JPH0834145B2 - Method for producing metal magnetic powder for magnetic recording - Google Patents

Method for producing metal magnetic powder for magnetic recording

Info

Publication number
JPH0834145B2
JPH0834145B2 JP63190338A JP19033888A JPH0834145B2 JP H0834145 B2 JPH0834145 B2 JP H0834145B2 JP 63190338 A JP63190338 A JP 63190338A JP 19033888 A JP19033888 A JP 19033888A JP H0834145 B2 JPH0834145 B2 JP H0834145B2
Authority
JP
Japan
Prior art keywords
magnetic powder
partial pressure
gas
treatment
metal magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63190338A
Other languages
Japanese (ja)
Other versions
JPH0239504A (en
Inventor
正剛 丸尾
新 小山
治紀 一ノ瀬
徳雄 吹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP63190338A priority Critical patent/JPH0834145B2/en
Publication of JPH0239504A publication Critical patent/JPH0239504A/en
Publication of JPH0834145B2 publication Critical patent/JPH0834145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気記録用に好適な金属磁性粉末、特に酸
化安定性の改善された磁気記録用金属磁性粉末の製造方
法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a metal magnetic powder suitable for magnetic recording, particularly a metal magnetic powder for magnetic recording having improved oxidative stability.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体は、近年記録容量の高密度化によって小
型化、高性能化の指向が一段と強まってきている。これ
とあいまって磁気記録用磁性粉末として、従来の酸化鉄
系磁性粉末に比し、飽和磁化が大きく、かつ高保磁力の
鉄または鉄系合金類の鉄系金属磁性粉末(以下、金属磁
性粉末という)が注目されており、オーディオテープや
8m/mビデオテープなどへの適用が試みられているほか、
近時された高画質ビデオテープ、デジタルオーディオテ
ープ、高記録密度ディスクなど高性能記録媒体への適用
が一層期待されつつある。
In recent years, magnetic recording media have become more and more compact and have higher performance due to higher recording capacities. Together with this, as magnetic powder for magnetic recording, iron-based metal magnetic powder of iron or iron-based alloys having a larger saturation magnetization and a higher coercive force than the conventional iron oxide-based magnetic powder (hereinafter referred to as metal magnetic powder). ) Is attracting attention, and audio tapes and
In addition to being attempted to apply to 8m / m video tapes,
The application to high-performance recording media such as high-definition video tapes, digital audio tapes, and high-density discs, which have been recently developed, is further expected.

ところで、このような金属磁性粉末は、通常約0.5μ
以下さらには0.3μ以下の微粒子のものが望まれてお
り、このような微粒子は表面活性が強く、このために経
時的に酸化が進むとともにこれにともなって飽和磁化な
どの磁気特性が低下しいわゆる酸化安定性の悪化が避け
られなかったり、また甚しい場合には前記酸化反応が急
激に進むと自然発火、燃焼に至るなど取扱操作、工程管
理上、種々のトラブルが避けられなかったりする。
By the way, such metal magnetic powder is usually about 0.5 μm.
Furthermore, fine particles having a particle size of 0.3 μm or less are desired.Such fine particles have strong surface activity, and as a result, oxidation progresses over time and magnetic characteristics such as saturation magnetization decrease with it. Deterioration of the oxidative stability is unavoidable, and in severe cases, various troubles are unavoidable in handling operations and process control such as spontaneous ignition and combustion when the oxidation reaction rapidly progresses.

これらの問題点を改善するために種々の提案が既にな
されている。たとえば、(1)金属磁性粉末の製造時
に、鉄塩水溶液や水和酸化鉄に鉄以外の金属成分を添加
処理して合金化する方法、(2)金属磁性粉末粒子表面
を種々の無機系あるいは有機系の処理剤で被覆する方法
などが試みられたりしている。しかしながら(1)の方
法は鉄を置換して合金化できる金属が限られるととも
に、酸化安定性を向上させるには置換金属量を多くする
必要があり、保磁力や飽和磁化などの磁気特性が大幅に
低下し易く、また(2)の方法は、十分な酸化安定性を
付与しようとすると被覆量をかなり増大せねばならずそ
の結果、飽和磁化の低下が避けられず、かつ磁性塗料化
時の分散性が損なわれたり、磁気記録媒体の強度が低下
し易いなど問題点が少なくない。
Various proposals have already been made in order to improve these problems. For example, (1) a method of alloying by adding a metal component other than iron to an aqueous iron salt solution or hydrated iron oxide during the production of the metal magnetic powder, (2) a surface of the metal magnetic powder particles of various inorganic or There have been attempts such as a method of coating with an organic treatment agent. However, the method (1) limits the metals that can be alloyed by substituting iron, and it is necessary to increase the amount of the substituting metal in order to improve the oxidation stability, and the magnetic properties such as coercive force and saturation magnetization are significantly In the method (2), the amount of coating must be considerably increased in order to impart sufficient oxidative stability, and as a result, a decrease in saturation magnetization cannot be avoided and a magnetic coating composition is used. There are many problems such as impairing the dispersibility and easily lowering the strength of the magnetic recording medium.

さらに前記耐酸化性を付与する方法として金属磁性粉
末粒子の表面に酸化被膜を形成させる方法も種々提案さ
れている。たとえば、(1)、微量の酸素含有ガスを導
入して粒子表面をゆっくり酸化する方法(たとえば特公
昭51−5608,特開昭48−25662,特公昭52−19541)、
(2)、水蒸気を含む窒素ガスの雰囲気中で粒子表面を
酸化する方法(たとえば特公昭35−3862,特公昭45−986
9,特公昭61−36044)、(3)水蒸気を含む酸素含有ガ
ス雰囲気中で粒子表面を酸化する方法(たとえば特開昭
56−55503,特開昭56−69301)、(4)水蒸気を含む水
素ガス雰囲気中で粒子表面を酸化する方法(たとえば特
公昭58−5241,特公昭58−52522,特開昭60−26602)など
が知られている。しかしながら、前記(1)の方法は、
酸化反応時の発熱量が大きく、反応器内の温度分布の均
一制御が容易でなく、このためガス流量のきめ細かいコ
ントロールを行いながらきわめて長時間にわたって処理
しなければならなかったり、また前記(2)の方法は、
粒子表面に形成される酸化鉄がヘマタイトとなり易くか
つ均質な安定被膜を得ようとすると膜厚を大きくせねば
ならず飽和磁化の低下がさけられなかったりする。さら
に前記(3)の方法は、比較的低い温度でも酸化反応が
行ない得るものの、水和酸化物が形成され易く耐酸化性
の付与効果が実質的にもたらされなかったりする。また
前記(4)の方法は、粒子表面に飽和磁化の低下の比較
的少ないマグネタイト被膜が形成され易いものの、十分
なマグネタイト被膜厚を得ようとすると水蒸気濃度を高
くする必要がありその結果酸化反応が過度に進みヘマタ
イトやウスタイトが混入され易かったり、かつマグネタ
イトの均一被膜の形成が損なわれ易かったりする。
Further, as a method of imparting the above-mentioned oxidation resistance, various methods of forming an oxide film on the surface of the magnetic metal powder particles have been proposed. For example, (1), a method of introducing a trace amount of oxygen-containing gas to slowly oxidize the particle surface (for example, JP-B-51-5608, JP-A-48-25662, JP-B-52-19541),
(2) A method of oxidizing the surface of particles in an atmosphere of nitrogen gas containing water vapor (for example, Japanese Examined Patent Publication 35-3862 and Japanese Patent Publication 45-986).
9, Japanese Examined Patent Publication No. 61-36044), (3) A method of oxidizing the surface of particles in an oxygen-containing gas atmosphere containing water vapor (see, for example, Japanese Patent Laid-Open Publication No.
56-55503, JP-A-56-69301), (4) A method of oxidizing the particle surface in a hydrogen gas atmosphere containing water vapor (for example, JP-B-58-241, JP-B-58-52522, JP-A-60-26602). Are known. However, the above method (1) is
Since the amount of heat generated during the oxidation reaction is large and it is not easy to control the temperature distribution in the reactor uniformly, it is necessary to carry out the treatment for an extremely long time while controlling the gas flow rate finely. The method of
The iron oxide formed on the surface of the particles is likely to become hematite, and in order to obtain a uniform stable film, the film thickness must be increased and the saturation magnetization cannot be lowered. Further, in the method (3), although the oxidation reaction can be carried out even at a relatively low temperature, hydrated oxides are easily formed and the effect of imparting oxidation resistance is not substantially brought about. In the method (4), although a magnetite coating with a relatively small decrease in saturation magnetization is easily formed on the particle surface, it is necessary to increase the water vapor concentration in order to obtain a sufficient magnetite film thickness, and as a result, the oxidation reaction Excessively progresses, hematite and wustite are easily mixed in, and formation of a uniform coating of magnetite is easily impaired.

前記のように、従来方法による安定化処理の場合は、
耐酸化性を十分満足に付与し得るものでなかったり、十
分な耐酸化性を付与しようとすると金属磁性粉末の高飽
和磁化、高保磁力などの優れた磁気特性や塗料化時の分
散性などが損なわれ易かったり、さらには前記酸化反応
処理における工程操作のコントロールが容易でなく、こ
のために安定化処理による品質性能のバラツキが大きい
など、未だ改善を要する問題点が多くその解決が望まれ
ている。ことに、さらに高S/N比化、高出力化が一段と
要請されていることとあいまって、金属磁性粉末のより
微粒子化が指向されており、前記問題点の解決が強く希
求されている。
As mentioned above, in the case of the stabilization treatment by the conventional method,
If it is not possible to impart sufficient oxidation resistance, or if it is attempted to impart sufficient oxidation resistance, the excellent magnetic properties such as high saturation magnetization and high coercive force of the metal magnetic powder, and dispersibility at the time of coating can be obtained. It is easy to be impaired, and further, it is not easy to control the process operation in the oxidation reaction treatment, and therefore there are many problems that still need improvement, such as large variations in quality performance due to stabilization treatment, and its solution is desired. There is. In particular, with further demands for higher S / N ratio and higher output, further reduction of the particle size of the magnetic metal powder is aimed at, and there is a strong demand for solving the above problems.

〔発明の目的〕[Object of the Invention]

本発明は、前記問題点を解決し、高密度磁気記録用媒
体に好適な耐酸化性の改善された磁気記録用金属磁性粉
末を工業的に製造する上で、きわめて効率的に安定性よ
くなし得る方法を提供することにある。
The present invention solves the above-mentioned problems and, in industrially producing a magnetic metal powder for magnetic recording having improved oxidation resistance, which is suitable for a high-density magnetic recording medium, is extremely efficient and good in stability. It is to provide a method of obtaining.

〔発明の概要〕[Outline of Invention]

本発明者等は、かねてより、金属磁性粉末の優れた磁
気特性を損なうことなく、耐酸化性を効率的に付与し得
る方法を確立すべく種々検討を重ねてきている。しかし
て優れた耐酸化性と金属磁性粉末の磁気特性を実用的に
維持せしめる上で、前記のいわゆる気相法による酸化処
理によって、金属磁性粉末の粒子表面に高飽和磁化のマ
グネタイトのような組成を有しかつ緻密な均一被膜の酸
化鉄層を、工業的に操作容易にして、安定性よく効率的
に形成させることがきわめて重要であることに着目し、
前記気相法酸化処理における問題点を解決すべく、さら
に検討を進めた。その結果、金属磁性粉末を、特定の低
水蒸気分圧でかつ特定の水蒸気分圧/水素分圧になるよ
うに不活性ガスで希釈、調製した混合ガスで加熱処理を
行なうことにより、反応系内の温度分布の均一化や反応
熱の除熱等を効果的にはかりつつ該金属磁性粉末の表面
に選択的に緻密なマグネタイト層をきわめて操作容易に
して安定性よく形成し得、金属磁性粉末の優れた磁気特
性を実質的に損なうことなく、所望の耐酸化性を付与し
得ること、さらに前記混合ガス系での加熱処理後、ひき
つづいて酸素含有ガスで酸化処理する場合には、前記マ
グネタイトの表面部分のみを効果的にさらに酸化するこ
とができ耐酸化性を一層好ましいものとすることの知見
を得、本発明を完成したものである。
The present inventors have long been conducting various studies to establish a method capable of efficiently imparting oxidation resistance without impairing the excellent magnetic properties of the metallic magnetic powder. However, in order to maintain the excellent oxidation resistance and the magnetic properties of the metal magnetic powder for practical use, a composition such as magnetite with high saturation magnetization is formed on the particle surface of the metal magnetic powder by the oxidation treatment by the so-called vapor phase method described above. Paying attention to the fact that it is very important to form an iron oxide layer having a dense and dense uniform film industrially easily, and stably and efficiently.
Further studies were conducted to solve the problems in the vapor-phase oxidation treatment. As a result, the metallic magnetic powder was diluted with an inert gas to a specific low steam partial pressure and a specific steam partial pressure / hydrogen partial pressure, and heat-treated with a prepared mixed gas, whereby the reaction system Of the metal magnetic powder can be formed with excellent stability by selectively operating a dense magnetite layer on the surface of the metal magnetic powder while effectively achieving uniform temperature distribution and removal of reaction heat. It is possible to impart desired oxidation resistance without substantially impairing the excellent magnetic properties, and further, after the heat treatment in the mixed gas system, followed by oxidation treatment with an oxygen-containing gas, the magnetite of The present invention has been completed based on the finding that only the surface portion can be effectively further oxidized and the oxidation resistance becomes more preferable.

すなわち、本発明の第1は、鉄を主体とする金属磁性
粉末を、不活性ガスに水蒸気及び水素ガスを水蒸気分圧
0.1〜30mmHgであってかつ水蒸気分圧/水素分圧=0.6〜
15になるように混合してなるガス雰囲気中で、100〜500
℃の温度で加熱処理することを特徴とする磁気記録用金
属磁性粉末の製造方法であり、また本発明の第2は、鉄
を主体とする金属磁性粉末を、不活性ガスに水蒸気及び
水素ガスを水蒸気分圧0.1〜30mmHgであってかつ水蒸気
分圧/水素分圧=0.6〜15になるように混合してなるガ
ス雰囲気中で、100〜500℃の温度で加熱処理し、しかる
後酸素含有ガスで酸化処理することを特徴とする磁気記
録用金属磁性粉末の製造方法である。
That is, the first aspect of the present invention is to use a metallic magnetic powder mainly composed of iron in which steam and hydrogen gas are mixed with an inert gas to form a steam partial pressure.
0.1 to 30 mmHg and steam partial pressure / hydrogen partial pressure = 0.6 to
100 to 500 in a mixed gas atmosphere of 15.
A second aspect of the present invention is a method of producing a metal magnetic powder for magnetic recording, which comprises heat-treating at a temperature of ℃, and the second aspect of the present invention is to use a metal magnetic powder mainly composed of iron in an inert gas containing steam and hydrogen gas. Is mixed at a steam partial pressure of 0.1 to 30 mmHg and a steam partial pressure / hydrogen partial pressure of 0.6 to 15 at a temperature of 100 to 500 ° C., and then oxygen is added. A method for producing a metal magnetic powder for magnetic recording, which is characterized by performing an oxidation treatment with a gas.

本発明において、被処理物として使用する金属磁性粉
末(以下基体粒子という)は、種々の方法によって製造
される鉄または鉄を主体とする鉄系合金類の金属磁性粉
末であって、通常、たとえばα−FeOOHなどの針状水和
酸化鉄を、加熱・脱水後もしくは加熱脱水することな
く、水素等の還元性ガスで加熱還元することによって得
られるものである。前記加熱処理においては、被加熱粒
子の焼結や形状の崩れなどを防ぐために、必要に応じ該
粒子にたとえばケイ素化合物、アルミニウム化合物、リ
ン化合物、ホウ素化合物、ニッケル化合物、コバルト化
合物、銅化合物、錫化合物、ジルコニウム化合物などの
種々の処理剤を1種または2種以上添加してもよい。前
記のようにして得られる基体粒子は、もっとも一般的に
は針状晶のものであるが、このほかたとえば紡錘状、米
粒状、球状、棒状、平板状、サイコロ状など種々の形状
のものを使用することができる。また粒子の大きさは、
種々の範囲のものを使用し得るが、高密度記録用磁性材
料への適用をはるかには、微細な粒子径のもの、ことに
0.3μm以下のものが好適であり、このものはとりわけ
表面活性が大きく本発明の耐酸化性処理の適用をはかる
上でより好ましいものである。
In the present invention, the metal magnetic powder used as the object to be treated (hereinafter referred to as substrate particles) is a metal magnetic powder of iron or iron-based alloys mainly composed of iron, which is produced by various methods. It is obtained by subjecting acicular hydrated iron oxide such as α-FeOOH to heat reduction with a reducing gas such as hydrogen after heating / dehydration or without heat dehydration. In the heat treatment, in order to prevent sintering or shape collapse of the particles to be heated, for example, a silicon compound, an aluminum compound, a phosphorus compound, a boron compound, a nickel compound, a cobalt compound, a copper compound, tin is added to the particles as necessary. One or more kinds of various treating agents such as compounds and zirconium compounds may be added. The substrate particles obtained as described above are most commonly acicular crystals, but in addition to these, various shapes such as spindle-shaped, rice granular, spherical, rod-shaped, plate-shaped, and dice-shaped are also available. Can be used. The size of the particles is
Various ranges can be used, but the application to magnetic materials for high-density recording is far superior to that of fine particles.
Those having a particle size of 0.3 μm or less are preferable, and those having particularly large surface activity are more preferable in applying the oxidation resistance treatment of the present invention.

本発明において、前記耐酸化性処理を行なうには、ま
ずたとえば窒素、ヘリウム、アルゴンなどのほか、当該
処理において金属磁性粉末に不活性な種々の気体の1種
または2種以上に、水素ガスと水蒸気とを所定量混合し
て所望の組成の混合ガスを調製する。たとえば不活性ガ
スと水素ガスの所定量とを常法により加湿器に導入して
加湿し、水蒸気分圧/水素分圧の比率が、通常0.6〜1
5、望ましくは0.6〜12、かつ水蒸気分圧が通常0.1〜30m
mHg、望ましくは1〜20mmHgであるような組成な混合ガ
スを調製する。混合ガス系の水蒸気分圧/水素分圧の比
率が前記範囲より低きにすぎると所望のマグネタイト被
膜の形成が進みにくく、またその際処理温度を高めよう
とするとウスタイトなどのような副生相の混入がさけら
れなかったりする。また前記範囲より高きにすぎると酸
化反応が過度に進み非磁性のヘマタイト相の不均質な被
膜が形成され易くなり好ましくない。さらに水蒸気分圧
が前記範囲より低きにすぎると、不活性ガス量が増大し
マグネタイト被膜の形成にきわめて長時間を要し、また
前記範囲より高きにすぎると反応器内の温度分布の均一
化、反応熱の除熱化が損なわれ易くなり緻密なマグネタ
イト層の形成がいちじるしく困難となる。当該加熱処理
における前記混合ガス中の不活性ガス分圧は、通常600m
mHg以上、望ましくは700mmHg以上であり、前記分圧より
低きにすぎると、反応コントロールが困難となって反応
が急激に進み易く、緻密なマグネタイト層の形成が損な
われる。
In the present invention, in order to carry out the oxidation resistance treatment, first, for example, nitrogen, helium, argon, etc., and one or more of various gases inert to the metal magnetic powder in the treatment are treated with hydrogen gas. A predetermined amount of water vapor is mixed to prepare a mixed gas having a desired composition. For example, an inert gas and a predetermined amount of hydrogen gas are introduced into a humidifier by a conventional method for humidification, and the steam partial pressure / hydrogen partial pressure ratio is usually 0.6 to 1
5, desirably 0.6 to 12, and steam partial pressure is usually 0.1 to 30 m
A mixed gas having a composition of mHg, preferably 1 to 20 mmHg is prepared. If the ratio of water vapor partial pressure / hydrogen partial pressure of the mixed gas system is too lower than the above range, the formation of the desired magnetite film is difficult to proceed, and at that time, if an attempt is made to raise the treatment temperature, a by-product phase such as wustite is formed. It is not possible to avoid the mixture of. On the other hand, if the content is higher than the above range, the oxidation reaction proceeds excessively and a non-magnetic non-hematite phase non-uniform coating is likely to be formed, which is not preferable. Further, if the water vapor partial pressure is too low than the above range, the amount of inert gas increases and it takes a very long time to form the magnetite film, and if it is higher than the above range, the temperature distribution in the reactor becomes uniform. However, the removal of the heat of reaction is easily impaired, and the formation of a dense magnetite layer becomes extremely difficult. The inert gas partial pressure in the mixed gas in the heat treatment is usually 600 m
If it is at least mHg, preferably at least 700 mmHg, and is too low than the above partial pressure, it becomes difficult to control the reaction and the reaction is likely to proceed rapidly, and the formation of a dense magnetite layer is impaired.

前記のように調製された混合ガスによる金属磁性粉末
との加熱接触処理を行なうには、通常の固−気接触反応
処理に用いられる流動床、固定床、移動床などの種々の
形式の反応器に、還元性ガス中で加熱還元して得られた
金属磁性粉末、そのほか種々の方法によって製造された
金属磁性粉末を充填し、これに前記混合ガスを大気圧下
で所定の供給速度で通気しながら、通常100〜500℃、望
ましくは150〜450℃の温度範囲を維持して加熱処理する
ことによって行なうことができる。処理温度が前記範囲
より低きにすぎると、金属磁性粉末粒子表面での所定量
のマグネタイト層の形成にきわめて長時間を要し、また
前記範囲より高きにすぎると粒子形状の崩れや粒子間焼
結を惹起し、保磁力、角形比などの磁気特性や分散性な
どを損なうため好ましくない。前記の加熱処理時間は、
反応器の大きさ、被処理金属磁性粉末の量や種類、通気
混合ガス組成、処理温度によって、一概に言えないが通
常0.5〜10時間程度である。
In order to perform the heat contact treatment with the metal magnetic powder by the mixed gas prepared as described above, various types of reactors such as a fluidized bed, a fixed bed and a moving bed which are used in a usual solid-gas contact reaction treatment are used. Filled with a metallic magnetic powder obtained by heating and reducing in a reducing gas, and other metallic magnetic powders produced by various methods, and the mixed gas is aerated at a predetermined supply rate under atmospheric pressure. However, the heat treatment may be performed while maintaining a temperature range of usually 100 to 500 ° C, preferably 150 to 450 ° C. If the treatment temperature is lower than the above range, it takes a very long time to form a predetermined amount of the magnetite layer on the surface of the metal magnetic powder particles, and if it is higher than the above range, the shape of the particles may be distorted or interparticle burning may occur. This is not preferable because it causes binding and impairs magnetic properties such as coercive force and squareness ratio and dispersibility. The heat treatment time is
Depending on the size of the reactor, the amount and kind of the magnetic metal powder to be treated, the composition of the aerated mixed gas, and the treatment temperature, it is generally 0.5 to 10 hours, although it cannot be generally stated.

前記のようにして加熱処理を所定時間行なって粒子表
面に所望のマグネタイト被膜を形成させた金属磁性粉末
は、たとえば当該処理系に不活性ガスを通気して冷却
し、あるいはこのものをさらに必要に応じ有機溶剤中で
浸漬処理し風乾後、処理工程より容易に取り出すことが
できる。
The metal magnetic powder having the desired magnetite coating formed on the particle surface by performing the heat treatment for a predetermined time as described above may be cooled, for example, by passing an inert gas through the treatment system to cool the metal magnetic powder. Correspondingly, it can be easily taken out from the treatment step after being immersed in an organic solvent and air-dried.

本発明において、前記のようにして粒子表面にマグネ
タイト被膜を形成させて所望の耐酸化性を付与した金属
磁性粉末は、さらに酸素含有ガスを通気し、通常室温〜
200℃で作用させて、前記金属磁性粉末粒子表面に形成
されたマグネタイト層の表面部分のみを、選択的にさら
に酸化してFe2O3とすることができる。前記の第二段目
の安定処理を行なう場合は、前記第一段目の加熱処理に
よって得られた金属磁性粉末の飽和磁化、保磁力などの
磁気特性や分散性などを実質的に損なうことなく、耐酸
化性を一層高め、きわめて安定性に優れた高密度記録用
磁気記録材料としてより望ましいものとすることができ
る。なお、前記第一段目処理品、および第二段目処理品
は、さらに必要に応じ、たとえば、リン酸塩、ケイ酸塩
などの無機化合物、あるいは高級脂肪酸、アミンやアミ
ド類、アントラニル酸、アセチルアセトンなどのキレー
ト化剤等の有機化合物を被着処理したり、さらにはCo,N
i,ZnまたはMn等の含有化合物で処理して粒子表面をフェ
ライト化したりすることによって、耐酸化性や分散性を
一層好ましいものとすることもできる。
In the present invention, the metal magnetic powder having the magnetite coating formed on the surface of the particles to impart desired oxidation resistance as described above is further ventilated with an oxygen-containing gas, and is usually at room temperature to
By operating at 200 ° C., only the surface portion of the magnetite layer formed on the surface of the metal magnetic powder particles can be selectively oxidized to Fe 2 O 3 . When performing the above-mentioned second-stage stabilization treatment, the saturation characteristics of the metal magnetic powder obtained by the first-stage heat treatment, magnetic properties such as coercive force and dispersibility are not substantially impaired. Further, it can be made more desirable as a magnetic recording material for high density recording, which has further improved oxidation resistance and is extremely stable. The first-stage treated product and the second-stage treated product may further include inorganic compounds such as phosphates and silicates, higher fatty acids, amines and amides, and anthranilic acid, if necessary. Deposition treatment of organic compounds such as chelating agents such as acetylacetone, and further Co, N
The oxidation resistance and the dispersibility can be further improved by treating the surface of the particles with a compound containing i, Zn, Mn or the like to form a ferrite.

以下に実施例および比較例を挙げて本発明をさらに説
明する。
The present invention will be further described below with reference to Examples and Comparative Examples.

〔本発明の実施例〕Example of the present invention

実施例1 針状の鉄を主体とする金属磁性粉末〔平均長軸径0.2
μm、平均軸比8及び比表面積85m2/gであって、シリカ
(Si/Fe:5.9原子重量%)及びニッケル(Ni/Fe:0.9原子
重量%)を被着したα−FeOOHを750℃で加熱脱水したα
−Fe2O3を、水素ガス雰囲気中で425℃で加熱還元して得
られた平均長軸径0.145μm、平均軸比8及び比表面積6
5m2/g、保磁力(Hc)1468Oe、飽和磁化(σs)169emu/
g:基体粒子A〕35gを、堅形固定床反応器(内径4.3cm
φ、高さ50cm)に装入し、ここへ表1に示す組成の混合
ガス(窒素ガス分圧は、748mmHg)を線速度10cm/secで
通気し、425℃で180分間保持して加熱徐酸化処理した。
しかる後窒素ガスに切り替えて室温まで冷却した。
Example 1 Magnetic magnetic powder mainly composed of needle-shaped iron [average major axis diameter 0.2
μm, average axial ratio 8 and specific surface area 85 m 2 / g, α-FeOOH coated with silica (Si / Fe: 5.9 atomic weight%) and nickel (Ni / Fe: 0.9 atomic weight%) at 750 ° C. Α dehydrated by heating in
-Fe 2 O 3 was heated and reduced in a hydrogen gas atmosphere at 425 ° C to obtain an average major axis diameter of 0.145 μm, an average axial ratio of 8 and a specific surface area of 6
5m 2 / g, coercive force (Hc) 1468Oe, saturation magnetization (σs) 169emu /
g: Substrate particles A] 35 g of solid fixed bed reactor (inner diameter 4.3 cm
φ, height 50 cm), and aerated with a mixed gas of the composition shown in Table 1 (nitrogen gas partial pressure is 748 mmHg) at a linear velocity of 10 cm / sec, and hold it at 425 ° C for 180 minutes to heat it slowly. Oxidized.
Then, the atmosphere was switched to nitrogen gas and cooled to room temperature.

比較例1 実施例1において、混合ガス中に不活性ガスを含まな
いことのほかは、同例の場合と同様に処理した。
Comparative example 1 In Example 1, it processed like the case of the same example except not containing an inert gas in mixed gas.

比較例2 実施例1において、混合ガス中(窒素ガス分圧は、75
5.5mmHg)に水素ガスを含まないことと処理時間を80分
としたことのほかは、同例の場合と同様に処理した。
Comparative Example 2 In Example 1, in mixed gas (nitrogen gas partial pressure is 75
The treatment was performed in the same manner as in the case of the same example, except that 5.5 mmHg) did not contain hydrogen gas and the treatment time was 80 minutes.

実施例2〜5 針状の鉄を主体とする金属磁性粉末〔平均長軸径0.25
μm、平均軸比10及び比表面積70m2/gであって、シリカ
(Si/Fe:4.3原子重量%)及びニッケル(Ni/Fe:0.4原子
重量%)を被着したα−FeOOHを825℃で加熱脱水したα
−Fe2O3を、水素ガス雰囲気中で425℃で加熱還元して得
られた平均長軸径0.17μm、軸比10及び比表面積53m2/
g、保磁力(Hc)1320Oe、飽和磁化(σs)183.5emu/g:
基体粒子B〕35gを、堅形固定床反応器(内径4.3cmφ、
高さ50cm)に装入し、ここへ表2に示す混合ガス(窒素
ガス分圧は、実施例2及び3:754.75mmHg、実施例4:752.
25mmHg、実施例5:754.75mmHg)を線速度10cm/secで通気
するとともに表−2に示す温度、時間を保持して混合系
での加熱徐酸化処理した。しかる後室温まで冷却し、次
いでトルエン中に浸漬した後、トルエンを揮散させた。
(処理I) 次いで前記の混合ガス系での加熱徐酸化処理した金属
磁性粉末は、流動床反応器(内径5cmφ、高さ30cm)に
装入し、酸素含有ガス(酸素−窒素混合ガス、酸素濃
度:1容積%)を線速度10cm/secで導入し、30℃で5時間
保持して安定化処理した。(処理II) 比較例3 実施例2において、窒素ガス−水蒸気ガス−水素ガス
系混合ガスでの加熱徐酸化処理を行なわないこと及び処
理IIの時間を10時間としたことのほかは、同例の場合と
同様に処理した。
Examples 2 to 5 Metallic magnetic powder mainly composed of acicular iron [average major axis diameter 0.25
μm, average axial ratio 10 and specific surface area 70 m 2 / g, α-FeOOH coated with silica (Si / Fe: 4.3 atomic weight%) and nickel (Ni / Fe: 0.4 atomic weight%) at 825 ° C Α dehydrated by heating in
-Fe 2 O 3 was heated and reduced in a hydrogen gas atmosphere at 425 ° C to obtain an average major axis diameter of 0.17 μm, an axial ratio of 10 and a specific surface area of 53 m 2 /
g, coercive force (Hc) 1320Oe, saturation magnetization (σs) 183.5emu / g:
Substrate particles B] 35 g of solid fixed bed reactor (inner diameter 4.3 cmφ,
It was charged in a height of 50 cm, and mixed gas shown in Table 2 (nitrogen gas partial pressure in Examples 2 and 3: 754.75 mmHg, Example 4: 752.
25 mmHg, Example 5: 754.75 mmHg) was aerated at a linear velocity of 10 cm / sec, and the temperature and time shown in Table 2 were maintained to carry out heat gradual oxidation treatment in a mixed system. Then, the mixture was cooled to room temperature and then immersed in toluene, and then toluene was volatilized.
(Treatment I) Next, the metal magnetic powder subjected to the heat gradual oxidation treatment in the above mixed gas system was charged into a fluidized bed reactor (inner diameter 5 cmφ, height 30 cm), and an oxygen-containing gas (oxygen-nitrogen mixed gas, oxygen). (Concentration: 1% by volume) was introduced at a linear velocity of 10 cm / sec, and the mixture was held at 30 ° C. for 5 hours for stabilization treatment. (Treatment II) Comparative Example 3 The same example as in Example 2 except that the heating gradual oxidation treatment with the nitrogen gas-steam gas-hydrogen gas-based mixed gas was not performed and the treatment II time was 10 hours. Was treated in the same manner as in.

比較例4 実施例1において、水素ガス分圧410mmHg、水蒸気分
圧350mmHgの組成を有する混合ガスを用いることのほか
は、同例の場合と同様に処理した。
Comparative Example 4 The same process as in Example 1 was performed except that a mixed gas having a composition of hydrogen gas partial pressure of 410 mmHg and steam partial pressure of 350 mmHg was used in Example 1.

比較例5 実施例1において、水素ガス分圧97mmHg、水蒸気分圧
83mmHg、窒素ガス分圧580mmHgの組成を有する混合ガス
を用いることのほかは、同例の場合と同様に処理した。
Comparative Example 5 In Example 1, hydrogen gas partial pressure 97 mmHg, water vapor partial pressure
The same treatment as in the case of the same example was performed except that a mixed gas having a composition of 83 mmHg and a nitrogen gas partial pressure of 580 mmHg was used.

前記の実施例及び比較例の金属磁性粉末を用い下記の
混合組成物を混合分散させて磁性塗料を調製した。
Using the magnetic metal powders of the above Examples and Comparative Examples, the following mixed compositions were mixed and dispersed to prepare magnetic paints.

磁性粉末 5 重量部 ポリウレタン樹脂(30%溶液) 2.96重量部 分散剤 0.25重量部 混合溶媒 13.4 重量部 (トルエン/MEK/シクロヘキサン:4.5/4.5/1) 次いで、前記磁性塗料をポリエステルフィルム上に、
乾燥膜厚10μmとなるように塗布し、配向処理後乾燥し
て磁気テープを作成した。
Magnetic powder 5 parts by weight Polyurethane resin (30% solution) 2.96 parts by weight Dispersant 0.25 parts by weight Mixed solvent 13.4 parts by weight (toluene / MEK / cyclohexane: 4.5 / 4.5 / 1) Then, the magnetic paint is applied on a polyester film,
A magnetic tape was prepared by coating so as to have a dry film thickness of 10 μm, drying after orientation treatment.

前記の実施例及び比較例の金属磁性粉末と、それらを
用いて作成した磁気テープについて、常法により飽和磁
化(σs:emu/g)、保磁力(Hc:Oe)、飽和磁束密度(B
m:Gauss)、角形比(Rs)、配向比(OR)、反応磁界分
布(SFD)、光沢(60゜−60゜)を測定した。また酸化
安定性を評価するために、温度60℃、相対湿度80℃の環
境下で1週間放置して、σs、Bm、Rs、Hcについて促進
経時変化を測定し、飽和磁化の劣化率Δσs(%)及び
ΔBm(%)を次式によって求めた。これらの結果を表1
及び表2に示す。
Regarding the magnetic metal powders of the above-mentioned Examples and Comparative Examples and magnetic tapes prepared using them, saturation magnetization (σs: emu / g), coercive force (Hc: Oe), saturation magnetic flux density (B
m: Gauss), squareness ratio (Rs), orientation ratio (OR), reaction magnetic field distribution (SFD), and gloss (60 ° -60 °) were measured. Further, in order to evaluate the oxidation stability, the sample was left in an environment of a temperature of 60 ° C. and a relative humidity of 80 ° C. for 1 week, and accelerated aging changes of σs, Bm, Rs, and Hc were measured, and the deterioration rate Δσs ( %) And ΔBm (%) were calculated by the following equations. These results are shown in Table 1.
And shown in Table 2.

(式中、σsは経時前のσsであり、σs′は経時後の
σsである) (式中、Bmは経時前のBmであり、Bm′は経時後のBmであ
る) 〔発明の効果〕 本発明方法に係わる金属磁性粉末は、酸化安定性がい
ちじるしく改善されたものであって、優れた磁気特性を
長時間保持し得るとともに、それ自体貯蔵安定性に優れ
取扱操作上、工程管理上甚だ好ましいものであること、
さらに媒体への分散性も良好なものであって高出力の高
密度磁気記録媒体を製造する上できわめて好適なもので
ある。
(In the formula, σs is σs before aging and σs ′ is σs after aging) (In the formula, Bm is Bm before aging and Bm ′ is Bm after aging) [Effects of the Invention] The metal magnetic powder according to the method of the present invention has remarkably improved oxidative stability, can retain excellent magnetic properties for a long time, and is excellent in storage stability itself in handling and handling. , It is very preferable for process control,
Further, it has a good dispersibility in the medium and is extremely suitable for producing a high-output high-density magnetic recording medium.

また本発明方法は、金属磁性粉末に対する水蒸気によ
るいわゆる徐酸化処理を、低水蒸気濃度下で操作容易に
してきわめて効率よく、品質の安定した高耐酸化性能を
付与し得るものであり、工業的に甚だ有用なものであ
る。
In addition, the method of the present invention is capable of imparting highly stable oxidation resistance of stable quality to the metal magnetic powder by so-called gradual oxidation treatment with steam, which is easy to operate under low steam concentration and is extremely efficient. It is very useful.

フロントページの続き (56)参考文献 特開 昭56−55503(JP,A) 特開 昭56−203(JP,A) 特開 昭63−239802(JP,A)Front Page Continuation (56) References JP-A-56-55503 (JP, A) JP-A-56-203 (JP, A) JP-A-63-239802 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉄を主体とする金属磁性粉末を、不活性ガ
スに水蒸気及び水素ガスを水蒸気分圧0.1〜30mmHgであ
ってかつ水蒸気分圧/水素分圧=0.6〜15になるように
混合してなるガス雰囲気中で、100〜500℃の温度で加熱
処理することを特徴とする磁気記録用金属磁性粉末の製
造方法。
1. Metal magnetic powder mainly composed of iron is mixed with water vapor and hydrogen gas in an inert gas so that the water vapor partial pressure is 0.1 to 30 mmHg and the water vapor partial pressure / hydrogen partial pressure is 0.6 to 15. A method for producing a metal magnetic powder for magnetic recording, which comprises heat-treating at a temperature of 100 to 500 ° C. in a gas atmosphere obtained by.
【請求項2】鉄を主体とする金属磁性粉末を、不活性ガ
スに水蒸気及び水素ガスを水蒸気分圧0.1〜30mmHgであ
ってかつ水蒸気分圧/水素分圧=0.6〜15になるように
混合してなるガス雰囲気中で、100〜500℃の温度で加熱
処理し、しかる後酸素含有ガスで酸化処理することを特
徴とする磁気記録用金属磁性粉末の製造方法。
2. Metal magnetic powder mainly composed of iron is mixed with water vapor and hydrogen gas in an inert gas so that the water vapor partial pressure is 0.1 to 30 mmHg and the water vapor partial pressure / hydrogen partial pressure is 0.6 to 15. A method for producing a metal magnetic powder for magnetic recording, which comprises heat-treating at a temperature of 100 to 500 ° C. in the gas atmosphere and then oxidizing with an oxygen-containing gas.
JP63190338A 1988-07-29 1988-07-29 Method for producing metal magnetic powder for magnetic recording Expired - Lifetime JPH0834145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63190338A JPH0834145B2 (en) 1988-07-29 1988-07-29 Method for producing metal magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63190338A JPH0834145B2 (en) 1988-07-29 1988-07-29 Method for producing metal magnetic powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPH0239504A JPH0239504A (en) 1990-02-08
JPH0834145B2 true JPH0834145B2 (en) 1996-03-29

Family

ID=16256534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63190338A Expired - Lifetime JPH0834145B2 (en) 1988-07-29 1988-07-29 Method for producing metal magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH0834145B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035569B2 (en) 2006-08-11 2011-10-11 Mitsui Chemicals, Inc. Antenna core and antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852522B2 (en) * 1979-06-18 1983-11-24 戸田工業株式会社 Production method of metallic iron or alloy magnetic powder mainly composed of iron
JPS5914081B2 (en) * 1979-10-05 1984-04-03 日立マクセル株式会社 Manufacturing method of metal magnetic powder with excellent corrosion resistance
JPS63239802A (en) * 1986-11-10 1988-10-05 Mitsui Toatsu Chem Inc Manufacture of magnetic iron powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035569B2 (en) 2006-08-11 2011-10-11 Mitsui Chemicals, Inc. Antenna core and antenna

Also Published As

Publication number Publication date
JPH0239504A (en) 1990-02-08

Similar Documents

Publication Publication Date Title
JP3498885B2 (en) Method for producing alloy magnetic particles containing iron as a main component
US4318735A (en) Process for preparing magnetic particles with metallic region therein, and magnetic particles prepared by the process
JP3925640B2 (en) Spindle-like alloy magnetic particle powder for magnetic recording and production method thereof
JPS61196502A (en) Magnetic material and manufacture thereof
JPH0834145B2 (en) Method for producing metal magnetic powder for magnetic recording
JP2904225B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JP2731603B2 (en) Stabilization method of metal magnetic powder
JP4182310B2 (en) Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPS6133241B2 (en)
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
JP4378763B2 (en) Method for producing compound particle powder containing iron as its main component
JPS6411577B2 (en)
JPH01172501A (en) Manufacture of metal magnetic powder
JPH08153613A (en) Stabilizing method for metal magnetic powder
JPH0623402B2 (en) Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JPH03194905A (en) Manufacture of magnetic metal powder for magnetic recording
JPH0643601B2 (en) Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JPH02162703A (en) Manufacture of metallic magnetic powder
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JPS5852522B2 (en) Production method of metallic iron or alloy magnetic powder mainly composed of iron
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP4228165B2 (en) Manufacturing method of spindle-shaped alloy magnetic particle powder for magnetic recording material
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPS61216306A (en) Magnetic metal powder and manufacture thereof