JPS5861233A - Controlling method for temperature of plate - Google Patents

Controlling method for temperature of plate

Info

Publication number
JPS5861233A
JPS5861233A JP16076881A JP16076881A JPS5861233A JP S5861233 A JPS5861233 A JP S5861233A JP 16076881 A JP16076881 A JP 16076881A JP 16076881 A JP16076881 A JP 16076881A JP S5861233 A JPS5861233 A JP S5861233A
Authority
JP
Japan
Prior art keywords
control
plate
plates
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16076881A
Other languages
Japanese (ja)
Other versions
JPS6216256B2 (en
Inventor
Kazuji Nakajima
中島 一二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16076881A priority Critical patent/JPS5861233A/en
Publication of JPS5861233A publication Critical patent/JPS5861233A/en
Publication of JPS6216256B2 publication Critical patent/JPS6216256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To suppress an abrupt change in the temp. of plates at the changing points of the plates in controlling of the temp. of the plates wherein feed forward (FF) and feedback (FB) are used by fixing the FB control at the changing points of the plates, and correcting the FF control then releasing the FB control after a prescribed time. CONSTITUTION:In the stage of heating strips of respective lots differing in materials, thicknesses, widths, etc. while allowing the strips to travel continously in a treatment under heating for plate materials such as rolled strips, the FB control which changes heating conditions according to deviations in the temp. of the plates is fixed at the changing points of said plate materials. Then the difference in the quantity of heating corresponding to the difference in the information on the plate is applied as a correction for the FF control, and the respective plates are heated under optimum heating conditions in accordance with the information on the plates, the target values for the temp. of the plates, and heat transfer equations. After a prescribed time, the fixing of the FB control is released, and the cntrolling for the temp. of the plates wherein the FF control is used in combination is resumed. Thus the temp. is stabilized at prescribed values quickly without generation of any temp. deviation.

Description

【発明の詳細な説明】 本発明は圧延ストリップ等の板材の熱処理−ご関し、特
に、材質、厚み1幅等が異なる各ロフトのストリップを
連続走行させて加熱炉において所定温度に昇温する板温
度制御に関する。
Detailed Description of the Invention The present invention relates to heat treatment of plate materials such as rolled strips, and in particular, the present invention relates to heat treatment of plate materials such as rolled strips, and in particular, the present invention relates to heat treatment of plate materials such as rolled strips. Regarding temperature control.

圧延後のストIJツブ等は、加熱炉、均熱帯、冷却帯等
を通して所定温度に温度が制御される。ストリップには
復熱があるため、通常は加熱−均熱−冷却という−サイ
クルの温度制御がくり返えされ、この温度制御ステージ
を出ると所定の温度となるように制御がおこなわれる。
The temperature of the rolled IJ tube or the like is controlled to a predetermined temperature through a heating furnace, a soaking zone, a cooling zone, etc. Since the strip has recuperated heat, the temperature control cycle of heating, soaking, and cooling is usually repeated, and control is performed so that the strip reaches a predetermined temperature upon exiting this temperature control stage.

通常、このような温度制御は、圧延ロフト又は製品材質
および寸法が異なるスl−IJツブをも溶接により連続
として加熱炉等に通すので、高精度の板温を得ることは
かなり困難である。そこで従来においては、たとえば第
1図に示すように、プロコンと略称される上位計算機S
CCに板情報および温度制御上の所要情報を入力し、S
CCにおいてロフトが異なる板が到来する毎に伝熱方程
式を含む所要の演算式で加熱条件を求めてフィードフォ
ワード制御のパラメータを変更し、−力制御結果である
出側板温に対処して連続してフイードバッり制御のパラ
メータ&変更する。加熱制御データはSCCより下位計
算機(アナログ回路又はマイクロプロセッサ)FTCI
に、冷却制御データはSCCより下位計算機FTC2に
与えられ、これらの計算機FTCI、FTC2が、燃料
制御弁FCV、冷却プロアBR等の加熱特性、冷却特性
に合せて、また、温度センサTSmの温度検出特性に合
わせて、加熱。
Normally, in such temperature control, it is quite difficult to obtain a highly accurate sheet temperature because stubs with different rolling lofts or product materials and dimensions are continuously passed through a heating furnace or the like by welding. Therefore, in the past, as shown in Figure 1, for example, a high-level computer S
Enter board information and required information for temperature control in CC, and press S.
At CC, each time a plate with a different loft arrives, the heating conditions are determined using the required calculation formula including the heat transfer equation, and the parameters of the feedforward control are changed, and the feedforward control parameters are continuously adjusted in response to the outlet side plate temperature, which is the force control result. and change the feedback control parameters. Heating control data is sent to a computer (analog circuit or microprocessor) lower than SCC by FTCI.
Then, the cooling control data is given from the SCC to the lower-level computer FTC2, and these computers FTCI and FTC2 adjust the data according to the heating characteristics and cooling characteristics of the fuel control valve FCV, cooling prower BR, etc., and also the temperature detection of the temperature sensor TSm. Heating according to the characteristics.

冷却データを操作量に変換し、駆動回路FCD。Converts cooling data into operation amount and drives the drive circuit FCD.

BCDに与える。ストリップの駆動速度(ラインスピー
ドLS)はSCCが算定し、モータドライバMCDに与
える。1がストリップである。なお、第1図においては
、1つの炉区分に、加熱バーナ(FCV系)と冷却ブロ
アーBBを備える形で示したが、通常は加熱バーナを備
える加熱炉の下流に均熱帯を置いてから冷却ブロアーB
Bを備える冷却帯が配置されている。
Give to BCD. The strip driving speed (line speed LS) is calculated by the SCC and given to the motor driver MCD. 1 is a strip. In Figure 1, one furnace section is shown as having a heating burner (FCV system) and a cooling blower BB, but normally a soaking zone is placed downstream of the heating furnace equipped with the heating burner, and then cooling is performed. Blower B
A cooling zone with B is arranged.

従来の板温制御を要約すると、次の通りであ゛つた。Conventional plate temperature control can be summarized as follows.

(1)加熱制御 (a)フィードフォワード(FP)制御板温制御モード
I(速度制御)においては、SCCが、伝熱方程式より
炉温及びラインスピードを求め、FTCIに炉温を、電
気コントローラMCDにスピードを適切なタイミングで
設定する。板温制御モード■においては、適切なタイミ
ングでFTCIに板温をプリセットする。
(1) Heating control (a) Feedforward (FP) control In plate temperature control mode I (speed control), the SCC calculates the furnace temperature and line speed from the heat transfer equation, and sends the furnace temperature to the FTCI and the electric controller MCD. Set the speed at the right time. In the plate temperature control mode (2), the plate temperature is preset in the FTCI at an appropriate timing.

p T Cl&’i %炉温制御においては、目標炉温
になるように制御する。
In p T Cl&'i % furnace temperature control, control is performed to reach a target furnace temperature.

MCDは目標スピードになるように制御する。The MCD controls the target speed.

(b)フィードバック(FB)制御 板温制御モードI(速度制御)においては、SCCが、
10sec(20s″ニナルカ)コトニ板温偏差がある
値以上であれば、スピードを計算し電気コントローラM
CDへ設定する。
(b) Feedback (FB) control In plate temperature control mode I (speed control), the SCC
If the plate temperature deviation exceeds a certain value for 10 seconds (20 seconds), the speed is calculated and the electric controller M
Set to CD.

板温制御モード川においては板温プリセットのみ。Board temperature control mode In the river, only board temperature presets are available.

FTClは、炉温制御モードにおいては0.3s″ごと
のFB制御を行っている。板温制御モードにおいては0
.39ごとのFB制御を行っている。
FTCl performs FB control every 0.3 seconds in the furnace temperature control mode.
.. FB control is performed every 39 times.

MCDは、目標スピードになるように制御する。The MCD controls the speed to reach the target speed.

(2)冷却制御 (alフィードフォワード(FF)制御SCCが、コイ
ル情報、学習結果及び伝熱方程式(標準冷却能力)より
駆動ファン台数及び回転数をFTC2に設定する。
(2) Cooling control (al feedforward (FF) control) The SCC sets the number of drive fans and the rotation speed to the FTC 2 based on the coil information, learning results, and heat transfer equation (standard cooling capacity).

FTC2はファン0N−OFF及び回転数制御を行う。FTC2 performs fan ON-OFF and rotation speed control.

(b)フィードバック(FB)制御 SCCが108ごとに実績板温を収集し、駆動ファン台
数及び回転数を算出してFTC2へ出力する(パターン
決定)。
(b) Feedback (FB) control The SCC collects the actual plate temperature every 108 times, calculates the number of driving fans and the rotation speed, and outputs it to the FTC 2 (pattern determination).

FTC2はファン0N−OFF及び回転数制御を行う。FTC2 performs fan ON-OFF and rotation speed control.

このような従来の板温制御では、上位計算機SCCが板
それぞれのトラッキング、コイル(板)データ設定、F
Ii’設定演算、FB制御演算等の多くのタスクを分担
し、下位計算機FTC1,24ま8CCの命令を実行す
る機器設定制御を主1こおこなっており、上位計算機S
CCのタスクが多い。
In this type of conventional plate temperature control, the host computer SCC performs tracking for each plate, coil (plate) data setting, F
It shares many tasks such as Ii' setting calculations and FB control calculations, and mainly performs device setting control that executes instructions for lower-order computers FTC1, 24 and 8CC, and upper-level computer S
There are many CC tasks.

また、板変わりのときにFF制御により加熱、冷却設定
を新たな到来する板に合わせた値に変更すす るが、FB制御を継続するため、板変わり点において板
温度変化が大きく、板温度に過渡的なハンチングを生、
する。
In addition, when changing plates, the heating and cooling settings are changed by FF control to values that match the newly arriving plate, but since FB control is continued, the plate temperature changes greatly at the plate changing point, and the plate temperature does not change. Generates transient hunting,
do.

本発明は板変わり点における板温変化を抑制し、板温度
のハンチングを防止し、すみやかに新しい板を所望の温
度に収束させることを第1の目的とし、上位計算機のタ
スクを低減することを第2の目的とする。
The primary purpose of the present invention is to suppress plate temperature changes at the plate change point, prevent plate temperature hunting, and quickly bring a new plate to a desired temperature, thereby reducing the tasks of the host computer. This is the second purpose.

上記目的を達成するために本発明においては、上位計算
機SCCに板トラッキング、コイルデータ設定、目標温
度設定および板変わり時のFB固定タイミング演算のタ
スクを割り当て、下位計算機FTC1,PTC2にFF
制御およびFB制御を割り当てて、板変わりの所定のタ
イミングでFB制御を一時的に固定する。
In order to achieve the above object, in the present invention, the tasks of board tracking, coil data setting, target temperature setting, and FB fixed timing calculation at the time of board change are assigned to the host computer SCC, and the tasks of calculating the FB fixed timing when changing boards are assigned to the lower-order computers FTC1 and PTC2.
Control and FB control are assigned, and FB control is temporarily fixed at a predetermined timing of board change.

本発明の好ましい実施態様においては、SCCは現在加
熱制御中の板の厚みt。1と次の坂の厚みt+(if?
)で特定されるFB停止タイミングデータXH(m)を
有し、板変わり点(溶接点■)が所定位置からXHの移
動の後にFB制御をその時点の値で固定する。またSC
Cは板厚に対する目標温度T。
In a preferred embodiment of the present invention, SCC is the thickness t of the plate currently under heating control. 1 and the thickness of the next slope t+(if?
), and after the plate change point (welding point ■) moves by XH from a predetermined position, the FB control is fixed at the value at that time. Also SC
C is the target temperature T for the plate thickness.

℃を示すデータを−有し、この16℃を下位計算機に設
定する。更にSCCは、現在の板の厚みLciと次の板
の厚みt。(1+4)で特定される板送り速度LS変更
タイミングデータxv(□)を有し、板変わり点(溶接
点e)が所定位置からXyの移動の後に、板速度を定め
るモータのドライバ(駆動回路)MCDに変更後の板速
度L8データを与える。下位計算機(FTCI)は80
Cより与えられる板幅W、板厚tおよび板速度Vをパラ
メータとする操作量演算モデルで操作量Mを算出してP
Fプリセットし、かつ出側板温度のフィードバック値と
SCCが与えている目標一度T0の差を0とする操作量
を演゛算してプリセット値と加算し、更にゾーン配分演
算をして各ゾーンの操作量制御器に設定し、SCCの指
令に基づいてFB制御量の変更を停止する。板変更のと
きには、前回のプリセット操作量き今回設定すべきプリ
セット操作量の差ΔMFFを演算して、Δ’MFF’を
前回のプリセット操作量に加算(減算を含む)する。
It has data indicating °C, and this 16 °C is set in the lower computer. Furthermore, SCC is the current plate thickness Lci and the next plate thickness t. It has plate feed speed LS change timing data xv (□) specified by (1+4), and the motor driver (drive circuit) that determines the plate speed after the plate change point (welding point e) has moved by ) Give the changed plate speed L8 data to MCD. Lower level computer (FTCI) is 80
The manipulated variable M is calculated using the manipulated variable calculation model with the plate width W, plate thickness t, and plate speed V given by C as parameters, and P
F preset, and calculate the operation amount that sets the difference between the feedback value of the outlet plate temperature and the target T0 given by the SCC to 0, add it to the preset value, and further calculate the zone distribution to calculate the value for each zone. Set in the manipulated variable controller and stop changing the FB controlled variable based on the SCC command. When changing boards, the difference ΔMFF between the previous preset operation amount and the preset operation amount to be set this time is calculated, and Δ'MFF' is added (including subtraction) to the previous preset operation amount.

これによれば、板変更の直前においてフィードバック制
御量は所望の板温度を得る値に安定しており、この値は
、仮に板厚、機幅等が変わっても大きな変更を要七ない
。したがって、フィードバック(FB)制御量を固定し
、操作量を今回熱処理する板に対応付けたフィードフォ
ワード(FF)制御量に変更しても、大きな温度ずれを
生ぜず、Ft”制御結果が現われた時点の温度偏差は少
さい。そこでFF制御結果が現われた時点にFB制御を
作用させると、温度はすみやかに所望値に安定する。
According to this, the feedback control amount is stabilized at a value that provides the desired plate temperature immediately before plate change, and this value does not require major changes even if plate thickness, machine width, etc. change. Therefore, even if the feedback (FB) control amount was fixed and the manipulated variable was changed to the feedforward (FF) control amount corresponding to the plate to be heat treated this time, no large temperature deviation occurred and the Ft'' control result was obtained. The temperature deviation at this point in time is small. Therefore, if the FB control is applied at the time when the FF control result appears, the temperature quickly stabilizes to the desired value.

第2図に本発明を一態様で実施するシステム構成を示す
。温度制御は、この例では加熱炉HF。
FIG. 2 shows a system configuration for implementing one aspect of the present invention. Temperature control is a heating furnace HF in this example.

第1均熱帯18.第2均熱帯28.第1冷却帯IQ第3
均熱帯OAおよび第2冷却帯2Cでおこなわれる。セ位
計算機SCCは従来と同様にプロコンが用いられるが、
下位計算機(F’t”CI、FTC2)としては板温制
御用のマイクロプロセッサ8TCと炉温制御用のマイク
ロプロセッサFTCが用いラレる。8TCとFTCはC
RTプロセスコンソールPCBに収納されており、それ
ぞれ炉又は帯域区分の複数個でなる。CRTプロセスコ
ンソールPCBには2個のCRTディスプレイの外に、
割込操作用および設定用のキーボードが備わっている。
1st soaking zone 18. 2nd soaking zone 28. 1st cooling zone IQ 3rd
This is carried out in the soaking zone OA and the second cooling zone 2C. The position calculator SCC uses a professional computer as before, but
A microprocessor 8TC for plate temperature control and a microprocessor FTC for furnace temperature control are used as the lower-level computers (F't"CI, FTC2). 8TC and FTC are C
The RT process console is housed on a PCB and each consists of a plurality of furnaces or zone sections. In addition to the two CRT displays, the CRT process console PCB has
A keyboard is provided for interrupt operations and settings.

加熱炉、均熱帯および冷却帯の燃料制御弁。Fuel control valves for heating furnaces, soaking zones and cooling zones.

ブロア、ヒータ、モータ等はドライバ(駆動回路)SD
Rに各区分で接続されており、インターフェイスを介し
てドライバSDRがPCBのマイクロプロセッサに接続
されている。
Blower, heater, motor, etc. are driver (drive circuit) SD
A driver SDR is connected to the microprocessor of the PCB via an interface.

加熱炉HFの入側には、板!の所定長の送り毎に1パル
ス(送り同期パルス)を発する板追跡装置と、板間の溶
接点[株]を検出する溶接点検出器WPDが配置されて
おり、送り同期パルスと溶接点検出信号がsccに与え
られる。
There is a board on the inlet side of the heating furnace HF! A plate tracking device that emits one pulse (feed synchronization pulse) for each predetermined length of feed, and a welding point detector WPD that detects the welding point between the plates are arranged, and the feed synchronization pulse and welding point detection A signal is provided to scc.

SCCが保持するデータおよび8CCの演算処理を第3
a図に示す。なお、第3a図の太黒枠区分が、炉および
帯域区分(第2図)に略対応する。
The data held by the SCC and the arithmetic processing of the 8CC are
Shown in Figure a. Note that the thick black frame sections in FIG. 3a approximately correspond to the furnace and zone sections (FIG. 2).

SCCには、板(コイル)情報が板の到来順にメモリさ
れている。以下、に説明するように、FF制御の操作量
Mは、M:=−kwtvなるモデル式で定められるので
、板情報は板幅W、板厚tおよび板速度Vとされ、更に
、材質上の冷却速度上限および下限がこれらに付加され
ている(第3a図のブロックCDB参照)。SCCはW
PDよりの溶接点■検知信号で板変更を知り、板追跡装
置よりの送り同期パルスをカウントして各板の各部の位
置を追跡し、第2図に示す加熱炉HF 、第1〜第3均
熱帯1s、28.OA、および第1.第2冷却帯1c。
The SCC stores plate (coil) information in the order in which the plates arrive. As explained below, the manipulated variable M of the FF control is determined by the model formula M:=-kwtv, so the plate information is the plate width W, plate thickness t, and plate speed V. Attached to these are upper and lower cooling rate limits of (see block CDB in FIG. 3a). SCC is W
The welding point detection signal from the PD detects the plate change, and the position of each part of each plate is tracked by counting the feed synchronization pulses from the plate tracking device. Soaking zone 1s, 28. OA, and 1st. Second cooling zone 1c.

2Cの加熱、冷却制御をおこなう。Performs 2C heating and cooling control.

第3b図に加熱炉HFの制御をおこなう制御系を示す。FIG. 3b shows a control system for controlling the heating furnace HF.

この制御系は、板温制御STCの一部をなす加熱炉板温
制御計算機(マイクロプロセッサ)8 T CHF 、
炉温制御FTCの一部をなす加熱炉炉温制御計算機(マ
イクロプロセッサ)FTC)IFおよび制御    回
路S DPHFl、 8 D PHF2  ’C構成さ
れている。
This control system includes a heating furnace plate temperature control computer (microprocessor) 8 T CHF, which forms part of the plate temperature control STC;
A heating furnace furnace temperature control computer (microprocessor) FTC) which forms a part of the furnace temperature control FTC) is composed of IF and control circuits SDPHFl, 8DPHF2'C.

第3C図に、第1均熱帯ISおよび第2均熱帯2Sの制
御をおこなう制御系の構成を示す。この制御系は、板温
制御STCの一部をなす均熱帯板温制御計算機(マイク
ロプロセッサ) 8TC1s 、 2sおよびヒステリ
シス回路5TC12sc、ならびにドライバSDPの一
部をなすヒータドライノ<5DP1s+8DP2sおよ
びモータドライバ8DP2,2で構成されている。
FIG. 3C shows the configuration of a control system that controls the first soaking zone IS and the second soaking zone 2S. This control system includes soaking zone plate temperature control calculators (microprocessors) 8TC1s and 2s and hysteresis circuits 5TC12sc, which form part of the plate temperature control STC, and heater drino<5DP1s+8DP2s and motor drivers 8DP2 and 2, which form part of the driver SDP. It is configured.

第3d図に、第1.第2冷却帯IC,2Cおよび第2均
熱帯OAの制御、ならびに板送り制御をおこなう制御系
の構成を示す。この制御系は、板温制御8TCの一部を
なす冷却帯板温制御計算機(マイクロプロセッサ) 5
TC1゜、ならびにドライバ8Dt’の一部をなす制御
    回路8 DPtct 。
In Figure 3d, 1. The configuration of a control system that controls the second cooling zones IC, 2C and the second soaking zone OA, and controls plate feeding is shown. This control system is a cooling strip plate temperature control computer (microprocessor) that forms part of the plate temperature control 8TC.
TC1°, as well as a control circuit 8 DPtct forming part of the driver 8Dt'.

8DP1c2 、5DPOA1 、8DP2(、8DP
HF3で構成される。
8DP1c2, 5DPOA1, 8DP2(, 8DP
Consists of HF3.

以下、第3a図に示すブロックと、第3b図〜第3d図
に示す制御系の構成を参照して、炉および帯域(第2図
)のそれぞれにおける板温制御を説明する。
Hereinafter, plate temperature control in each of the furnace and zone (FIG. 2) will be explained with reference to the block shown in FIG. 3a and the configuration of the control system shown in FIGS. 3b to 3d.

(1)  加熱炉HFの加熱制御・・・ブロックHFB
、〜HFB3(第3a図)および第3b図 ブロックHFB、に示すようにSCCは、現在制御中の
板と次に到来する板の板厚t。i 、jc(i+1)を
パラメータとするFB固定タイミングデータXH(m)
(F Bを固定するときの溶接点のWPDよりの距離)
を記憶保持しており、板変更を示す情報が与えられると
このデータXHをアクセスして読み出し、S T CT
(FにFB制御固定を、示す信号S11を与えて、更に
コイルデータ(W+’e v)を与えて、今回の燃量供
稗量T/1■(1)と次回のT/H(i+nすなわち今
回の操作量Miと次回の操作量M工+1をS T CH
Fは計算する。5TCHFはShlに応答してFB制御
の設定値を固定する。更にs’rcHFはMiとMi+
+を比較してそれらの差が所定値以上であると、FF制
御設定値の変更を行う(8e1で判断する。
(1) Heating control of heating furnace HF...Block HFB
, ~HFB3 (FIG. 3a) and block HFB in FIG. 3b, the SCC is the plate thickness t of the plate currently being controlled and the plate that will arrive next. FB fixed timing data XH(m) with i, jc(i+1) as parameters
(Distance of welding point from WPD when fixing FB)
When information indicating a board change is given, this data XH is accessed and read out, and S T CT
(Give F the signal S11 indicating that the FB control is fixed, and further give the coil data (W+'e v) to calculate the current fuel supply amount T/1■ (1) and the next T/H (i+n In other words, the current manipulated variable Mi and the next manipulated variable M+1 are S T CH
F is calculated. 5TCHF fixes the set value of FB control in response to Sh1. Furthermore, s'rcHF is Mi and Mi+
+ is compared, and if the difference is greater than a predetermined value, the FF control setting value is changed (determined in step 8e1).

ゝ1′ならOK 、 ’0’なら不可)、5TCHFは
これに応答して、FF制御設定値をMi +1として、
ΔM二Mi−Ml+1分を現在設定値より変更し、かつ
FB制御量を固定する。secは更にMi+1操作量と
する板の目標温度データS VT(FをS T CHF
に与え、しかもtciと   □tc(1+1 )で速
度タイミングデータxyをアクセスし、板送り速度L8
を演算してXyのタイミングで板送り速度L8をモータ
ドライバ8DPHFsに設定する。
5TCHF responds to this by setting the FF control setting value to Mi +1.
Change ΔM2Mi−Ml+1 minute from the current setting value, and fix the FB control amount. sec is the plate target temperature data S VT (F is S T CHF
Furthermore, the speed timing data xy is accessed using tci and □tc (1+1), and the plate feed speed L8
is calculated and the board feeding speed L8 is set in the motor driver 8DPHFs at the timing of Xy.

その後、SCCは、これらの操作量による板温変化が加
熱炉HFの出側において安定したタイミングでS T 
CHFにFB制御固定解除を指示する。
Thereafter, the SCC performs S
Instructs CHF to release FB control fixation.

加熱炉HFは7ゾーンで構成されているので、F T 
CHFは8 T CHFが出力するFFFF制御設作量
MVを各ゾーンに分配し、各ゾーンに割り当てられた 
   演算制御器8DPHF1および5DPT(F(そ
れぞれ7組)に与える。    演算制御器8 D P
HFl 、 S D PHF2は、それぞれエラー増幅
器お孝びPID制御回路で構成されており、燃料流量を
指示値に制御する。
Since the heating furnace HF consists of 7 zones, F T
The CHF distributes the FFFF control setting amount MV output by the 8 T CHF to each zone, and calculates the amount assigned to each zone.
Provided to arithmetic controllers 8DPHF1 and 5DPT (F (7 sets each).Arithmetic controller 8DP
HFl and SDPHF2 each include an error amplifier and a PID control circuit, and control the fuel flow rate to a specified value.

(2)第1.2均熱帯の加熱、冷却制御・・・ブロック
188.28B、、28B2(第3a図)および第3C
図。
(2) Heating and cooling control of the 1.2 soaking zone...Blocks 188, 28B, 28B2 (Figure 3a) and 3C
figure.

ブロックISBに示すようにSCCは、ブロックHFB
、でアクセスした目標温度T0より目標炉温5v1sを
アクセスし、ヒステリシス比較回路8TC12SCに与
える。回路5TC128Cは、5VISと現在の炉温p
vと比較して、Sv、S>Pvのときにはヒータドライ
バ5DP1Sにヒータ付勢指示を与え、−一−s v 
1S +a = p vてヒータ トライバ5DP1S
にヒ、−タ停止を指示して、このようなα分のヒステリ
シスにより、ヒータのPv付近をこおける繰り返しのO
N 、 OF Fを防止する。板変更部が第2均熱帯2
Sに入いる所定のタイミングでSCCは、ブロック28
B、に示すように、現在の板の板厚tciと次の板の板
厚Lc (1+1 )でFB制御固定タイミングXHを
アクセスし、FF制御量を変更(コイルデータW # 
t ; V−L Sは前記(1)で変えられている)し
、タイミングx1.でSTC,S、2sにFB制御固定
を指示する。8 T 01B + 2 Sは5TCHF
と同様なFF制御設定をおこなうが、FF制仰の固定は
おこなわない。これは、L8カ月IF制御で定まるから
である。炉温制御FTCの一部をなすPTC2Sは、5
TCIS、2sより与えられるFF制御十FB制御の操
作量をヒータのオンオフデユーティ制御タイミングとブ
ロアBの冷却配分に変換してヒータをオンオフ制御し、
かつブロアBの速度を設定する。なお、SCCは、板変
更に対応した板温か現われてから1・゛B制御固定を解
除する。
As shown in block ISB, SCC is block HFB
The target furnace temperature 5v1s is accessed from the target temperature T0 accessed in , and is given to the hysteresis comparison circuit 8TC12SC. Circuit 5TC128C has 5VIS and current furnace temperature p
Compared with v, when Sv, S>Pv, a heater energization instruction is given to the heater driver 5DP1S, and -1-s v
1S +a = p v heater driver 5DP1S
By instructing the heater to stop, this α-minute hysteresis prevents repeated O from passing around the Pv of the heater.
N, OFF is prevented. The board changing section is the second soaking zone 2
At a predetermined timing when entering S, the SCC executes block 28
As shown in B, the FB control fixed timing XH is accessed using the current plate thickness tci and the next plate thickness Lc (1+1), and the FF control amount is changed (coil data W #
t; VLS is changed in (1) above), and the timing x1. Instructs STC, S, and 2s to fix the FB control. 8 T 01B + 2 S is 5TCHF
Perform the same FF control settings as above, but do not fix the FF control. This is because it is determined by L8 month IF control. PTC2S, which forms part of the furnace temperature control FTC, is 5
TCIS, converts the operation amount of FF control and FB control given by 2s into heater on/off duty control timing and cooling distribution of blower B to control heater on/off,
and set the speed of blower B. Note that the SCC releases the 1·゛B control fixation after the board temperature corresponding to the board change appears.

(3)第1冷却帯IC,第3均熱帯OAおよび第2冷却
帯2Cの均熱、冷却制御・・・ブロックICB。
(3) Soaking and cooling control of the first cooling zone IC, third soaking zone OA, and second cooling zone 2C...Block ICB.

〜’ CBs m OA Bおよび2CB(第33図)
および第3d図 8TC1Cは板厚tにのみ対応したFF制御を、8T’
C1S、2Sと同様におこなう。SCCも簡易モデルと
学習(ブロックICB、)によるFF制御十FB制御を
独立して持つ。sTc、cのブロック(第3d[のTI
Sは冷却開始前の目標板温(28の目標板温を、TiA
は実際の板1i1it・To sは冷却層の目標板温を
示し、これらの学習データが第2のFF制御データとし
て付加される。第1冷却帯1cは気水冷却であり、s’
rc1(3は冷却を冷却ノズルのそれぞれに(T゛−T
  ) 分配(N−−−□・■)する。各ノズルの冷却P@CR 操作量は    制御回路8DP、。1と関数発生器を
含む    制御回路8DP1c2で設定される。
~' CBs m OA B and 2CB (Figure 33)
And in Fig. 3d, 8TC1C performs FF control corresponding only to the plate thickness t, 8T'
Do the same as C1S and 2S. SCC also independently has FF control and FB control based on a simple model and learning (block ICB). sTc, block of c (TI of 3rd d[
S is the target plate temperature before the start of cooling (the target plate temperature of 28 is TiA
The actual plate 1i1it·Tos indicates the target plate temperature of the cooling layer, and these learning data are added as the second FF control data. The first cooling zone 1c is air-water cooling, and s'
rc1 (3 is cooling to each cooling nozzle (T゛-T
) Distribute (N---□・■). The cooling P@CR operation amount for each nozzle is the control circuit 8DP. 1 and a function generator.It is set by the control circuit 8DP1c2.

S D P2O3はLSと総冷却水量より目標水切り量
を設定し、制御する。
S D P2O3 sets and controls the target water drain amount based on LS and the total amount of cooling water.

第3均熱帯OAと第2冷却帯2cにはSCCが直接に目
標温度8 VOA l 8. V2Cを与える。5vo
Aはヒステリシス特性を有する比較回路8 D poA
lに与えられそこで5voAに対してOAの炉温PVが
比較され、5VOAとPvの大小関係に応じて、ヒステ
リシス特性を有する形でヒータドライバS D PoA
2にヒータオン・オフ指示が与えられる。第2冷却帯2
Cにおいては、SCCの指示ブロワ一台数がモ□  −
タドライバ8.DP2Cに設定され、指定されたプロ)
 アBで2Cの冷却をおこなう。
The SCC directly sets the target temperature to the third soaking zone OA and the second cooling zone 2c. Give V2C. 5vo
A is a comparison circuit 8 having hysteresis characteristics D poA
The furnace temperature PV of the OA is compared with 5voA, and the heater driver S D PoA
2, a heater on/off instruction is given. 2nd cooling zone 2
In C, the number of SCC instruction blowers is □ -
driver 8. DP2C and specified professional)
AB performs 2C cooling.

以上本発明の一実施例を説明したが、これにおいては、
8TCT(F、5TC2Sおよび5TC1cにおいて板
変更時にFB制御が固定される。本発明によればこれら
のいずれか1つのみでFB制御の固定をおこなうように
してもよいが、加熱炉HF制御(STCHF)において
F’B制御を固定するのが最も効果的である。
One embodiment of the present invention has been described above, and in this,
8TCT (F, 5TC2S, and 5TC1c), FB control is fixed when changing plates.According to the present invention, FB control may be fixed with only one of these, but heating furnace HF control (STCHF ), it is most effective to fix the F'B control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の板温制御システムを簡略化して示すブロ
ック図である。 第2図は本発明を一態様で実施する板温制御システムの
全体概要を示すブロック図、第3a図。 第3b図、第3c図および第3d図は第2図に宗すシス
テム構成を更に詳細に示すブロック図であり、第3a図
はプロコンsccのメモリデータおよび制御処理を示す
。 SC,C:上位計算機(プロコン) FTCI、FTC2:下位計算機 第1図
FIG. 1 is a simplified block diagram of a conventional plate temperature control system. FIG. 2 is a block diagram showing an overall outline of a plate temperature control system implementing the present invention in one embodiment, and FIG. 3a. FIGS. 3b, 3c, and 3d are block diagrams showing in more detail the system configuration based on FIG. 2, and FIG. 3a shows memory data and control processing of the program controller scc. SC, C: Upper computer (Procontroller) FTCI, FTC2: Lower computer Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)  板情報および板温目標値ならびに伝熱方程式
に基づいて板のそれぞれにつき最適加熱条件を設定する
フィードフォワード制御と、板温偏差に応じて加熱条件
を変更するフィートノ(ツタ制御とを併用する板温制御
において、 板情報が現在加熱制御中の板のそれと異なる板が到来す
るとき、板の切換わり点においてフィードバック制御を
固定し、板情報の差に相当する加熱量の差をフィードフ
ォワード制御に補正として加え、所定時間後にフィート
ノ(ツク制御の固定を解除することを特徴とする板温制
御方法。
(1) Combining feedforward control that sets the optimal heating conditions for each plate based on plate information, plate temperature target value, and heat transfer equation, and foot control that changes heating conditions according to plate temperature deviation. In plate temperature control, when a plate arrives whose plate information differs from that of the plate currently under heating control, feedback control is fixed at the plate switching point, and the difference in heating amount corresponding to the difference in plate information is fed forward. A plate temperature control method characterized by adding correction to the control and releasing the fixed control after a predetermined period of time.
(2) 同一の板情報の板の速度変化においては、速度
変化分をフィードフォワード制御に設定する前記特許請
求の範囲第(1)項記載の板温制御方法。
(2) The plate temperature control method according to claim (1), wherein when changing the speed of a board with the same board information, the speed change is set to feedforward control.
JP16076881A 1981-10-08 1981-10-08 Controlling method for temperature of plate Granted JPS5861233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16076881A JPS5861233A (en) 1981-10-08 1981-10-08 Controlling method for temperature of plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16076881A JPS5861233A (en) 1981-10-08 1981-10-08 Controlling method for temperature of plate

Publications (2)

Publication Number Publication Date
JPS5861233A true JPS5861233A (en) 1983-04-12
JPS6216256B2 JPS6216256B2 (en) 1987-04-11

Family

ID=15722033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16076881A Granted JPS5861233A (en) 1981-10-08 1981-10-08 Controlling method for temperature of plate

Country Status (1)

Country Link
JP (1) JPS5861233A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086324U (en) * 1983-11-18 1985-06-14 アイシン精機株式会社 Folding bed device
JPS6428329A (en) * 1987-07-23 1989-01-30 Mitsubishi Heavy Ind Ltd Method for controlling sheet temperature in continuous annealing furnace
JPH0617147A (en) * 1992-06-30 1994-01-25 Nippon Steel Corp Continuous heat treatment for steel strip
WO2021261039A1 (en) * 2020-06-23 2021-12-30 三菱重工業株式会社 Method for controlling heat treatment furnace, heat treatment system, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122407A (en) * 1974-03-14 1975-09-26
JPS5428713A (en) * 1977-08-09 1979-03-03 Nippon Kokan Kk <Nkk> Method and device for controlling temperature of strip material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122407A (en) * 1974-03-14 1975-09-26
JPS5428713A (en) * 1977-08-09 1979-03-03 Nippon Kokan Kk <Nkk> Method and device for controlling temperature of strip material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086324U (en) * 1983-11-18 1985-06-14 アイシン精機株式会社 Folding bed device
JPS6428329A (en) * 1987-07-23 1989-01-30 Mitsubishi Heavy Ind Ltd Method for controlling sheet temperature in continuous annealing furnace
JPH0617147A (en) * 1992-06-30 1994-01-25 Nippon Steel Corp Continuous heat treatment for steel strip
WO2021261039A1 (en) * 2020-06-23 2021-12-30 三菱重工業株式会社 Method for controlling heat treatment furnace, heat treatment system, and program

Also Published As

Publication number Publication date
JPS6216256B2 (en) 1987-04-11

Similar Documents

Publication Publication Date Title
JPS5675533A (en) Combustion controlling device for heating furnace
JPS5861233A (en) Controlling method for temperature of plate
CN110408771A (en) A kind of annealing furnace band temperature process transition control method and device
JP2002222001A (en) Controller
JPS56136215A (en) Method and apparatus for feedback control of water cooling for steel material in rolling line
CN205594335U (en) Developments assignment PID heating control system suitable for high vacuum environment
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JPS60151709A (en) Temperature controller for industrial furnace
JP3664125B2 (en) Control device, temperature controller and heat treatment device
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
JPH0791590B2 (en) Velocity changing method in plate temperature control of continuous annealing furnace
JPS56136213A (en) Controlling method and apparatus for water cooling for steel material in rolling process
JPS56136212A (en) Computing method for temperature in controlling water cooling of rolled steel sheet
JPH05255761A (en) Method for adjusting treating condition of continuous furnace and device therefor
JPS54103241A (en) Method of setting and controlling room temperature
SU725277A1 (en) Method and device for control of thermal mode of induction holding equipment
JPH0323835B2 (en)
JP2000172301A (en) Control mode switch device and temperature control system
JPS56139630A (en) Sheet temperature control method in continuous heating furnace
JPH02163325A (en) Method for controlling temperature of metallic sheet in continuous annealing furnace
SU794615A2 (en) Continioner control system
JPS6315972B2 (en)
JPS61243227A (en) Heating device
JPH03247952A (en) Control device for one-drum two-circuit type hot water supplying bath boiler
JPH03120320A (en) Sheet temperature control method for continuous annealing furnace