JPS5858245A - Hard alloy for impact resistant tool - Google Patents

Hard alloy for impact resistant tool

Info

Publication number
JPS5858245A
JPS5858245A JP15624781A JP15624781A JPS5858245A JP S5858245 A JPS5858245 A JP S5858245A JP 15624781 A JP15624781 A JP 15624781A JP 15624781 A JP15624781 A JP 15624781A JP S5858245 A JPS5858245 A JP S5858245A
Authority
JP
Japan
Prior art keywords
alloy
impact
phase
hard
hard alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15624781A
Other languages
Japanese (ja)
Inventor
Mitsuo Kodama
児玉 光雄
Akira Doi
陽 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15624781A priority Critical patent/JPS5858245A/en
Publication of JPS5858245A publication Critical patent/JPS5858245A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered hard alloy for an impact resistant tool with superior impact and wear resistances by sintering a hard phase contg. Mo-W carbide as a principal component with a binding phase of an Fe group metal. CONSTITUTION:Particles of simple hexagonal system (Mo,W)C or a mixture of (Mo,W)C with WC as a hard phase are sintered with 3-60wt% Fe group metal such as Co as a binding phase. The percentages of Mo and W in the hard phase are 5-95% Mo and 95-5% W, and the ratio of (Mo,W)C/WC is adjusted to 0.1-10. The carbide particles as the hard phase are composed of 10-90wt% fine particles having <=1mum size and the balance coarse particles having >=3mum size. When an impact resistant tool such as a metallic header mold is manufactured using the resulting sintered body, the life of the mold is considerably prolonged owing to the superior impact and wear resistances of the sintered body.

Description

【発明の詳細な説明】 本発明は従来の耐衝撃工具用硬質合金であるWC−Co
合金の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on WC-Co, a conventional hard alloy for impact-resistant tools.
It concerns the improvement of alloys.

一般に、耐衝撃用工具の要求特性としては耐摩耗性が優
れていることはもちろんであるが、それ以上に高い靭性
および耐衝撃性を具備することが必要である。
In general, impact-resistant tools are required not only to have excellent wear resistance, but also to have even higher toughness and impact resistance.

特に冷鍛用途においては被加工材は多大の・1性変形を
強いられるため、高い応力レベルのもとての金型との圧
着および摩擦を余儀なくさ才′11これが耐衝撃工具の
寿命の主要因である焼付きの原因となっている。このこ
とから被加工材との化学的親和性を減じることが焼付き
防止の効果的手段となる。
Particularly in cold forging applications, the workpiece is forced to undergo a large amount of unilateral deformation, forcing it to be crimped and rubbed against the original die under high stress levels.'11 This is the key to the lifespan of impact-resistant tools. This is the cause of burn-in. Therefore, reducing the chemical affinity with the workpiece material is an effective means of preventing seizure.

一方、超硬ヘッダーダイの寿命の半数以上が超硬合金部
の割れに起因してお゛す、その殆んどが摩耗による定常
寿命よりはるか゛に少ない命数により破損に到っている
。一般にヘッダー金型用超硬合金の材質としては、その
主安寿命原山である割損を防止するため、一般に亀裂進
展を抑制するとされている結合金属の平均自由行:5I
を大きくして靭性をもたせた粗粒炭化物を使用した材質
を用いている。しかしながら、結合金属の平均自由行程
をあまり大きくすると塑性変形し易くなり、高衝撃のか
かる一ツダー金型においては製品の寸法不良により寿命
となるケースが出てくる。
On the other hand, more than half of the lifespan of cemented carbide header dies is due to cracks in the cemented carbide parts, and most of them end up breaking after a much shorter lifespan than the steady lifespan due to wear. In general, as a material for cemented carbide for header molds, in order to prevent breakage, which is the main cause of its safe life, the mean free row of the bonding metal is 5I, which is generally said to suppress crack propagation.
The material is made of coarse carbide with increased toughness. However, if the mean free path of the bonded metal is made too large, it becomes susceptible to plastic deformation, and in a one-piece mold that is subject to high impact, there are cases where the life of the product is shortened due to dimensional defects of the product.

本発明者等は、このヘソグー金型等に用いられる超硬合
金の上記の欠点を解消すべく研究を重ね、WC基合金の
欠点を解消するものとして知られている、WCのWの一
部をMOで置換した(M O、W ) Cの焼結現象を
詳細に検討した結果、次のような知見を得るに到った。
The present inventors have conducted repeated research to eliminate the above-mentioned drawbacks of the cemented carbide used for this Hesogoo mold, etc., and have found a part of W in WC that is known to eliminate the drawbacks of WC-based alloys. As a result of a detailed study of the sintering phenomenon of (M O, W ) C in which MO is substituted, the following knowledge was obtained.

すなわち、(Mo、W)C基合金は、通常のwc基合金
に見られるような溶解析出反応型のオストワルドライブ
ニングによる炭化物の粒成長は液相出現時にも殆んど起
らず、あたかも拡散律速型の、しかも速度の遅い粒成長
しか示さないという事実を発見するに至った。このため
WCと(MO,W)Cを混在させた粉末を焼結したとき
、一部の細かい(Mo、W)Cは溶解析出現象によりW
Cの表層部あるいは(MO,W)Cの表層部に析出する
ことはあっても、大部分のWc、 (Mo、W)Cは安
定で共存する事実を見出した。しかもこオ]らの粒子を
共存させることによりWC基合金特有の強靭性と(Mo
、W )基合金特有の鋼との耐溶G性を兼ね備えた合金
の製造が可能であることが判明した。
In other words, in (Mo, W)C-based alloys, grain growth of carbides due to Ostwald drying of the melt precipitation reaction type, which is observed in normal WC-based alloys, hardly occurs even when the liquid phase appears, and it is as if diffusion occurs. We have discovered the fact that grain growth is rate-limiting and only slow. Therefore, when powder containing WC and (MO,W)C is sintered, some of the fine (Mo,W)C is dissolved into W due to the dissolution precipitation phenomenon.
It has been found that most of Wc and (Mo, W)C are stable and coexist, although they may precipitate on the surface of C or (MO,W)C. Moreover, by coexisting these particles, the toughness characteristic of WC-based alloys and (Mo
, W) It has been found that it is possible to produce an alloy that combines the melting G resistance characteristic of the base alloy with steel.

第1図にwe−ssvoz%Co合金(A)と(MOn
、7 +W 0.3 ) C−25voZ%WC−55
vot%Co合金(B)の845C材との摩擦係数を比
較した結果を示すが、(Mo、W)Cを含有させた合金
は従来のWC−Co系合金の40係以下の摩擦抵抗を有
し、このことからも合金中に(Mo 、w ) Cを含
有させることにより、鋼との耐溶着性が著しく改善され
ることが判る。
Figure 1 shows we-ssvoz%Co alloy (A) and (MOn
, 7 +W 0.3) C-25voZ%WC-55
The results of a comparison of the friction coefficient of vot%Co alloy (B) with 845C material are shown, and the alloy containing (Mo, W)C has a friction coefficient of 40 or less than that of the conventional WC-Co alloy. However, this also shows that by including (Mo , w ) C in the alloy, the welding resistance with steel is significantly improved.

また本発明者等は粗粒と微粒の硬質相を混在させること
により、耐塑性変形性を改良させることを見出した。す
なわち第2図に示すように0.5,1Moo、wo3)
C−25vot%61t WC−55vot%CO合金
(C,i1粒混合晶)は5μ(MoO,7WO2)C−
25vat%6μV+’C−55vot% Co合金C
D、粗粒のみ)に比べ同応力4に対する歪量が小さく、
塑性変形性が改良されている。ここでいう粗粒、微粒と
はそれぞれ5μ以上、1μ以下を示し、1〜5μの粒径
をもつ粒子では上記の効果が減ぜられる。
The present inventors have also discovered that plastic deformation resistance can be improved by mixing coarse and fine hard phases. That is, as shown in Figure 2, 0.5, 1Moo, wo3)
C-25vot%61t WC-55vot%CO alloy (C, i1 grain mixed crystal) is 5μ (MoO, 7WO2)C-
25vat%6μV+'C-55vot% Co alloy C
D, the amount of strain for the same stress 4 is smaller compared to (coarse grain only),
Improved plastic deformability. Coarse particles and fine particles herein mean 5 microns or more and 1 micron or less, respectively, and particles with a particle size of 1 to 5 microns reduce the above effect.

すなわち粗粒炭化物により結合金属の平均自由行程を大
きくして亀裂の進展を抑制させ、微粒炭化物を結合金属
中に均一に分散させて、圧縮強度を向上させているもの
と考えられる。この現象は、粗粒のWC粒と微粒の(M
o、W)0粒、粗粒の(Mo、W)0粒と微粒のWCl
′i2、あるいは粒度の違う少なく共2種以上の粗粒と
微粒の(MO2W)0粒を使用した場合、いずれの場合
にも同等の効果をもって生じた。ただし、粗粒と微粒の
WC粒を使用した合金は、鋼との耐溶着性にtいて従来
のWC−Co系合金と有意差は示さな力ふった。
In other words, it is thought that the coarse carbides increase the mean free path of the bonded metal to suppress the propagation of cracks, and the fine carbides are uniformly dispersed in the bonded metal to improve compressive strength. This phenomenon is caused by coarse WC grains and fine (M
o, W) 0 grains, coarse grains (Mo, W) 0 grains and fine grains of WCl
'i2, or when at least two or more types of coarse grains and fine grains (MO2W)0 grains with different grain sizes were used, the same effect was obtained in all cases. However, alloys using coarse and fine WC grains showed no significant difference in welding resistance to steel compared to conventional WC-Co alloys.

このように厳密なる粒度調整をしたMOを含んだ粗粒と
微粒の硬質合金は、従来の耐衝撃用WC−Co系超硬合
金に比べて、耐衝撃性および耐溶着性において著しく優
れているという知見に幇き、本発明を完成したものであ
る。
Coarse and fine grained hard alloys containing MO with strict grain size control are significantly superior in impact resistance and welding resistance compared to conventional impact resistant WC-Co cemented carbide. Based on this knowledge, the present invention was completed.

すなわち、本発明は硬質相が単純ヘキサゴナル型の(M
 o 、 W ) Cまたは(Mo、W)CとWCの混
在物からなり、その結合相が5〜60重量%の鉄族グル
ープ金属より構成されると共に、硬質相が1μ以下の微
粒と5μ以上の粗粒の微粗混粒であることを特徴とする
、耐衝撃工具用硬質合金に関するものである。
That is, in the present invention, the hard phase is a simple hexagonal type (M
o, W) Consisting of a mixture of C or (Mo, W)C and WC, the binder phase is composed of 5 to 60% by weight of iron group metals, and the hard phase is fine grains of 1μ or less and grains of 5μ or more The present invention relates to a hard alloy for impact-resistant tools, which is characterized by a mixture of coarse grains and fine coarse grains.

本発明の硬質相における微粗粒の割合は、微粒が硬質相
全体の10〜90重量%を占めるようなものが、耐衝撃
性、耐溶着性゛においてすぐれている〇 (M OX HW 1.、−x ) C”)組成にツイ
テは、0.05≦x≦0.95が好ましく、Xが0.0
5以下ではMoの効果が認められず、Xがo、95以上
では焼結性が悪く、シかも炭化物として不安定である。
The ratio of fine and coarse particles in the hard phase of the present invention is such that the fine particles account for 10 to 90% by weight of the entire hard phase, which provides excellent impact resistance and welding resistance〇 (MOX HW 1. , -x) C") The composition is preferably 0.05≦x≦0.95, and X is 0.0
When X is less than 5, the effect of Mo is not recognized, and when X is o, and when it is more than 95, the sinterability is poor and the molybdenum is unstable as a carbide.

また(Mo、W)CとWCの比率については、(Mol
W)C/WCが0,1以下の合金では耐摩擦係数におい
てWC合金と有意差が認められず、(Mo、W)C/W
Cが10以上ではWCが(Mo、W)Cに拡散して実質
的にはWCと(Mo、WJCの混在した合金とはならな
いからである。
Also, regarding the ratio of (Mo, W)C and WC, (Mol
For alloys with W)C/WC of 0.1 or less, no significant difference was observed in friction coefficient from WC alloys, and (Mo, W)C/W
This is because when C is 10 or more, WC diffuses into (Mo, W)C, and an alloy containing WC and (Mo, WJC) is not substantially formed.

なお本発明の合金において、MOとWの組成比を(M 
o x + W + −x ) Cと表示したときに、
合金中における(Mox、Wl−x)Cの組成は必らず
しも1種類ではなく、2種以上のものを組み合せてその
特性に変化を持たせることも可能である。
In addition, in the alloy of the present invention, the composition ratio of MO and W is (M
ox + W + -x) When displayed as C,
The composition of (Mox, Wl-x)C in the alloy is not necessarily one type, but it is also possible to change the properties by combining two or more types.

また本発明合金において、IVasVa、V[a族金属
炭化物もしくは窒化物ある頭は炭窒化物を含んだ合金に
おいても、本発明合金の特性を十分満足することが判っ
た。
It has also been found that, in the alloy of the present invention, the characteristics of the alloy of the present invention are fully satisfied even in alloys containing IVasVa, V[a group metal carbide or nitride, and the head of which is a carbonitride.

同時に(Mo、W)CのCをN、OlH,B等に置換し
てもその効果は同じである。また本発明合金の結合相を
強化するために、従来t・らよ〈使われるAt% BN
 0% AgXCr5 P−、Si、Ca等の元素を微
量、加えることもできる。
At the same time, even if C in (Mo, W)C is replaced with N, OlH, B, etc., the effect is the same. In addition, in order to strengthen the binder phase of the alloy of the present invention, At% BN
Trace amounts of elements such as 0% AgXCr5 P-, Si, and Ca can also be added.

本発明合金は耐衝撃用工具としてよく知られている冷間
鍛造工具以外にも、ダイス、ロール、剪断工具、摺−動
部品、製缶工具、ドリル、鉱山工具といった耐摩部品に
おいてもその効果を発揮するものである。
In addition to cold forging tools, which are well known as impact-resistant tools, the alloy of the present invention has also shown its effectiveness in wear-resistant parts such as dies, rolls, shearing tools, sliding parts, can making tools, drills, and mining tools. It is something that can be demonstrated.

実施例1 平均粒径が5μの(MOo、 、wo3) Cと平均粒
径が0.5μのWCを各々4o重量%ずっと、2o重量
%のCO粉末からなる組成比の混合粉末を、ボールミル
を用いてアルコール溶媒中にて20時間混合した。該混
合粉末に2.0重M%のパラフィンを投入した後、乾燥
した。該混合粉末を型押した後、真空中1550℃で1
時間、焼結した。得られた合金の特性は次の通りであっ
た。
Example 1 A mixed powder with a composition ratio of 40% by weight each of C with an average particle size of 5μ (MOo, , wo3) and WC with an average particle size of 0.5μ and 20% by weight of CO powder was milled using a ball mill. The mixture was mixed for 20 hours in an alcohol solvent. After adding 2.0% by weight of paraffin to the mixed powder, it was dried. After stamping the mixed powder, it was heated at 1550°C in vacuum for 1
time, sintered. The properties of the obtained alloy were as follows.

比  重       11.8 硬  度       84.5 抗折力   270 Kg/am2 実施例2 実施例1の製法により、下記内容の組成にて合金を作成
したつその主な物理特性を第1表に示す。
Specific gravity: 11.8 Hardness: 84.5 Transverse rupture strength: 270 Kg/am2 Example 2 An alloy was prepared using the manufacturing method of Example 1 and had the composition shown below. The main physical properties of the alloy are shown in Table 1.

第  1  表 実施例5 実施例2により作成した合金4、合金9を比較例として
作成した合金12.15と共に各々5つのヘッダー金型
材として用い、545c種標準カ・らなるネジの頭部を
塑性加工した場合の各種合金の寿命テストを行なった。
Table 1 Example 5 Alloy 4 and Alloy 9 prepared according to Example 2 were used as five header mold materials together with Alloy 12.15 prepared as a comparative example, and the heads of screws made of 545C type standard force were plasticized. We conducted life tests of various alloys when processed.

その結果を第2表に示す。The results are shown in Table 2.

第  2  表 肴 合金辺は全て実施例2の隘である。Table 2 Appetizer All alloy sides are the same as in Example 2.

実施例4 平均粒度が、6μの(lvLo、 、wo、 )Cと平
均粒度が0.5μの(Moa6 、wo2) Cを各々
42.5重量%ずつを15重fit%のCO粉末と混合
してボールミルを用いてアルコール溶媒中にて50時間
混合した。該混合粉末に2.0重ffi%のパラフィン
を投入した後、乾燥した。該混合粉末を型押後、真空中
、1400℃にて1時間、焼成した。得られた合金の特
性は次の如くであった。
Example 4 42.5% by weight of each of (lvLo, , wo, ) C with an average particle size of 6μ and (Moa6, wo2) with an average particle size of 0.5μ was mixed with 15% by weight CO powder. The mixture was mixed for 50 hours in an alcohol solvent using a ball mill. After adding 2.0% by weight of paraffin to the mixed powder, it was dried. After the mixed powder was pressed, it was fired in vacuum at 1400° C. for 1 hour. The properties of the obtained alloy were as follows.

比  重     12.0 硬  度     88.2 抗折力  25 (I Kg7dRatio Weight 12.0 Hardness 88.2 Transverse rupture strength 25 (I Kg7d

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超硬合金(A)と本発明合金(B)の摩
擦係数を比較したグラフであり、第2図は本発明合金(
C)と比較合金(DJの圧縮テストによる応力−歪曲線
である。 代理人  内 1)  明 代理人  萩 原 亮 −
Figure 1 is a graph comparing the friction coefficients of the conventional cemented carbide (A) and the alloy of the present invention (B), and Figure 2 is a graph comparing the coefficient of friction of the conventional cemented carbide (A) and the alloy of the present invention (B).
Stress-strain curves of C) and comparative alloys (DJ compression test. Representative 1) Representative Akira Ryo Hagiwara -

Claims (1)

【特許請求の範囲】 tIi11!質相が単純ヘキサゴナル型の(M(1,W
)Cまたは(Mo、W)CとWCの混在物からなり、そ
の結合相が5〜60重量%の鉄族グループ金属より構成
されると共に、l1i14質相が1μ以下の微粒と5μ
以上の粗粒のυ■粗混粒であることを特徴とする、耐衝
撃工具用硬質合金。 2、  (M o x + W、−X )の組成が00
5≦X≦0.95である特許請求の範囲1記載の耐衝撃
工具用硬質合金◎ 501≦(Mo 、 W) C/ WC≦10である特
許請求の範囲1または2記載の耐衝1.工具用硬質合金
。 4 微粒の硬質相が硬質相全体の10〜90重i+%を
占める、特許請求の範囲1記載の耐衝撃r具用硬質合金
[Claims] tIi11! The quality phase is of simple hexagonal type (M(1, W
) C or (Mo, W) A mixture of C and WC, the binder phase is composed of 5 to 60% by weight of iron group metals, and the l1i14 phase consists of fine particles of 1μ or less and 5μ
A hard alloy for use in impact-resistant tools, characterized by a coarse mixed grain of υ■ coarse grains. 2. The composition of (M ox + W, -X) is 00
The hard alloy for impact-resistant tools according to claim 1, where 5≦X≦0.95. The impact-resistant hard alloy according to claim 1 or 2, where 501≦(Mo, W) C/WC≦10. Hard alloy for tools. 4. The hard alloy for impact-resistant tools according to claim 1, wherein the fine-grained hard phase accounts for 10 to 90% by weight of the entire hard phase.
JP15624781A 1981-10-02 1981-10-02 Hard alloy for impact resistant tool Pending JPS5858245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15624781A JPS5858245A (en) 1981-10-02 1981-10-02 Hard alloy for impact resistant tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15624781A JPS5858245A (en) 1981-10-02 1981-10-02 Hard alloy for impact resistant tool

Publications (1)

Publication Number Publication Date
JPS5858245A true JPS5858245A (en) 1983-04-06

Family

ID=15623592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15624781A Pending JPS5858245A (en) 1981-10-02 1981-10-02 Hard alloy for impact resistant tool

Country Status (1)

Country Link
JP (1) JPS5858245A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552653A (en) * 1983-04-22 1985-11-12 Shin Sumino Rear dump truck with sieving device
JPS60258446A (en) * 1984-06-04 1985-12-20 Toshiba Tungaloy Co Ltd Sintered alloy
JPS6342352A (en) * 1985-08-07 1988-02-23 コンパニア ブラジレイラ デ メタルジア エ ミネラソン Production of abrasion resistant and high impact resistant hard metal body
JPS63116948A (en) * 1986-11-05 1988-05-21 Shin Sumino Rear dump truck provided with screen-sorter
WO1993005191A1 (en) * 1991-09-02 1993-03-18 Sumitomo Electric Industries, Ltd. Hard alloy and production thereof
EP1420076A1 (en) * 2002-10-24 2004-05-19 Toshiba Tungaloy Co., Ltd. Hard alloy and W-based composite carbide powder used as starting material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552653A (en) * 1983-04-22 1985-11-12 Shin Sumino Rear dump truck with sieving device
JPS60258446A (en) * 1984-06-04 1985-12-20 Toshiba Tungaloy Co Ltd Sintered alloy
JPH0461058B2 (en) * 1984-06-04 1992-09-29 Toshiba Tungaloy Co Ltd
JPS6342352A (en) * 1985-08-07 1988-02-23 コンパニア ブラジレイラ デ メタルジア エ ミネラソン Production of abrasion resistant and high impact resistant hard metal body
JPS63116948A (en) * 1986-11-05 1988-05-21 Shin Sumino Rear dump truck provided with screen-sorter
JPH0443012B2 (en) * 1986-11-05 1992-07-15 Shin Sumino
WO1993005191A1 (en) * 1991-09-02 1993-03-18 Sumitomo Electric Industries, Ltd. Hard alloy and production thereof
EP1420076A1 (en) * 2002-10-24 2004-05-19 Toshiba Tungaloy Co., Ltd. Hard alloy and W-based composite carbide powder used as starting material

Similar Documents

Publication Publication Date Title
US4145213A (en) Wear resistant alloy
JPS5856022B2 (en) High wear-resistant powder metallurgy tool steel article with high vanadium carbide content
KR20110079901A (en) Metal powder containing molybdenum for producing hard metals based on tungstene carbide
KR102217787B1 (en) Carbide with toughness-increasing structure
US7641710B2 (en) Tool for coldforming operations with improved performance
US3165822A (en) Tungsten carbide tool manufacture
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
CN112359258A (en) Mining hard alloy formula, mining hard alloy and preparation method thereof
JPH02213428A (en) Manufacture of cutting tool material
JPS5858245A (en) Hard alloy for impact resistant tool
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JPH07188859A (en) Powder high speed steel
JP3428333B2 (en) Cemented carbide, its manufacturing method and carbide tool
JPS6256944B2 (en)
JPS6240340A (en) Diamond-type sintered material for cutting tool
JPS61194148A (en) Sintered hard alloy of super fine grains
US2033513A (en) Hard cemented carbide material
JP2514088B2 (en) High hardness and high toughness sintered alloy
JPH10259433A (en) Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength
JPH0256419B2 (en)
JPH08319532A (en) Sintered hard alloy for punching tool
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
JPS5942067B2 (en) Tough tungsten carbide-based cemented carbide for cutting tools
JPS5839899B2 (en) Manufacturing method of Co-based sintered alloy for tools