鉄の酸化を防止するためである。
The reason why the method of the present invention is carried out in a non-oxidizing atmosphere is to prevent oxidation of ferrous hydroxide in the dispersion.

何故ならば、第一鉄が水酸化物のとき始めて前出(1)
式の反応が生起するからである。
This is because when ferrous iron is a hydroxide, the above (1)
This is because the reaction of Eq.

上記した通りの本発明によれば、金属鉄を主成分とする
針状晶金属磁性粒子の粒子表面に緻密で密着性のよい薄
いマグネタイト被膜を生成させることにより、空気中に
安定して取り出すことができ、しかも、空気中に取り出
した後の酸化による飽和磁化σSの減少が防止される等
の酸化安定性に優れた金属鉄を主成分とする針状轟音y
AMi性粒子粉末を得ることができるので、現在量も要
求されている高出力、高密度記録用磁性材料として好適
である。
According to the present invention as described above, by forming a thin magnetite film that is dense and has good adhesion on the particle surface of acicular metal magnetic particles whose main component is metallic iron, they can be stably taken out into the air. Needle-like roar y mainly composed of metallic iron has excellent oxidation stability, such as preventing a decrease in saturation magnetization σS due to oxidation after being taken out into the air.
Since AMi particle powder can be obtained, it is suitable as a magnetic material for high output and high density recording, which is currently required in quantity.

また、本発明は、金属鉄を主成分とする針状晶金属磁性
粒子の粒子表面にマグネタイト被膜を生成させるにあた
り、空気等の酸素含有ガス吹き込む等の工程が必要では
なく、工業性、経済性の面で非常に有利である。
In addition, the present invention does not require a process such as blowing oxygen-containing gas such as air when forming a magnetite film on the particle surface of acicular metal magnetic particles containing metallic iron as a main component, and is industrially and economically efficient. It is very advantageous in terms of

更に、本発明によれば、金属鉄を主成分とする針状晶金
属磁性粒子の粒子表面に生成されたマグネタイト被膜は
、緻密で密着性がよい為、マグネタイト被膜を生成した
後はそのままp別、水洗、乾燥するのみで空気中に安定
して取り出すことができるという効果を、有するもので
ある。
Furthermore, according to the present invention, the magnetite coating formed on the particle surface of the acicular metal magnetic particles containing metallic iron as a main component is dense and has good adhesion. It has the effect that it can be stably taken out into the air simply by washing with water and drying.

次に、実施例並びに比較例により本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例並びに比較例における粒子の軸比(長
軸:短軸)、長軸はいずれも電子顕微鏡写真から測定し
た数値の平均値で示した。
In addition, the axial ratio (long axis: short axis) and long axis of particles in the following Examples and Comparative Examples are both shown as average values of numerical values measured from electron micrographs.

磁気特性の値は、試料振動型磁力計を用いて外部磁場1
0 KOeの下で測定した結果である。
The values of magnetic properties are measured using a sample vibrating magnetometer in an external magnetic field of 1.
These are the results measured under 0 KOe.

また、酸化安定性は、温度50℃、相対温度80%の雰
囲気で、7日間放置した後の飽和磁化減少率(%)で示
した。
Further, the oxidation stability was expressed as the saturation magnetization reduction rate (%) after being left for 7 days in an atmosphere at a temperature of 50° C. and a relative temperature of 80%.

実施例1 出発原料として平均値で長軸0.8μ、長軸:短軸=1
0=1の針状晶α−Fe008粒子を用い、咳針状晶α
−FeOOH粒子粉末1500 gを回転型レトルト容
器中に投入し、駆動回転させなから112ガスを毎分4
0Eの割合で通気し、還元温度400℃で還元して、金
属鉄を主成分とする針状晶金属磁性粒子粉末を生成した
Example 1 As a starting material, the average value of major axis is 0.8 μ, major axis: short axis = 1
Using needle-like α-Fe008 particles with 0=1, cough needle-like α
- 1500 g of FeOOH particle powder was put into a rotary retort container, and 112 gas was supplied per minute by rotating it.
Aeration was carried out at a rate of 0E and reduction was carried out at a reduction temperature of 400° C. to produce acicular crystal metal magnetic particle powder containing metallic iron as a main component.

次いで、HよガスをN2ガスに置換して冷却した後、上
記金属鉄を主成分とする針状晶金属磁性粒子粉末を不活
性ガスで十分置換された取り出し容器に取り出した後、
空気との接触を遮断してトルエン溶液10Jに攪拌しな
がら投入した後、炉別し、35℃で60分間乾燥して粒
子表面に酸化被膜が生成された金属鉄を主成分とする針
状晶金属磁性粒子粉末を得た。
Next, after replacing the H gas with N gas and cooling it, the acicular metal magnetic particle powder containing metal iron as a main component was taken out into a take-out container that had been sufficiently replaced with an inert gas.
After cutting off contact with air and adding it to 10 J of toluene solution with stirring, it was separated into a furnace and dried at 35°C for 60 minutes to form acicular crystals mainly composed of metallic iron with an oxide film formed on the particle surface. Metal magnetic particle powder was obtained.

上記酸化被膜が生成された金属鉄を主成分とする針状晶
金属磁性粒子粉末1000 gを2.3−Hの水酸化ナ
トリウム水溶液91に攪拌しながら投入し、次いで、0
.358molの硫酸第一鉄と水を投入して全量を1o
1(O1l基濃度2.011101八〇とした後、得ら
れた分散液を100℃に昇温保持し、可及的に空気の混
入を防止して良く攪拌しながら5時間後にスラリーを取
り出し、水洗、p別し、60℃で乾燥して金属鉄を主成
分とする針状晶金属磁性粒子粉末を得た。
1,000 g of acicular metal magnetic particles containing metallic iron as a main component on which the oxide film was formed was added to a 2.3-H sodium hydroxide aqueous solution 91 with stirring, and then
.. Add 358 mol of ferrous sulfate and water and bring the total amount to 1 liter.
1 (After setting the O1l group concentration to 2.01110180, the resulting dispersion was heated and maintained at 100°C, and the slurry was taken out after 5 hours while stirring well while preventing air from entering as much as possible. The powder was washed with water, separated by plating, and dried at 60° C. to obtain acicular crystal metal magnetic particles containing metallic iron as a main component.

図2は、得られた金属鉄を主成分とする針状晶金属磁性
粒子粉末のX線回折図である。
FIG. 2 is an X-ray diffraction diagram of the obtained acicular metal magnetic particles whose main component is metallic iron.

図2中、ピークAはマグネタイトのピークを示し、ピー
クBは金属鉄のピークを示す。
In FIG. 2, peak A indicates the peak of magnetite, and peak B indicates the peak of metallic iron.

得られたマグネタイト被膜を有する金属鉄を主成分とす
る針状晶金属磁性粒子粉末は電子顕微鏡観察の結果、長
軸0.7μm、長軸:短軸=8:lであった。
The resultant acicular metal magnetic particles having a magnetite coating and having metallic iron as a main component were observed by electron microscopy to have a long axis of 0.7 μm and a ratio of long axis to short axis of 8:l.

また磁気特性は、飽和磁化σs 128 emu/g、
保磁力1(c 12500e、飽和磁化の減少率4.0
%であった。
In addition, the magnetic properties are saturation magnetization σs 128 emu/g,
Coercive force 1 (c 12500e, saturation magnetization reduction rate 4.0
%Met.

実施例2〜15 出発原料の種類、還元温度、有機溶剤の種類、乾燥温度
、第一鉄塩の種類並びに量、OH基濃度、温度を種々変
化させた以外は実施例1と同様にして金属鉄を主成分と
する針状晶金属磁性粒子粉末を得た。
Examples 2 to 15 Metals were prepared in the same manner as in Example 1, except that the type of starting material, reduction temperature, type of organic solvent, drying temperature, type and amount of ferrous salt, OH group concentration, and temperature were varied. Acicular metal magnetic particles containing iron as a main component were obtained.

主要製造条件及び緒特性を表1に示す。Table 1 shows the main manufacturing conditions and properties.

実施例2〜15で得られた金属鉄を主成分とする針状晶
金属磁性粒子粉末は、X線回折の結果、いずれもマグネ
タイトと金属鉄のピークを示していた。
As a result of X-ray diffraction, the acicular metal magnetic particles obtained in Examples 2 to 15 mainly containing metallic iron showed peaks of magnetite and metallic iron.

比較例1 実施例1において得られた粒子表面に酸化被膜が生成さ
れた金属鉄を主成分とする針状晶金属磁性粒子粉末は、
電子顕微鏡観察の結果、長軸0.8μ鋼、長軸:短軸=
8=1であった。
Comparative Example 1 The acicular metal magnetic particle powder mainly composed of metallic iron with an oxide film formed on the particle surface obtained in Example 1 was as follows:
As a result of electron microscope observation, the long axis is 0.8 μ steel, long axis: short axis =
8=1.

また、磁気特性は、飽和磁化σ3135 emu/g、
保磁力Hc 13200e、飽和磁化の減少率22%で
あった。
In addition, the magnetic properties are saturation magnetization σ3135 emu/g,
The coercive force Hc was 13200e, and the reduction rate of saturation magnetization was 22%.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、金属鉄を主成分とする針状晶金属磁性粒子を空
気中に取り出した時の飽和磁化σSの経時による変化を
示したものである。 図2は、実施例1で得られた金属鉄を主成分とする針状
晶金属磁性粒子粉末のX線回折図である。 特許出願人 戸田工業株式会社 図 1 経時日歌
FIG. 1 shows the change over time in the saturation magnetization σS when acicular metal magnetic particles containing metallic iron as a main component are taken out into the air. FIG. 2 is an X-ray diffraction diagram of the acicular metal magnetic particles obtained in Example 1 and containing metallic iron as a main component. Patent applicant Toda Kogyo Co., Ltd. Figure 1 Chronological diary

Claims (1)

【特許請求の範囲】[Claims] Tl) F8xOsを主成分とする針状晶酸化第二鉄粒
子を出発原料とし、該出発原料を還元性ガス中で加熱還
元して得られた金属鉄を主成分とする針状晶金属磁性粒
子を有機溶剤中で浸漬処理し、炉別した後、20℃〜5
0℃の温度範囲で乾燥し、次いで、該粒子を水酸化第一
鉄を含む水溶液中に分散させ、該分散液のOH基濃度0
.05〜3.On+ol/j!、50〜100℃の温度
範囲において非酸化性雰囲気中で処理することにより、
上記金属鉄を主成分とする針状晶金属磁性粒子の粒子表
面にマグネタイト被膜を生成させることを特徴とする金
属鉄を主成分とする針状晶金属磁性粒子粉末の製造法。
Tl) Acicular crystal metal magnetic particles containing metallic iron as a main component obtained by heating and reducing the starting material in a reducing gas using acicular ferric oxide particles containing F8xOs as a main component. After immersion treatment in an organic solvent and furnace separation, 20℃ ~ 5℃
The particles are dried in a temperature range of 0°C, and then the particles are dispersed in an aqueous solution containing ferrous hydroxide, so that the OH group concentration of the dispersion is 0.
.. 05-3. On+ol/j! , by processing in a non-oxidizing atmosphere at a temperature range of 50 to 100 °C,
A method for producing acicular metal magnetic particles containing metallic iron as a main component, the method comprising forming a magnetite coating on the surface of the acicular metal magnetic particles containing metallic iron as a main component.
JP59062569A 1984-03-29 1984-03-29 Production of magnetic particle powder of acicular crystal metal consisting essentially of metallic iron Granted JPS60204803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062569A JPS60204803A (en) 1984-03-29 1984-03-29 Production of magnetic particle powder of acicular crystal metal consisting essentially of metallic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062569A JPS60204803A (en) 1984-03-29 1984-03-29 Production of magnetic particle powder of acicular crystal metal consisting essentially of metallic iron

Publications (2)

Publication Number Publication Date
JPS60204803A true JPS60204803A (en) 1985-10-16
JPS6354041B2 JPS6354041B2 (en) 1988-10-26

Family

ID=13204053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062569A Granted JPS60204803A (en) 1984-03-29 1984-03-29 Production of magnetic particle powder of acicular crystal metal consisting essentially of metallic iron

Country Status (1)

Country Link
JP (1) JPS60204803A (en)

Also Published As

Publication number Publication date
JPS6354041B2 (en) 1988-10-26

Similar Documents

Publication Publication Date Title
US5599378A (en) Spindle-shaped magnetic iron based alloy particles and process for producing the same
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
JPS60204803A (en) Production of magnetic particle powder of acicular crystal metal consisting essentially of metallic iron
JP3264374B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2852460B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JP2852459B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3095041B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JPS6349722B2 (en)
JP3003777B2 (en) Method for producing spindle-shaped magnetic iron oxide particles
JP2660714B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JP3095042B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JPS63242930A (en) Production of fusiform magnetic metal particle powder composed mainly of iron
JPH039043B2 (en)
JPS62156208A (en) Ferromagnetic metallic powder
JPH03257105A (en) Manufacture of magnetic metal powder
JPS6411573B2 (en)
JPH07330341A (en) Production of needle-like magnetic iron oxide particle powder
JPH0696922A (en) Manufacture of metallic magnetic powder and film for magnetic recording medium
JPH02197503A (en) Magnetic acicular iron alloy powder for magnetic recording and its production
JPH01220408A (en) Metal magnetic powder, manufacture thereof and use thereof