JPH0461058B2 - - Google Patents
Info
- Publication number
- JPH0461058B2 JPH0461058B2 JP59114196A JP11419684A JPH0461058B2 JP H0461058 B2 JPH0461058 B2 JP H0461058B2 JP 59114196 A JP59114196 A JP 59114196A JP 11419684 A JP11419684 A JP 11419684A JP H0461058 B2 JPH0461058 B2 JP H0461058B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- sintered
- sintered alloy
- tools
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000956 alloy Substances 0.000 claims description 27
- 229910045601 alloy Inorganic materials 0.000 claims description 27
- 229910052717 sulfur Inorganic materials 0.000 claims description 19
- 229910052791 calcium Inorganic materials 0.000 claims description 18
- 239000012535 impurity Substances 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 8
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 238000005245 sintering Methods 0.000 description 14
- 239000007858 starting material Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- ZXOKVTWPEIAYAB-UHFFFAOYSA-N dioxido(oxo)tungsten Chemical compound [O-][W]([O-])=O ZXOKVTWPEIAYAB-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- -1 iron group metals Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Description
〔産業上の利用分野〕
本発明は、超硬合金及びサーメツトなどの焼結
合金に係り、特に微細な結晶粒子からなる高強度
な焼結合金に関する。
〔従来の技術〕
一般に、WC系超硬合金、TiC系サーメツトな
どの焼結合金は、高硬度で耐熱性にすぐれること
から切削工具及び耐摩耗用工具などに利用されて
いる。これらの焼結合金を工具として使用すると
き、工具の損傷形態は、2つに大別できる。その
1つは、工具と被加工材と接触によつて工具表面
が微量ずつ取り去られるすきとり的な損傷に対
し、他の1つは、工具の1部がチツピング又は欠
損によつて破壊する脆性破壊的な損傷である。こ
の内、前者のすきとり的損傷が増大して寿命に至
る場合は、工具材料の種類と工具の使用条件によ
つて大体工具寿命が予測できるのに対し、後者の
脆性破壊的損傷の場合は、工具の使用中にいつ発
生するか予測し難く、したがつて工具寿命の予測
もできなく、工具の信頼性を低下させるという問
題がある。
工具に生ずる脆性破壊的損傷の影響を受けやす
い使用分野として、大型サイドカツター、ホブな
どの大きな衝撃が加わるものからガンドリル、ガ
ンリーマ、エンドミル、各種のドリルのように低
速切削領域で衝撃が加わる切削用工具及びスリツ
ター、ドツトピンなどの耐摩耗用工具があり、こ
れらの各分野において、最近作業条件の高能率化
及び自動化が進み、さらに工具寿命の改善、特に
工具寿命の安定性又は信頼性への要求が高まりつ
つある。
〔発明が解決しようとする問題点〕
本発明は、上記の問題点を解決したもので、具
体的には耐摩耗性の尺度となる硬さを低下させず
に靭性を高めることによつて耐脆性破壊的損傷の
改善ができた焼結合金の提供を目的とする。
〔問題点を解決するための手段〕
本発明の発明者らは、焼結合金、特にWCを主
体とする焼結合金の脆性破壊を生ずる原因として
の破壊の起源を顕微鏡による破面観察及びX線マ
イクロアナライザーによる組織分析によつて追求
した結果、CaとSもしくはCaを含有した異物が
破壊の起源になつていることを確認することによ
つて本発明を完成させたものである。
本発明の焼結合金は、平均粒径1μm以下の炭
化タングステンを主体にした(炭化タングステン
のみ、又は炭化タングステンの他に炭化タングス
テンを除いた周期律表IVa,Va,VIa族金属の炭
化物、窒化物、炭窒化物、炭酸化物、窒酸化物、
炭窒酸化物及びこれらの相互固溶体の中の少なく
とも1種でなる)硬質相70〜97重量%と残り、
Fe、Ni、Co、Cr、Mo、Wの中の少なくとも1
種の結合相と不可避的不純物とでなる焼結合金の
不可避的不純物の中のCaが0.01重量%以下とSが
0.005重量%以下に制限して、高強度性を持たせ
たことを特徴とするものである。
本発明の焼結合金における硬質相が平均粒径
1μmを越えた炭化タングステンでなる場合には、
不可避的不純物を制限する効果が弱くなり、異常
成長した炭化タングステンが出現し、強度低下が
顕著になる。
本発明の焼結合金の製造方法は、出発原料中の
CaもしくはCaとSの含有量を厳密に制限する必
要がある。例えば従来の出発原料の精製工程に対
して、更にCa及びSの含有量の少ない出発原料
となるような精製工程の工夫を施す必要がある。
このような精製工程の工夫によつて得たCa及び
Sの含有量の少ない出発原料を使用して所定量配
合した後は、混合粉末の成形しやすさのために使
用するパラフイン、ステアリン酸などの滑剤中に
含有するCa及びSの化合物からなる不純物ある
いは予備焼結及び焼結工程で使用するカーボン又
はグラフアイトに含有する不純物に注意をしてお
く必要がある。更に混入してくる不純物量を抑制
する以外としては、出発原料の密度が、例えば
WC15.7g/c.c.、Co8.9g/c.c.に対してCaS2.80
g/c.c.、CaO3.37g/c.c.と著しく小さいことから
混合粉末の乾燥過程において、CaS及びCaOが不
純物として微量存在としても偏析しやすい傾向に
あるのでできるだけ均一に混合しながら乾燥する
工夫をしたり、もしくは焼結工程で急冷処理によ
つてCaS及びCaOの偏析を大幅に減少させるとい
う工夫が必要である。これらの不純物の量及び偏
析を抑制することによつて得られる本発明の焼結
合金は、焼結後更に、熱間静水圧法(HIP)によ
つて処理すると一層抗析力を高める効果が著しく
望ましい。
〔作用〕
本発明の焼結合金は、焼結合金の特性を代表す
る硬さと抗析力との関係において、硬さを低下さ
せずに抗析力を高めることができたものである。
具体的に説明すると、超硬合金又はサーメツトか
らなる焼結合金は、出発原料として使用する周期
律表a、Va、a族金属の炭化物、窒化物な
どの中に不可避的不純物としてCa及びSが含ま
れており、又結合相としての鉄族金属の中にも不
可避的不純物としてCa及びSが含まれている。
例えばWの場合約100ppmのCaが含まれていた
り、このWを炭化するときのカーボンにはSが含
まれていて結局WCにしたときには約90ppmのCa
と約500ppmのSが含まれている。又、鉄族金属
としてのCo及びNiの中にもCaが約100ppm、S
が約30ppm含まれている。これらの出発原料が微
粒になる程Ca及びSの含有量が多くなる傾向に
ある。また、焼結合金のCa及びSの含有量は、
上述のように、出発原料に起因するものの他に、
焼結雰囲気、すなわち焼結時に用いる発熱体、断
熱材及び製品支持板として用いられる材料、例え
ば黒鉛中に含有するCa及びSにも起因する。従
つて、焼結用具空炉は、あらかじめ製品の焼結温
度よりも高温、望ましくは1773K以上の温度で空
焼きし、十分にCa及びSを揮散させておく必要
がある。このために従来の焼結合金は、成分組成
及び結晶粒子の大きさによつて異なるけれども大
体Caが約0.02%Sが約0.01%程度含まれている。
このように出発原料中にCaが含まれていると焼
結過程においてCaOの凝集体を生成し、焼結後に
は破壊の起源となつて靭性を低下させる。又、出
発原料中にCaとSが含まれていると焼結過程に
おいてCaS及びCaOの凝集体を生成したり、硫化
物の晶出相を生成し、これらのCaS、CaO及び硫
化物の晶出相が焼結後には破壊の起源となつて靭
性を低下させる。特に、硬質相として平均粒径
1μm以下の炭化タングステンを主体にして炭化
バナジウム、炭化クロムなどを微量添加したとき
は、CaS及びCaOの凝集体の原因で顕著に強度低
下を引き起こすようになる。これらのCaS、CaO
の凝集体の大きさは、焼結例には大体10〜20μm
になり、この大きな凝集体が破壊の起源としての
欠陥になる。このようなCaS及びCaOの凝集体の
大きさを10μm以下、好ましくは5μm以下にする
ためには、焼結合金中の不可避的不純物としての
Caを0.01重量%以下とSを0.005重量%以下にす
る必要がある。特に、焼結合金中のCaを0.007重
量%以下、Sを0.003重量%以下にすることは、
強度向上のために好ましいことである。このよう
にCa量とS量を制限することによつて超硬合金
又はサーメツトからなる焼結合金中に欠陥がなく
なり、このために硬さは低下せずに靭性の尺度と
なる抗折力が著しく向上したものである。
〔実施例〕
出発原料粉末として平均粒度0.50μmのWC粉末
(Ca:0.001%以下、S:0.0015%以下)、平均粒
度1.4μmのCo粉末(Ca:0.002%以下、S:
0.0015以下)を本発明の焼結合金用に使用し、
(但し、WCを作製するために使用したWは、
WO3ウオルフラマイトからWまでの精煉及び精
製の全工程において、イオン交換樹脂を通した純
水でもつて処理して得たWである。従来から市販
されている平均粒度0.50μmのWC粉末、平均粒度
1.5μmのCo粉末を比較用に使用し、その他の出
発原料は平均粒度1.0〜1.5μmのものを共通に使
用して第1表に示すような配合組成で所定量配合
し、72時間ボールミルを行なつて、凝集体が生じ
ないように均一混合加熱を行ないながら乾燥後成
形し、1643〜1673Kの温度3.6Ksの保持時間で真
空焼結(約7Pa)した。この時、本発明の1、
2、4、6及び比較品の8については、焼結に先
立ち、黒鉛製製品支持板のみを炉内に装入して、
1873K、22Kgで空焼きを行つた。次いで0.1GPa
のアルゴン気流中、1623Kの温度3.6Ksの保持時
間でHIP処理して本発明の試料番号1〜6と比較
の試料番号7〜10を得た。こういて得た各試料を
原子吸光法によつてCa量を、金属中炭素イオウ
分析装置による赤外線分析によつてS量を測定し
た。又各試料の硬さ及び抗折力を測定した後抗折
力を測定した破面を金属顕微鏡、走査型顕微鏡及
びX線マイクロアナライザーにより調べて、各試
料中の主な欠陥の種類及びその大きさを測定し
た。これらの結果を第2表に示した。
第2表の結果から明らかなように、出発原料の
選定、並びに焼結炉及び焼結時に炉内に装入する
製品支持板などの備品の空焼きでもつてCa及び
Sの含有量を調整した本発明品は、比較品に比べ
て抗折力が高く、高強度性を有することが確認で
きた。
[Industrial Application Field] The present invention relates to sintered alloys such as cemented carbide and cermets, and particularly to high-strength sintered alloys made of fine crystal grains. [Prior Art] Generally, sintered alloys such as WC cemented carbide and TiC cermet are used for cutting tools and wear-resistant tools because of their high hardness and excellent heat resistance. When these sintered alloys are used as tools, the damage to the tools can be roughly divided into two types. One type of damage is a gap-like damage in which a small amount of the tool surface is removed due to contact between the tool and the workpiece, and the other type is brittle damage in which a part of the tool breaks due to chipping or chipping. This is devastating damage. In the former case, where the damage increases until the end of the tool life, the tool life can be roughly predicted depending on the type of tool material and tool usage conditions, whereas in the case of the latter, brittle fracture damage. There is a problem in that it is difficult to predict when this will occur during use of the tool, and therefore the tool life cannot be predicted, reducing the reliability of the tool. Fields of use that are susceptible to brittle fracture damage that occurs in tools include tools that are subject to large impact such as large side cutters and hobs, as well as cutting tools that are subject to impact at low speeds such as gun drills, gun reamers, end mills, and various drills. There are also wear-resistant tools such as slitters, dot pins, etc. In each of these fields, work conditions have recently become more efficient and automated, and there is also a demand for improved tool life, especially stability or reliability of tool life. It is increasing. [Problems to be Solved by the Invention] The present invention solves the above problems, and specifically improves wear resistance by increasing toughness without reducing hardness, which is a measure of wear resistance. The purpose of the present invention is to provide a sintered alloy with improved brittle fracture damage. [Means for Solving the Problem] The inventors of the present invention investigated the origin of fracture as a cause of brittle fracture in sintered alloys, particularly sintered alloys mainly composed of WC, by observing fracture surfaces using a microscope and using As a result of tissue analysis using a line microanalyzer, the present invention was completed by confirming that Ca and S, or a foreign substance containing Ca, was the origin of the fracture. The sintered alloy of the present invention is mainly composed of tungsten carbide with an average grain size of 1 μm or less (tungsten carbide alone, or carbides of metals of groups IVa, Va, and VIa of the periodic table excluding tungsten carbide, and nitrides). substances, carbonitrides, carbonates, nitrides,
70 to 97% by weight of a hard phase (consisting of at least one of carbonitoxides and mutual solid solutions thereof);
At least one of Fe, Ni, Co, Cr, Mo, W
Among the inevitable impurities of the sintered alloy consisting of the seed binder phase and inevitable impurities, Ca is 0.01% by weight or less and S is
It is characterized by having high strength by limiting the content to 0.005% by weight or less. The hard phase in the sintered alloy of the present invention has an average grain size
If it is made of tungsten carbide with a thickness exceeding 1 μm,
The effect of limiting unavoidable impurities becomes weaker, abnormally grown tungsten carbide appears, and the strength decreases significantly. The method for producing a sintered alloy of the present invention includes
It is necessary to strictly limit the content of Ca or Ca and S. For example, it is necessary to devise a refinement to the conventional refining process of starting materials so as to produce starting materials with even lower Ca and S contents.
After blending a predetermined amount of starting materials with low Ca and S content obtained by devising the refining process, paraffin, stearic acid, etc., which are used to make the mixed powder easier to mold, are added. It is necessary to pay attention to impurities consisting of compounds of Ca and S contained in the lubricant, or impurities contained in carbon or graphite used in the preliminary sintering and sintering steps. In addition to suppressing the amount of impurities mixed in, the density of the starting material is, for example,
CaS2.80 for WC15.7g/cc, Co8.9g/cc
g/cc and CaO3.37g/cc, which is extremely small, so CaS and CaO tend to segregate as impurities even in small amounts during the drying process of the mixed powder. Alternatively, it is necessary to devise measures to significantly reduce the segregation of CaS and CaO by rapid cooling treatment during the sintering process. The sintered alloy of the present invention, which is obtained by suppressing the amount and segregation of these impurities, can be further treated by hot isostatic pressing (HIP) after sintering to have the effect of further increasing the anti-soldering strength. Highly desirable. [Function] The sintered alloy of the present invention can increase the anti-soldering strength without reducing the hardness in the relationship between hardness and anti-soldering strength, which are typical characteristics of sintered alloys.
Specifically, sintered alloys made of cemented carbide or cermets contain Ca and S as unavoidable impurities in carbides, nitrides, etc. of metals in groups a, Va, and a of the periodic table used as starting materials. Ca and S are also included as unavoidable impurities in the iron group metal as a binder phase.
For example, in the case of W, it contains about 100 ppm of Ca, and the carbon used to carbonize this W contains S, so when it is turned into WC, it contains about 90 ppm of Ca.
It contains about 500 ppm of S. Additionally, Co and Ni, which are iron group metals, contain approximately 100 ppm of Ca and S.
Contains approximately 30ppm. As these starting materials become finer particles, the content of Ca and S tends to increase. In addition, the content of Ca and S in the sintered alloy is
As mentioned above, in addition to those due to the starting materials,
It is also caused by the sintering atmosphere, that is, the materials used as the heating element, heat insulating material, and product support plate used during sintering, such as Ca and S contained in graphite. Therefore, the sintering tool must be fired in advance at a temperature higher than the sintering temperature of the product, preferably at a temperature of 1773K or higher, to sufficiently volatilize Ca and S. For this reason, conventional sintered alloys generally contain about 0.02% Ca and about 0.01% S, although this varies depending on the component composition and the size of crystal grains.
If Ca is contained in the starting material in this way, CaO aggregates are generated during the sintering process, which becomes a source of fracture after sintering and reduces toughness. In addition, if Ca and S are contained in the starting materials, aggregates of CaS and CaO will be generated during the sintering process, or a crystallized phase of sulfides will be formed. After the phase is sintered, it becomes a source of fracture and reduces toughness. In particular, the average particle size as the hard phase
When a small amount of vanadium carbide, chromium carbide, etc. is added to a material mainly consisting of tungsten carbide with a diameter of 1 μm or less, the strength will be significantly reduced due to the formation of aggregates of CaS and CaO. These CaS, CaO
The size of the aggregates is approximately 10 to 20 μm in the sintered example.
, and this large aggregate becomes the defect as the origin of the fracture. In order to reduce the size of such aggregates of CaS and CaO to 10 μm or less, preferably 5 μm or less, the unavoidable impurities in the sintered alloy must be
It is necessary to reduce Ca to 0.01% by weight or less and S to 0.005% by weight or less. In particular, reducing Ca to 0.007% by weight or less and S to 0.003% by weight or less in the sintered alloy is
This is preferable for improving strength. By limiting the amount of Ca and S in this way, defects are eliminated in the sintered alloy made of cemented carbide or cermet, and therefore the transverse rupture strength, which is a measure of toughness, is reduced without decreasing the hardness. This is a marked improvement. [Example] As starting raw material powders, WC powder with an average particle size of 0.50 μm (Ca: 0.001% or less, S: 0.0015% or less) and Co powder with an average particle size of 1.4 μm (Ca: 0.002% or less, S:
0.0015 or less) is used for the sintered alloy of the present invention,
(However, the W used to make the WC is
WO 3 W is obtained by treating with pure water passed through an ion exchange resin in all the steps of refining and refining from wolframite to W. Conventionally commercially available WC powder with an average particle size of 0.50μm, average particle size
Co powder of 1.5 μm was used for comparison, and other starting materials with an average particle size of 1.0 to 1.5 μm were used in common, and the prescribed amounts were mixed with the composition shown in Table 1, and the mixture was heated in a ball mill for 72 hours. After drying and heating while uniformly mixing and heating to prevent the formation of aggregates, the material was vacuum sintered (approximately 7 Pa) at a temperature of 1643 to 1673 K for a holding time of 3.6 Ks. At this time, 1 of the present invention,
For 2, 4, 6 and comparative product 8, only the graphite product support plate was charged into the furnace prior to sintering,
I air-fired it at 1873K and 22Kg. Then 0.1GPa
Samples Nos. 1 to 6 of the present invention and comparative samples Nos. 7 to 10 were obtained by HIPing in an argon stream at a temperature of 1623K for a holding time of 3.6Ks. For each sample thus obtained, the amount of Ca was measured by atomic absorption spectrometry, and the amount of S was measured by infrared analysis using a carbon-sulfur-in-metal analyzer. After measuring the hardness and transverse rupture strength of each sample, the fracture surface on which the transverse rupture strength was measured was examined using a metallurgical microscope, a scanning microscope, and an X-ray microanalyzer to determine the type and size of the main defects in each sample. We measured the These results are shown in Table 2. As is clear from the results in Table 2, the Ca and S contents were adjusted through the selection of starting materials and the dry firing of the sintering furnace and equipment such as product support plates charged into the furnace during sintering. It was confirmed that the product of the present invention had a higher transverse rupture strength and higher strength than the comparative product.
【表】【table】
以上の説明及び結果から、本発明の焼結合金
は、破壊の起源となる不純物に起因する欠陥が少
なくなり、そのために従来の焼結合金と同じ硬さ
を保持しながら高抗折力を有するものである。こ
のことから衝撃又は圧縮応力が加わるような工
具、例えばパンチ、ダイなどの剪断工具、スリツ
ター、裁断刃などの切断工具、ガイドブツシユ、
ロール、ゲージ類の機械部品治工具及びバルブ、
メカニカルシールなどの耐摩耗用工具並びに旋削
は勿論のこと衝撃力が大きく加わるようなフライ
ス工具及びエンドミル、リーマ、ドリル等の穴あ
け工具を含めた切削用工具、特に、微粒WCを使
用したミクロンドリル、ドツトピンに最適であ
り、更に各種の被覆焼結合金の基材としても利用
できる可能性がある産業上有用な焼結合金であ
る。
From the above explanation and results, the sintered alloy of the present invention has fewer defects caused by impurities that cause fracture, and therefore has high transverse rupture strength while maintaining the same hardness as conventional sintered alloys. It is something. Therefore, tools that apply impact or compressive stress, such as shearing tools such as punches and dies, cutting tools such as slitters and cutting blades, guide bushes, etc.
Machine parts jigs and valves for rolls and gauges,
Wear-resistant tools such as mechanical seals, cutting tools including not only turning tools but also milling tools that are subject to large impact forces and drilling tools such as end mills, reamers, drills, etc., especially micron drills using fine grain WC, It is an industrially useful sintered alloy that is ideal for dot pins and may also be used as a base material for various coated sintered alloys.
Claims (1)
体にした硬質相70〜97重量%と、残りFe、Ni、
Co、Cr、Mo、Wの中の少なくとも1種の結合相
と不可避的不純物とでなる焼結合金において、不
可避的不純物の中のCa(カルシム)が0.01重量%
以下とS(イオウ)が0.005重量%以下にして、高
強度性を持たせたことを特徴とする焼結合金。1 70 to 97% by weight of a hard phase mainly composed of tungsten carbide with an average particle size of 1 μm or less, and the remainder Fe, Ni,
In a sintered alloy consisting of at least one binder phase among Co, Cr, Mo, and W and unavoidable impurities, Ca (calcium) among the unavoidable impurities is 0.01% by weight.
A sintered alloy characterized by having high strength by containing the following and S (sulfur) at 0.005% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11419684A JPS60258446A (en) | 1984-06-04 | 1984-06-04 | Sintered alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11419684A JPS60258446A (en) | 1984-06-04 | 1984-06-04 | Sintered alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60258446A JPS60258446A (en) | 1985-12-20 |
JPH0461058B2 true JPH0461058B2 (en) | 1992-09-29 |
Family
ID=14631603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11419684A Granted JPS60258446A (en) | 1984-06-04 | 1984-06-04 | Sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60258446A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62235457A (en) * | 1986-04-03 | 1987-10-15 | Nippon Tungsten Co Ltd | Corrosion-resisting cemented carbide |
JPS6369938A (en) * | 1986-09-11 | 1988-03-30 | Nippon Tungsten Co Ltd | Sintered hard alloy excellent in sliding characteristic to sic |
JPH0273945A (en) * | 1988-09-08 | 1990-03-13 | Toyo Kohan Co Ltd | Cermet tool for drawing-ironing can forming |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5591955A (en) * | 1978-12-28 | 1980-07-11 | Toshiba Tungaloy Co Ltd | Weldable sintered hard alloy |
JPS5767145A (en) * | 1980-10-09 | 1982-04-23 | Toshiba Tungaloy Co Ltd | Superhard alloy for plastic working |
JPS57155342A (en) * | 1981-03-19 | 1982-09-25 | Sumitomo Electric Ind Ltd | Extra fine grained alloy tool for rotary cutting |
JPS57210950A (en) * | 1981-06-23 | 1982-12-24 | Hitachi Metals Ltd | Sintered hard alloy |
JPS5831057A (en) * | 1981-08-18 | 1983-02-23 | Sumitomo Electric Ind Ltd | Sintered hard alloy |
JPS5858245A (en) * | 1981-10-02 | 1983-04-06 | Sumitomo Electric Ind Ltd | Hard alloy for impact resistant tool |
JPS5881949A (en) * | 1981-11-10 | 1983-05-17 | Seiko Epson Corp | Exterior parts for timepiece |
JPS58136741A (en) * | 1982-02-09 | 1983-08-13 | Nippon Tungsten Co Ltd | Golden sintered alloy for decoration |
JPS58136742A (en) * | 1982-02-09 | 1983-08-13 | Nippon Tungsten Co Ltd | Golden sintered alloy for decoration |
JPS58136744A (en) * | 1982-02-09 | 1983-08-13 | Nippon Tungsten Co Ltd | Golden sintered alloy for decoration |
JPS58136743A (en) * | 1982-02-09 | 1983-08-13 | Nippon Tungsten Co Ltd | Golden sintered alloy for decoration |
JPS5931842A (en) * | 1983-07-21 | 1984-02-21 | Sumitomo Electric Ind Ltd | Sintered hard alloy member and its production |
JPH05128561A (en) * | 1991-10-30 | 1993-05-25 | Fujitsu Ltd | Tracking actuator of optical disk drive |
-
1984
- 1984-06-04 JP JP11419684A patent/JPS60258446A/en active Granted
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5591955A (en) * | 1978-12-28 | 1980-07-11 | Toshiba Tungaloy Co Ltd | Weldable sintered hard alloy |
JPS5767145A (en) * | 1980-10-09 | 1982-04-23 | Toshiba Tungaloy Co Ltd | Superhard alloy for plastic working |
JPS57155342A (en) * | 1981-03-19 | 1982-09-25 | Sumitomo Electric Ind Ltd | Extra fine grained alloy tool for rotary cutting |
JPS57210950A (en) * | 1981-06-23 | 1982-12-24 | Hitachi Metals Ltd | Sintered hard alloy |
JPS5831057A (en) * | 1981-08-18 | 1983-02-23 | Sumitomo Electric Ind Ltd | Sintered hard alloy |
JPS5858245A (en) * | 1981-10-02 | 1983-04-06 | Sumitomo Electric Ind Ltd | Hard alloy for impact resistant tool |
JPS5881949A (en) * | 1981-11-10 | 1983-05-17 | Seiko Epson Corp | Exterior parts for timepiece |
JPS58136741A (en) * | 1982-02-09 | 1983-08-13 | Nippon Tungsten Co Ltd | Golden sintered alloy for decoration |
JPS58136742A (en) * | 1982-02-09 | 1983-08-13 | Nippon Tungsten Co Ltd | Golden sintered alloy for decoration |
JPS58136744A (en) * | 1982-02-09 | 1983-08-13 | Nippon Tungsten Co Ltd | Golden sintered alloy for decoration |
JPS58136743A (en) * | 1982-02-09 | 1983-08-13 | Nippon Tungsten Co Ltd | Golden sintered alloy for decoration |
JPS5931842A (en) * | 1983-07-21 | 1984-02-21 | Sumitomo Electric Ind Ltd | Sintered hard alloy member and its production |
JPH05128561A (en) * | 1991-10-30 | 1993-05-25 | Fujitsu Ltd | Tracking actuator of optical disk drive |
Also Published As
Publication number | Publication date |
---|---|
JPS60258446A (en) | 1985-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3660050A (en) | Heterogeneous cobalt-bonded tungsten carbide | |
JP5100927B2 (en) | Method for producing cubic boron nitride sintered body | |
JPH10512624A (en) | Cement-bonded ceramic tool made from ultrafine solid solution powder, method of manufacturing the same, and material thereof | |
US3676161A (en) | Refractories bonded with aluminides,nickelides,or titanides | |
DE68928219T2 (en) | High-strength, abrasion-resistant materials | |
US4013460A (en) | Process for preparing cemented tungsten carbide | |
KR920004669B1 (en) | Cermet cutting tool | |
JPS6112847A (en) | Sintered hard alloy containing fine tungsten carbide particles | |
US3525610A (en) | Preparation of cobalt-bonded tungsten carbide bodies | |
US3737289A (en) | Carbide alloy | |
JP4297987B2 (en) | High-strength fine-grain diamond sintered body and tool using the same | |
US3762919A (en) | Titanium carbide nickel composition process | |
JPH05209248A (en) | High hardness and wear-resistant material | |
JPH0461058B2 (en) | ||
US4705565A (en) | High speed steel sintering powder made from reclaimed grinding sludge and objects sintered therefrom | |
CN115138849B (en) | Preparation method of binding phase-free hard alloy cutter material | |
US4859124A (en) | Method of cutting using a titanium diboride body | |
US6238148B1 (en) | Cemented carbide cutting tool | |
JPS6256943B2 (en) | ||
JP2757469B2 (en) | Tungsten carbide based cemented carbide end mill | |
JP3217404B2 (en) | Cermet for rotary tools | |
JP2001198710A (en) | Cemented carbide extruded material, manufacturing method and cutting tool | |
JPH10324943A (en) | Ultra-fine cemented carbide, and its manufacture | |
EP0148821B1 (en) | Method of making and using a titanium diboride comprising body | |
JP2514088B2 (en) | High hardness and high toughness sintered alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |