JPH02162703A - Manufacture of metallic magnetic powder - Google Patents

Manufacture of metallic magnetic powder

Info

Publication number
JPH02162703A
JPH02162703A JP63317427A JP31742788A JPH02162703A JP H02162703 A JPH02162703 A JP H02162703A JP 63317427 A JP63317427 A JP 63317427A JP 31742788 A JP31742788 A JP 31742788A JP H02162703 A JPH02162703 A JP H02162703A
Authority
JP
Japan
Prior art keywords
magnetic powder
metal
metal magnetic
metal complex
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63317427A
Other languages
Japanese (ja)
Inventor
Masatake Maruo
丸尾 正剛
Toshihiko Kawamura
河村 俊彦
Haruki Ichinose
一ノ瀬 治紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP63317427A priority Critical patent/JPH02162703A/en
Publication of JPH02162703A publication Critical patent/JPH02162703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture metal magnetic powder having excellent oxidation- resistant property in a good economical and efficient manner by a method wherein a metal complex is decomposed by heat, and the residue of the thermal decomposition is carried on the surface of metallic magnetic powder. CONSTITUTION:A metal hydroxide, containing at least a kind of Co, Ni and Cu, and a metal complex compound, consisting at least of a kind selected from a complexing agent and/or Co, Ni and Cu, are brought to come in contact with metallic magnetic powder, and they are dissolved by heat. Then, the pyrogenous residue of the above-mentioned metal complex is treated so that it is carried on the grain surface of the metallic magnetic powder. Moreover, the treated material is heat-treated in an inert atmosphere, then it is subjected to a slow oxidation treatment in an oxidizing atmosphere, and then a heat treatment is conducted thereon in an inert atmosphere. As a result, the metallic magnetic powder is marakedly improved in oxidation-resistant property and excellent magnetic characteristics can be maintained for a long period.

Description

【発明の詳細な説明】 〔発明の技術的分野〕 本発明は、耐酸化性に優れた磁気記録用に好適な金属磁
性粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a metal magnetic powder having excellent oxidation resistance and suitable for magnetic recording.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体は、近年高記録密度化による小型化、高性
能化の指向が一段と強まってきている。
In recent years, there has been an increasing trend toward miniaturization and higher performance of magnetic recording media due to higher recording densities.

これとあいまって磁気記録用磁性粉末として、従来の酸
化鉄系磁性粉末に比し、飽和磁化が大きく、かつ高保磁
力化が容易な鉄または鉄系金属磁性粉末(以下金属磁性
粉末という)が注目されており、デジタルオーディオテ
ープや8 m/mビデオテープなどへの実用化がはから
れつつあるが、近時さらに高画質ビデオテープ、高記録
密度ディスク用など高性能記録媒体への適用が一層期待
されている。
In conjunction with this, iron or iron-based metal magnetic powders (hereinafter referred to as metal magnetic powders) are attracting attention as magnetic powders for magnetic recording, as they have larger saturation magnetization and are easier to increase coercive force than conventional iron oxide-based magnetic powders. It is now being put to practical use in digital audio tapes, 8 m/m video tapes, etc., but in recent years, it has been increasingly applied to high-performance recording media such as high-definition video tapes and high-density disks. It is expected.

ところで、このような金属磁性粉末は、通常約0.5μ
m以下(長径)、さらには0.3μm以下の微細粒子で
あるのが望ましく、かつこのものを磁気塗料としたとき
の分散性、塗膜での配向性、充填性等に優れたものであ
ることが望まれている。しかしながらこのような微細粒
子は表面活性が強く、このために経時的に酸化が進むこ
とにより、これにともなって飽和磁化、保磁力などの磁
気特性が低下し、いわゆる経時安定性(以下耐酸化性と
いう)の悪化がさけられなかったりする。またさらに著
しい場合には、前記酸化反応が急激に進むと自然発火、
燃焼に至るなど取扱操作、工程管理工種々のトラブルを
惹起したりする。
By the way, such metal magnetic powder usually has a thickness of about 0.5μ.
Preferably, the particles are fine particles with a diameter of 1.5 m or less (longer diameter), and more preferably 0.3 μm or less, and have excellent dispersibility, orientation in a coating film, filling property, etc. when used as a magnetic coating. It is hoped that However, such fine particles have strong surface activity, and as a result, oxidation progresses over time, resulting in a decrease in magnetic properties such as saturation magnetization and coercive force, resulting in so-called stability over time (hereinafter referred to as oxidation resistance). ) may be unavoidable. In even more severe cases, if the oxidation reaction proceeds rapidly, spontaneous combustion may occur.
This can cause various problems in handling operations and process control, such as combustion.

これらの問題点を改良するために、既に多くの提案がな
されている。例えば、(1)還元により製造した直後の
金属磁性粉末の粒子表面を、徐酸化して薄い酸化被膜を
形成させたり、(2)金属磁性粉末の粒子表面を例えば
シリコン系化合物や高級脂肪酸系化合物等の有機物質で
被覆したり、さらには(3)金属磁性粉末の粒子表面に
、耐食性金属化合物を湿式あるいは乾式の種々の方法に
よって被着せしめる方法等が知られている。しかしなが
ら、これらの方法によっても耐酸化性が十分満足される
ものでなかったり、十分な耐酸化性を付与しようとする
と金属磁性粉末のもつ高飽和磁化、高保磁力などの優れ
た磁気特性や塗料化時の分散性などが損なわれ易かった
りするなど、未だ改善を要する問題点が少なくない。こ
とに、さらに高S/N比化、高出力化が一段と要請され
ることとあいまって、金属磁性粉末のより微粒子化が指
向されており前記問題点の解決が強く希求されている。
Many proposals have already been made to improve these problems. For example, (1) the particle surface of the metal magnetic powder immediately after being produced by reduction may be slowly oxidized to form a thin oxide film, or (2) the particle surface of the metal magnetic powder may be coated with, for example, a silicon-based compound or a higher fatty acid-based compound. There are also known methods in which (3) a corrosion-resistant metal compound is deposited on the surface of the metal magnetic powder particles by various wet or dry methods. However, even with these methods, the oxidation resistance cannot be fully satisfied, and when trying to impart sufficient oxidation resistance, it is difficult to obtain the excellent magnetic properties of metal magnetic powder such as high saturation magnetization and high coercive force, or to make it into a paint. There are still many problems that need to be improved, such as the fact that the dispersibility of the liquid is easily impaired. In particular, in conjunction with the demand for higher S/N ratios and higher outputs, there is a trend toward finer particles of metal magnetic powder, and there is a strong desire to solve the above-mentioned problems.

〔発明の目的〕[Purpose of the invention]

本発明は、前記問題点を解決し、耐酸化性に優れた磁気
記録媒体用に好適な金属磁性粉末の製造方法を提供する
ことにある。
An object of the present invention is to solve the above-mentioned problems and provide a method for producing metal magnetic powder suitable for use in magnetic recording media with excellent oxidation resistance.

〔発明の概要〕[Summary of the invention]

本発明は、本発明者等がかねてより、金属磁性粉末本来
の優れた特性を損なうことなく、前記問題点を解決すべ
(種々検討を進めてきており、先に、アセチルアセトナ
ト錯化合物を金属磁性粉末粒子表面に接触させかつ加熱
処理してその熱分解残渣物を担持処理させることによっ
て耐酸化性の改善をはかることについて提案している。
The present invention aims to solve the above-mentioned problems without impairing the inherent excellent properties of metal magnetic powder (we have been conducting various studies, and firstly, we have developed an acetylacetonate complex compound into a metal magnetic powder). It has been proposed to improve oxidation resistance by bringing the magnetic powder particles into contact with the surface and subjecting the particles to heat treatment to carry the thermal decomposition residue.

しかしながら前記担持処理によって、金属磁性粉末の耐
酸化性は改善し得るものの、なお、たとえば該担持処理
において分解遊離した錯化剤による該金属磁性粉末粒子
表面の溶解にもとづく形状崩れが惹起し易かったり、該
錯化合物の使用によるコストアンプが大きく、このため
処理量の低量化がはかり得る担持処理方法の開発も急が
れている。
However, although the oxidation resistance of the metal magnetic powder can be improved by the supporting treatment, it is still easy to cause shape deformation due to dissolution of the surface of the metal magnetic powder particles by the complexing agent decomposed and liberated in the supporting treatment. , the cost increase due to the use of the complex compound is large, and therefore there is an urgent need to develop a supporting treatment method that can reduce the amount of treatment.

本発明者等は、前記問題点の改善をはかるべく、さらに
検討を進めた結果、特定の金属水酸化物と、特定の有機
金属化合物を形成するたとえば錯化剤や特定の金属錯化
合物とを、金属磁性粉末粒子と加熱接触させて、金属錯
体を生成させつつ、かつ該生成金属錯体を熱分解せしめ
て、その熱分解残渣物を金属磁性粉末粒子表面に担持さ
せることにより、残存錯化合物を、実質的にともなうこ
となくまた、これによって分解遊離する錯化剤による該
金属磁性粉末粒子表面の溶解にもとづく形状崩れが惹起
することなく、経済性よく効率的に耐酸化性の優れた金
属磁性粉末を製造し得ることの知見を得、本発明を完成
したものである。
In order to improve the above-mentioned problems, the present inventors conducted further studies and found that a specific metal hydroxide and a complexing agent or a specific metal complex compound that forms a specific organometallic compound, for example, The remaining complex compound is removed by heating and contacting the metal magnetic powder particles to generate a metal complex, thermally decomposing the generated metal complex, and supporting the thermal decomposition residue on the surface of the metal magnetic powder particles. , metal magnetic particles with excellent oxidation resistance can be produced economically and efficiently without substantially accompanying the decomposition and without causing shape deformation due to dissolution of the surface of the metal magnetic powder particles by the decomposed and liberated complexing agent. The present invention was completed based on the knowledge that powder could be produced.

すなわち本発明の第1は、Co、 NiおよびCuの少
なくとも1種の金属水酸化物と、錯化剤または/および
Co、 NiおよびCuの少なくとも1種の金属錯化合
物とを、金属磁性粉末と接触させかつ加熱分解して該水
酸化物の構成金属の少なくとも1種の金属錯体の熱分解
残渣物を、該金属磁性粉末の粒子表面に担持処理するこ
とを特徴とする 金属磁性粉末の製造方法であり、第2
は、前記第2の発明によって金属錯体の熱分解残渣物を
金属磁性粉末粒子表面に担持処理した後、該処理物を不
活性雰囲気下で加熱処理することを特徴とする方法であ
り、第3は、前記第1の発明によって得られた金属錯体
の熱分解残渣物を金属磁性粉末粒子表面に担持処理した
後、該処理物を酸化性雰囲気下で徐酸化処理することを
特徴とする方法であり、さらに第4は、前記第3の発明
によって得られた徐酸化処理物を、不活性雰囲気下で加
熱処理することを特徴とする方法である。
That is, the first aspect of the present invention is to combine at least one metal hydroxide of Co, Ni, and Cu, and a complexing agent or/and at least one metal complex compound of Co, Ni, and Cu with a metal magnetic powder. A method for producing a metal magnetic powder, characterized by carrying the thermal decomposition residue of at least one metal complex of the constituent metals of the hydroxide on the particle surface of the metal magnetic powder by contacting and thermally decomposing the hydroxide. and the second
This is a method characterized by carrying the thermal decomposition residue of the metal complex on the surface of the metal magnetic powder particles according to the second invention, and then heat-treating the treated product in an inert atmosphere. is a method characterized by carrying the thermal decomposition residue of the metal complex obtained by the first invention on the surface of metal magnetic powder particles, and then subjecting the treated product to gradual oxidation treatment in an oxidizing atmosphere. A fourth method is characterized in that the slowly oxidized product obtained according to the third invention is heat-treated in an inert atmosphere.

本発明において、被処理物として使用する金属磁性粉末
(以下基体構成粒子という)は、種々の方法によって製
造される鉄または鉄を主体とする鉄系合金類の金属磁性
粉末であって、もっとも−船釣には針状晶の形状のもの
であるが、さらに前記針状晶形状のもののほか、例えば
紡錘状、米粒状、球状、棒状、平板状、サイコロ状など
種々の形状のものを使用することができる。なお、これ
らの基体構成粒子は、担持処理に先立って、必要に応じ
たとえば酸素含有ガスで徐酸化処理しておくこともでき
る。
In the present invention, the metal magnetic powder (hereinafter referred to as substrate constituent particles) used as the object to be processed is a metal magnetic powder of iron or an iron-based alloy mainly composed of iron, which is manufactured by various methods, and most For boat fishing, needle-shaped crystals are used, but in addition to the above-mentioned needle-shaped crystals, various other shapes such as spindle-shaped, rice-grain-shaped, spherical, rod-shaped, plate-shaped, dice-shaped, etc. are also used. be able to. Note that, prior to the supporting treatment, these substrate constituent particles may be subjected to a gradual oxidation treatment, for example, with an oxygen-containing gas, if necessary.

本発明において、使用するCo、Ni、Cuの金属水酸
化物としては、たとえばCo(Oll)g、 Co(O
tl)s。
In the present invention, the metal hydroxides of Co, Ni, and Cu used include, for example, Co(Oll)g, Co(Oll)g, and Co(Oll)g.
tl)s.

N1(OH)z4.5Hzo、 N1(OH)t、 C
u(Otl)zなどを挙げることができる。また錯化剤
としてはたとえばアセチルアセトン、エチレンジアミン
、エチレンジアミンテトラ酢酸、ヒドロキシキノリン、
酒石酸、マロン酸、サリチル酸、アラニン、グリシン、
トリフェニルホスフィン、ジチゾンなどを挙げることが
できる。さらにCo、Ni、Cuの錯化合物としてはた
とえばアセチルアセトンコバルト(■、II[)、アセ
チルアセトンニッケル、アセチルアセトン銅、エチレン
ジアミンコバルト(I[、I)、エチレンジアミンニッ
ケル、エチレンジアミンLエチレンジアミンテトラ酢酸
(EDTA)コバルト(III)、マロン酸コバルト(
■)、グリシンコバルト(III)、グリシンニッケル
、8−キノリン銅、1.10−ツェナトロリンニッケル
などを挙げることができる。
N1(OH)z4.5Hzo, N1(OH)t, C
Examples include u(Otl)z. Examples of complexing agents include acetylacetone, ethylenediamine, ethylenediaminetetraacetic acid, hydroxyquinoline,
Tartaric acid, malonic acid, salicylic acid, alanine, glycine,
Triphenylphosphine, dithizone, etc. can be mentioned. Furthermore, examples of complex compounds of Co, Ni, and Cu include acetylacetone cobalt (■, II[), acetylacetone nickel, acetylacetone copper, ethylenediamine cobalt (I[, I), ethylenediamine nickel, ethylenediamine L ethylenediaminetetraacetic acid (EDTA), cobalt (III ), cobalt malonate (
(2), glycine cobalt (III), glycine nickel, 8-quinoline copper, and 1,10-zenatroline nickel.

本発明において、金属錯体の熱分解残渣物を前記基体構
成粒子表面に担持処理させるには、該基体構成粒子粉末
を、液相系でCo、NiおよびCuの少なくとも1種の
金属水酸化物と、錯化剤または/およびCo、Niおよ
びCuの少なくとも1種の金属錯化合物とを、接触させ
るとともに加熱処理して、金属錯体を生成させつつ、か
つ該生成金属錯体を熱分解させることによっておこなう
ことができる。
In the present invention, in order to support the thermal decomposition residue of the metal complex on the surface of the base material particles, the base material powder is treated with at least one metal hydroxide of Co, Ni, and Cu in a liquid phase system. , a complexing agent or/and at least one metal complex compound of Co, Ni, and Cu are brought into contact and heat treated to generate a metal complex and thermally decompose the formed metal complex. be able to.

前記液相系処理に用いる溶媒としては、たとえば脂肪族
炭化水素類、芳香族炭化水素類、ケトン類、エーテル類
、アルコール類、アミン類など種々のものを使用するこ
とができる。
As the solvent used in the liquid phase treatment, various solvents can be used, such as aliphatic hydrocarbons, aromatic hydrocarbons, ketones, ethers, alcohols, and amines.

しかして前記処理方法としては、種々の方法によってお
こなうことができるが、たとえば(a)Co。
The treatment can be carried out by various methods, for example (a) Co.

NiおよびCuの少なくとも1種の金属水酸化物と、錯
化剤または/およびCo,NiおよびCuの少なくとも
1種の金属錯化合物とを、予め前記溶媒中で懸濁せしめ
るとともに、該懸濁液中へ前記基体構成粒子粉末を添加
し、次いで窒素ガスなどの不活性ガスを通気させながら
必要に応じ加熱して混合するか、あるいは(bl Co
、NiおよびCuの少なくとも1種の金属水酸化物と、
錯化剤とを、窒素ガスなどの不活性ガスを通気させなが
ら予め前記溶媒中でたとえば50℃以上に加熱し、前記
金属の錯化合物を形成せしめ、次いで前記基体構成粒子
粉末を添加し、しかる後(a)また(b)の処理物を通
常80〜300℃、好ましくは90〜280℃さらに好
ましくは130〜250℃で、0.1〜10時間、好ま
しくは0.5〜5時間加熱処理する。これによって、C
o、 NiおよびCuの金属水酸化物が金属錯体を形成
しかつこのものが、該基体構成粒子粉末の粒子表面で熱
分解されてその熱分解残渣物が担持される。
At least one metal hydroxide of Ni and Cu and a complexing agent or/and at least one metal complex compound of Co, Ni and Cu are suspended in the solvent in advance, and the suspension is The above-mentioned base material constituent particles are added to the inside, and then heated and mixed as necessary while passing an inert gas such as nitrogen gas, or (bl Co
, at least one metal hydroxide of Ni and Cu;
The complexing agent is preheated in the solvent to, for example, 50° C. or higher while passing an inert gas such as nitrogen gas to form a complex compound of the metal, and then the base constituent particle powder is added, and then After that, the processed product of (a) and (b) is heat-treated at usually 80 to 300°C, preferably 90 to 280°C, more preferably 130 to 250°C, for 0.1 to 10 hours, preferably 0.5 to 5 hours. do. By this, C
The metal hydroxides of O, Ni, and Cu form a metal complex, which is thermally decomposed on the particle surface of the substrate-constituting particle powder, and the thermal decomposition residue is supported.

なお前記生成金属錯体が加熱分解されて生成したアセチ
ルアセトンなどの錯化剤は、逐次所定量の前記金属水酸
化物と反応して金属錯体の生成に供される。したがって
本発明方法では、錯化剤や金属錯化合物が当該反応処理
系で効率的に使用され、その結果錯化剤や金属錯化合物
の使用量が低減でき、処理コストの節減がはかられるも
のである。
Note that the complexing agent such as acetylacetone produced by thermal decomposition of the produced metal complex is sequentially reacted with a predetermined amount of the metal hydroxide to produce a metal complex. Therefore, in the method of the present invention, the complexing agent and metal complex compound are used efficiently in the reaction treatment system, and as a result, the amount of complexing agent and metal complex compound used can be reduced, and processing costs can be reduced. It is.

本発明において、前記熱分解残渣物の担持量は、基体構
成粒子の金属磁性粉末の粒子の形状、大きさ、比表面積
などによって異なり、−概に言えないが、該基体構成粒
子の重量基準に対して0.1〜30%、望ましくは1〜
20%である。担持量が前記範囲より少なきにすぎると
所望の効果がもたらされず、また前記範囲より多きにす
ぎると飽和磁化などの磁気特性や塗料化時の分散性など
が損なわれ易かったりする。なお前記の熱分解残渣物を
担持処理した金属磁性粉末は、さらに必要に応じ該粒子
表面を窒素含有ガス雰囲気下で加熱処理したり、あるい
は該粒子表面を酸化性ガス雰囲気中で徐酸化したりする
ことによって、耐酸化性を一層好ましいものとすること
ができる。
In the present invention, the amount of the thermal decomposition residue supported varies depending on the shape, size, specific surface area, etc. of the metal magnetic powder particles constituting the base body particles, and although it cannot be generalized, it is based on the weight of the base body particles. 0.1 to 30%, preferably 1 to 30%
It is 20%. If the supported amount is too small than the above range, the desired effect will not be produced, and if the supported amount is too large, magnetic properties such as saturation magnetization, dispersibility when forming into a paint, etc. may be easily impaired. The metal magnetic powder that has been treated to support the thermal decomposition residue may be further heat-treated on the particle surface in a nitrogen-containing gas atmosphere, or slowly oxidized in an oxidizing gas atmosphere, if necessary. By doing so, the oxidation resistance can be made even more preferable.

本発明において、Co、NiおよびCuの少なくとも1
種の金属水酸化物を使用する金属錯体の熱分解残渣物と
は、該Co、Ni、Cuの金属錯体の熱分解によって、
基体構成粒子の金属磁性粉末の粒子表面に形成される実
質的に当該Co、Ni、Cuの水酸化物の構成金属成分
よりなる耐食性金属あるいはその金属化合物の表面層の
ことを謂うものである。前記の熱分解残渣物の担持処理
によって奏される本発明の耐酸化性等のきわめて優れた
特性の改善がもたらされる作用機作は、未だ十分解明す
るには至っていないが、均一膜厚の緻密な耐食性被膜が
形成され易いためではないかと推定される。また前記熱
分解残渣物を担持処理した金属磁性粉末を、酸化性ガス
雰囲気中や窒素ガスなどの不活性ガス雰囲気中で加熱処
理することによって金属磁性粉末の耐酸化性が一層増大
し得ることの所以は、前記基体構成粒子表面の耐食性被
膜がより緻密化されたり、さらにはより安定な酸化被膜
が形成されたりすることによるのではないかとみられる
In the present invention, at least one of Co, Ni and Cu
The thermal decomposition residue of a metal complex using a seed metal hydroxide refers to the thermal decomposition residue of a metal complex of Co, Ni, and Cu.
It refers to a surface layer of a corrosion-resistant metal or a metal compound thereof, which is formed on the surface of the metal magnetic powder of the base material particles and is substantially made of the constituent metal components of the hydroxides of Co, Ni, and Cu. Although the mechanism by which the extremely excellent properties such as oxidation resistance of the present invention are brought about by the above-mentioned supporting treatment of thermal decomposition residues has not yet been fully elucidated, It is presumed that this is because a corrosion-resistant film is easily formed. Furthermore, the oxidation resistance of the metal magnetic powder can be further increased by heat-treating the metal magnetic powder that has been treated to support the thermal decomposition residue in an oxidizing gas atmosphere or an inert gas atmosphere such as nitrogen gas. The reason seems to be that the corrosion-resistant film on the surface of the substrate constituent particles becomes more dense, and that a more stable oxide film is formed.

前記の本発明の方法にもとづいて製造される金属磁性粉
末は、種々のバインダー樹脂、例えば塩化ビニル−酢酸
ビニル共重合体系樹脂、ポリウレタン系樹脂、ポリエス
テル系樹脂、アクリル系樹脂、セルローズ系樹脂などの
バインダー成分と、種々の添加剤、例えば分散剤、潤滑
剤、研磨剤、帯電防止剤などを添加して磁性塗料を調製
し、ポリエチレンテレフタレートフィルム、アセテート
フィルムなど種々の非磁性支持体上に、所定厚み(通常
は乾燥後の厚み2〜5μm)に塗布し、配向処理後乾燥
して磁性層を形成し、さらにカレンダー処理、スリッテ
ィング加工を経て磁気記録媒体、例えば磁気テープを得
ることができる。なお、前記磁気テープは、必要に応じ
さらに帯電防止、走行安定性等をはかるべく、該支持体
の磁性層側の反対の面に、いわゆるバックコート層を形
成してもよい。
The metal magnetic powder produced according to the method of the present invention described above can be made of various binder resins, such as vinyl chloride-vinyl acetate copolymer resins, polyurethane resins, polyester resins, acrylic resins, cellulose resins, etc. A magnetic paint is prepared by adding a binder component and various additives, such as a dispersant, a lubricant, an abrasive, an antistatic agent, etc., and applied onto various non-magnetic supports such as polyethylene terephthalate film and acetate film. A magnetic recording medium such as a magnetic tape can be obtained by applying the magnetic layer to a thickness (usually 2 to 5 μm thick after drying) and drying after orientation treatment to form a magnetic layer, followed by calendering and slitting. In addition, the magnetic tape may be provided with a so-called back coat layer on the opposite surface of the support from the magnetic layer side in order to further improve antistatic properties, running stability, etc., if necessary.

以下に実施例及び比較例を挙げて本発明をさらに説明す
る。
The present invention will be further explained by giving examples and comparative examples below.

〔本発明の実施例〕[Example of the present invention]

実施例1 硫酸第一鉄水溶液を水酸化ナトリウム水溶液で中和し、
さらに酸化性ガスを導入して酸化しαPe0OHを生成
し、次いでこのものを加熱脱水してα−Fe、0.とし
、しかる後水素気流中で加熱還元して得られた針状の金
属鉄磁性粉末(比表面積(BET)50m”/g、平均
長軸粒子径0.i6u、平均軸比9、保磁力1.250
0e、飽和磁化186 emu/g 、角形比0.48
7 )を基体構成粒子(試料M)とし、このもの20g
をエチレングリコール400m lに懸濁した。
Example 1 A ferrous sulfate aqueous solution was neutralized with a sodium hydroxide aqueous solution,
Further, an oxidizing gas is introduced and oxidized to produce αPe0OH, which is then heated and dehydrated to produce α-Fe, 0. and then heated and reduced in a hydrogen stream to obtain acicular metallic iron magnetic powder (specific surface area (BET) 50 m''/g, average major axis particle diameter 0.i6u, average axial ratio 9, coercive force 1). .250
0e, saturation magnetization 186 emu/g, squareness ratio 0.48
7) as the base constituent particles (sample M), 20g of this material
was suspended in 400 ml of ethylene glycol.

この懸濁液を攪拌機を付した四つ目フラスコに入れ、さ
らに窒素ガスを導入して非酸化性雰囲気を保持しながら
、攪拌下に水酸化第−銖コバルト(Co(OH)z) 
 3.33gとエチレンジアミン0.64gとを添加し
、次いで4℃/分で190℃まで昇温し、この温度で1
時間保持して加熱分解した。しかる後室温まで冷却後該
懸濁液を濾過し、さらにエタノールで洗浄、ひきつづき
トルエンで洗浄した。得られたケーキを風乾して目的の
金属磁性粉末を得た(試料A)。
This suspension was placed in a fourth flask equipped with a stirrer, and while nitrogen gas was introduced to maintain a non-oxidizing atmosphere, cobalt hydroxide (Co(OH)z) was added under stirring.
3.33g and 0.64g of ethylenediamine were added, and then the temperature was raised to 190°C at a rate of 4°C/min, and at this temperature 1
The mixture was maintained for a certain period of time and then thermally decomposed. After cooling to room temperature, the suspension was filtered and washed with ethanol and then with toluene. The resulting cake was air-dried to obtain the desired metal magnetic powder (Sample A).

実施例2 実施例1で得られた試料A logを、管状電気炉中で
窒素ガスを通気しながら300℃で2時間加熱処理して
目的の金属磁性粉末を得た(試料B)。
Example 2 Sample A log obtained in Example 1 was heat-treated at 300° C. for 2 hours while passing nitrogen gas in a tubular electric furnace to obtain the desired metal magnetic powder (Sample B).

実施例3 実施例1において、エチレンジアミンの添加量を6.4
5gとしたことのほかは同側と同様に処理後、さらに実
施例2の場合と同様に窒素ガス中で加熱処理をおこない
、目的の金属磁性粉末を得た(試料C)。
Example 3 In Example 1, the amount of ethylenediamine added was 6.4
After treatment in the same manner as on the same side except that the amount was 5 g, heat treatment was performed in nitrogen gas as in Example 2 to obtain the desired metal magnetic powder (Sample C).

実施例4 実施例1において、エチレンジアミン0.64 gの代
わりにヒドロキシキノリン1.56 gを用いたことの
ほかは同様にして、目的の金属磁性粉末を得た(試料D
)。
Example 4 The desired metal magnetic powder was obtained in the same manner as in Example 1 except that 1.56 g of hydroxyquinoline was used instead of 0.64 g of ethylenediamine (Sample D).
).

実施例5 実施例4で得られた試料りの10gを、実施例2の場合
と同様に窒素ガス中で加熱処理をおこない、目的の金属
磁性粉末を得た(試料、E)。
Example 5 10 g of the sample obtained in Example 4 was heat-treated in nitrogen gas in the same manner as in Example 2 to obtain the desired metal magnetic powder (sample, E).

実施例6 実施例1において、エチレンジアミンの代わりにCo(
OH)z 2.83gと、Co(CslltOz)z・
28zo 1.57gとを用いたことのほかは同様にし
て、目的の金属磁性粉末を得た(試料F)。
Example 6 In Example 1, Co(
OH)z 2.83g and Co(CslltOz)z・
The desired metal magnetic powder was obtained in the same manner except that 1.57 g of 28zo was used (sample F).

実施例7 実施例6で得られた試料Fの10gを、実施例2の場合
と同様に窒素ガス中で加熱処理をおこない、目的の金属
磁性粉末を得た(試料G)。
Example 7 10 g of Sample F obtained in Example 6 was heat-treated in nitrogen gas in the same manner as in Example 2 to obtain the desired metal magnetic powder (Sample G).

実施例8 実施例7において、エチレングリコールの代わりに灯油
を用いたことのほかは、同例の場合と同様に処理して、
目的の金属磁性粉末を得た(試料H)。
Example 8 The same process as in Example 7 was carried out except that kerosene was used instead of ethylene glycol.
The desired metal magnetic powder was obtained (sample H).

実施例9 実施例7で得られた金属錯体の熱分解残渣物を担持処理
したケーキを窒素雰囲気下で乾燥し、この乾燥物10g
を流動床反応器中(内径40III+Iφ、高さ200
mm)で70℃、Ox/ Nz = 1 / 99 (
容積比)の混合気体を41/分の流量で30分間通気し
、次いで乾燥空気に切りかえて120分間通気して徐酸
化処理し、目的の金属磁性粉末を得た(試料I)。
Example 9 The cake on which the thermal decomposition residue of the metal complex obtained in Example 7 was supported was dried in a nitrogen atmosphere, and 10 g of this dried product was dried.
in a fluidized bed reactor (inner diameter 40III + Iφ, height 200
mm) at 70°C, Ox/Nz = 1/99 (
A mixed gas (volume ratio) was aerated at a flow rate of 41/min for 30 minutes, and then dry air was changed to air for 120 minutes to carry out slow oxidation treatment to obtain the desired metal magnetic powder (Sample I).

実施例10 実施例9の徐酸化処理して得られた試料■を、実施例2
の場合と同様に窒素雰囲気下でさらに処理して、目的の
金属磁性粉末を得た(試料J)。
Example 10 Sample ① obtained by slow oxidation treatment in Example 9 was subjected to the slow oxidation treatment in Example 2.
Further treatment was carried out under a nitrogen atmosphere in the same manner as in the case of Example 1 to obtain the desired metal magnetic powder (Sample J).

比較例1 実施例1において、水酸化第一コバルトとエチレンジア
ミンとを添加しなかったことのほかは、同例の場合と同
様に処理して、金属磁性粉末を得た(試料K)。
Comparative Example 1 A metal magnetic powder was obtained in the same manner as in Example 1 except that cobaltous hydroxide and ethylenediamine were not added (Sample K).

比較例2 実施例2において、水酸化第一コバルトとエチレンジア
ミンとを添加しなかったことのほかは、同例の場合と同
様に処理して、金属磁性粉末を得た(試料L)。
Comparative Example 2 A metal magnetic powder was obtained in the same manner as in Example 2, except that cobaltous hydroxide and ethylenediamine were not added (Sample L).

前記実施例及び比較例の金属磁性粉末試料と、前記試料
中’、H,1,JおよびMの試料を用いて、下記の配合
組成物を混合分散させて磁性塗料を調製し、次いで、前
記磁性塗料をポリエステルフィルム上に、乾燥膜厚10
μmとなるように塗布し、配向処理後乾燥して作製した
磁気テープとについて、常法により飽和磁化(σs H
ea+u/g)、保磁力(Hc:Oe)、飽和磁束密度
(B m: Gauss)、角形比(Rs、 S Q)
配向性(OR)、反転磁界分布(S F D)を測定し
た。また酸化安定性を評価するために、温度60℃、相
対湿度80%の環境下で、4週間放置してσ5SHCS
R5% Bmについて促進経時変化を測定し、飽和磁化
の劣化率ΔσS(%)、ΔBm(%)を下記の式によっ
て求めた。
Using the metal magnetic powder samples of the Examples and Comparative Examples and the samples of ', H, 1, J and M among the samples, the following blended composition was mixed and dispersed to prepare a magnetic paint, and then the above-mentioned Apply magnetic paint on polyester film to a dry film thickness of 10
The saturation magnetization (σs H
ea+u/g), coercive force (Hc:Oe), saturation magnetic flux density (Bm: Gauss), squareness ratio (Rs, SQ)
Orientation (OR) and reversal magnetic field distribution (S F D) were measured. In addition, in order to evaluate the oxidation stability, the σ5SHCS was left for 4 weeks at a temperature of 60°C and a relative humidity of 80%.
Accelerated changes over time were measured for R5% Bm, and saturation magnetization deterioration rates ΔσS (%) and ΔBm (%) were determined using the following formulas.

これらの結果を表1 (粉末特性)及び表2(テープ特
性)に示す。
These results are shown in Table 1 (powder properties) and Table 2 (tape properties).

磁性粉末         5 重量部分散剤    
      0.25  〃ポリウレタン樹脂 (30
%溶?り      2.96   〃混合溶媒”  
       13.4  〃1トルエン/MEK/シ
クロヘキサノン(4,5/4.5/1)Bm’  −B
m (式中、Bm’は経時前のBmであり、Bm’ は経時
後のBmである) (式中、σs6は経時前のσSであり、σS゛は経時後
のσSである) 〔発明の効果〕 本発明によって得られる金属錯体の熱分解残渣物を担持
した金属磁性粉末は、耐酸化性が著しく改善されたもの
であり、したがって優れた磁気特性を長期間保持し得る
とともに、それ自体貯蔵安定性に優れ、取扱い操作上、
工程管理上甚だ好ましいものであること、さらに媒体へ
の分散性も良好なものであって高出力の高記録密度磁気
媒体を製造する上で極めて好適なものである。また本発
明は、比較的簡素な手段でもって優れた性能の磁性粉末
を経済的に有利に製造することができるものであり、甚
だ工業的意義の大きいものである。
Magnetic powder 5 Weight part dispersant
0.25 Polyurethane resin (30
% melt? 2.96 "Mixed solvent"
13.4 〃1 toluene/MEK/cyclohexanone (4,5/4.5/1)Bm'-B
m (In the formula, Bm' is Bm before aging, and Bm' is Bm after aging.) (In the formula, σs6 is σS before aging, and σS is σS after aging.) [Invention [Effect] The metal magnetic powder supporting the thermal decomposition residue of the metal complex obtained by the present invention has significantly improved oxidation resistance, and therefore can maintain excellent magnetic properties for a long period of time, and is Excellent storage stability, easy handling,
It is extremely preferable in terms of process control, and has good dispersibility into the medium, making it extremely suitable for producing high-output, high-recording-density magnetic media. Furthermore, the present invention is of great industrial significance, as it allows magnetic powder with excellent performance to be produced economically and advantageously using relatively simple means.

Claims (1)

【特許請求の範囲】 1)CO,NiおよびCuの少なくとも1種の金属水酸
化物と、錯化剤または/およびCo,NiおよびCuの
少なくとも1種の金属錯化合物とを、金属磁性粉末と接
触させかつ加熱分解して該水酸化物の構成金属の少なく
とも1種の金属錯体の熱分解残渣物を、該金属磁性粉末
の粒子表面に担持処理することを特徴とする金属磁性粉
末の製造方法。 2)請求項1によって金属錯体の熱分解残渣物を金属磁
性粉末粒子表面に担持処理した後、該処理物を不活性雰
囲気下で加熱処理することを特徴とする金属磁性粉末の
製造方法。 3)請求項1によって金属錯体の熱分解残渣物を金属磁
性粉末粒子表面に担持処理した後、該処理物を酸化性雰
囲気下で徐酸化処理することを特徴とする金属磁性粉末
の製造方法。 4)請求項3によって徐酸化処理した処理物を、次いで
不活性雰囲気下で加熱処理することを特徴とする金属磁
性粉末の製造方法。
[Claims] 1) At least one metal hydroxide of CO, Ni and Cu and a complexing agent or/and at least one metal complex compound of Co, Ni and Cu are combined into a metal magnetic powder. A method for producing a metal magnetic powder, which comprises contacting and thermally decomposing the hydroxide to carry a thermal decomposition residue of at least one metal complex of the constituent metals on the particle surface of the metal magnetic powder. . 2) A method for producing a metal magnetic powder, which comprises carrying the thermal decomposition residue of the metal complex on the surface of the metal magnetic powder particles according to claim 1, and then heat-treating the treated product in an inert atmosphere. 3) A method for producing metal magnetic powder, which comprises carrying the thermal decomposition residue of the metal complex on the surface of the metal magnetic powder particles according to claim 1, and then subjecting the treated product to gradual oxidation treatment in an oxidizing atmosphere. 4) A method for producing a metal magnetic powder, characterized in that the product subjected to the slow oxidation treatment according to claim 3 is then heat treated in an inert atmosphere.
JP63317427A 1988-12-15 1988-12-15 Manufacture of metallic magnetic powder Pending JPH02162703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317427A JPH02162703A (en) 1988-12-15 1988-12-15 Manufacture of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317427A JPH02162703A (en) 1988-12-15 1988-12-15 Manufacture of metallic magnetic powder

Publications (1)

Publication Number Publication Date
JPH02162703A true JPH02162703A (en) 1990-06-22

Family

ID=18088104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317427A Pending JPH02162703A (en) 1988-12-15 1988-12-15 Manufacture of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPH02162703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056091A (en) * 2002-05-31 2004-02-19 Fuji Photo Film Co Ltd Magnetic particle and its manufacturing method, and magnetic recording medium and its manufacturing method
WO2018179976A1 (en) * 2017-03-31 2018-10-04 東邦チタニウム株式会社 Method for manufacturing metal powder
KR20210015501A (en) * 2019-08-02 2021-02-10 주식회사 엘지화학 Method for preparation magnet powder and sintered magnet produced by the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056091A (en) * 2002-05-31 2004-02-19 Fuji Photo Film Co Ltd Magnetic particle and its manufacturing method, and magnetic recording medium and its manufacturing method
JP4524078B2 (en) * 2002-05-31 2010-08-11 富士フイルム株式会社 Magnetic particle and method for manufacturing the same, and magnetic recording medium and method for manufacturing the same
WO2018179976A1 (en) * 2017-03-31 2018-10-04 東邦チタニウム株式会社 Method for manufacturing metal powder
JP6431650B1 (en) * 2017-03-31 2018-11-28 東邦チタニウム株式会社 Method for producing metal powder
KR20190131564A (en) * 2017-03-31 2019-11-26 도호 티타늄 가부시키가이샤 Method of producing metal powder
TWI765992B (en) * 2017-03-31 2022-06-01 日商東邦鈦股份有限公司 Manufacturing method of metal powder
KR20210015501A (en) * 2019-08-02 2021-02-10 주식회사 엘지화학 Method for preparation magnet powder and sintered magnet produced by the same
JP2022534731A (en) * 2019-08-02 2022-08-03 エルジー・ケム・リミテッド Method for producing magnet powder and sintered magnet produced by the method

Similar Documents

Publication Publication Date Title
US3702270A (en) Method of making a magnetic powder
US4475946A (en) Ferromagnetic metal particles of iron alloyed with Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Si, P, Mo, Sn, Sb and Ag coated with mono- or dialkoxysilanes
US4262037A (en) Method of producing ferromagnetic metal powder
US3977985A (en) Magnetic recording medium comprising cobalt or cobalt alloy coated particles of spicular magnetite
JPH02162703A (en) Manufacture of metallic magnetic powder
JP5280661B2 (en) Method for producing metal magnetic powder
US4369076A (en) Process for producing magnetic metal powder
JPS5835241B2 (en) Method for producing alloy magnetic powder mainly composed of iron and copper
JPS6411577B2 (en)
JP2982070B2 (en) Ferromagnetic metal powder and magnetic recording medium
JPH01222407A (en) Metal magnetic powder, and manufacture and usage thereof
JPS5919964B2 (en) Method for producing ferromagnetic metal powder
JPH01274402A (en) Magnetic metal powder
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JPH0448602A (en) Manufacture of metallic magnetic powder for magnetic recording
JPH01231301A (en) Metallic magnetic powder and usage thereof
JPH01220408A (en) Metal magnetic powder, manufacture thereof and use thereof
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JPH02232902A (en) Manufacture of magnetic metal powder for magnetic recording
JPS6136684B2 (en)
JPS6349722B2 (en)
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH0834145B2 (en) Method for producing metal magnetic powder for magnetic recording