JPS5857944A - Composite metallic pipe and its manufacture - Google Patents

Composite metallic pipe and its manufacture

Info

Publication number
JPS5857944A
JPS5857944A JP15625081A JP15625081A JPS5857944A JP S5857944 A JPS5857944 A JP S5857944A JP 15625081 A JP15625081 A JP 15625081A JP 15625081 A JP15625081 A JP 15625081A JP S5857944 A JPS5857944 A JP S5857944A
Authority
JP
Japan
Prior art keywords
metal tube
tube
layer
intermetallic compound
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15625081A
Other languages
Japanese (ja)
Inventor
和夫 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP15625081A priority Critical patent/JPS5857944A/en
Publication of JPS5857944A publication Critical patent/JPS5857944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、防振性の優れたNi/Ti複合金属管およ
びその製法に関し、特に複合金属管を形成するNi  
とTi  との間に両者の金属間化合物を形成すること
によ−pv&振性の優れた複合金属管を与えんとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Ni/Ti composite metal tube with excellent vibration-proofing properties and a method for manufacturing the same, and in particular to a Ni/Ti composite metal tube that forms the composite metal tube.
By forming an intermetallic compound between Ti and Ti, it is intended to provide a composite metal tube with excellent pv and vibration properties.

各種機械あるいは精密機器において、防振性(振動減衰
能)の優れた管状材料が要求されることが多い。特に、
ピックアップカートリッジをプレーヤ本体に支持するピ
ックアップ用トーンアームを形成する金属管においては
、特にその要求が強い。なぜなら、レコードプレーヤー
には、演奏中、スピーカからの青畳振動等の外部振動が
たえずかかシ、これがトーンアームを通じてそのままカ
ートリッジ針先に伝達されれば、当然ピックアップによ
る機械−電気変換特性を損う。したがつてトーンアーム
には、もろもろの外部振動をピックアップ針先に伝えな
いで、減衰させる防振性が要求される。特に1通常トー
ンアーム材料として使用されるM合金、禽合金等の金属
管は、一般に軽量で高剛性であるものの、防振性が劣る
亀のが多く、その改善の要求は強い。
Tubular materials with excellent vibration damping properties (vibration damping ability) are often required in various machines and precision equipment. especially,
This requirement is particularly strong for the metal tube that forms the pickup tone arm that supports the pickup cartridge in the player body. This is because record players are constantly exposed to external vibrations such as blue tatami vibrations from the speakers during performance, and if this is transmitted directly to the cartridge stylus tip through the tone arm, it will naturally impair the mechanical-electrical conversion characteristics of the pickup. . Therefore, the tone arm is required to have vibration-proofing properties that attenuate various external vibrations without transmitting them to the pickup needle tip. In particular, 1. Although metal tubes such as M alloy and bird alloy that are normally used as tone arm materials are generally lightweight and have high rigidity, they often have poor vibration damping properties, and there is a strong demand for improvement.

これに対し、18Cr−8Niステンレス鋼の粉末焼結
体からなる管材の結晶粒界にクロム炭化物を析出させる
熱処理を行い、この管材について内側からクロム炭化物
を選択的に溶解させる化学エツチング逃場を行2ことに
ょ夛内面に微細なり2ツクを形成して防振性(振動滅尺
性ンを高めたステンレス管をトーンアームとして使用す
ることも提案されている(雑誌「日経メカニカルJ19
79年7月9日号)。しかしながら、このようくして得
られたステンレス管製トーンアームは、防振性には優れ
るものの、その材質に起因して重く、その分、トーンア
ームの重量増加による針先を通じてのレコードjl園へ
の荷重が増加すること、それを避けるためのバランスウ
ェイトの増加に伴う小型化への支障などの欠点がある。
To deal with this, heat treatment is performed to precipitate chromium carbide at the grain boundaries of a tube material made of powdered sintered compact of 18Cr-8Ni stainless steel, and chemical etching is performed to selectively dissolve the chromium carbide from the inside of this tube material. 2. It has also been proposed to use a stainless steel tube as a tone arm, which has two fine holes formed on its inner surface to improve its vibration damping properties (magazine ``Nikkei Mechanical J19'').
(July 9, 1979 issue). However, although the stainless steel tone arm obtained in this way has excellent vibration-proofing properties, it is heavy due to its material, and due to the increased weight of the tone arm, it is difficult for the record to be transmitted through the stylus tip. There are disadvantages such as an increase in load and an obstacle to miniaturization due to an increase in balance weight to avoid this.

仁の発明は、上述の従来技術の問題点を除き、軽量で且
つ防振性の優れた金属管ならびにその製造法を提供する
仁とを目的とする。
The object of Jin's invention is to provide a metal tube that is lightweight and has excellent vibration damping properties, as well as a method for manufacturing the same, while eliminating the problems of the prior art described above.

本発明者は、上記の目的で研究を進める過程で。The present inventor was in the process of conducting research for the above purpose.

一般kNi  &Ti  との接合体を600”0以上
で加熱処理する際に境界に拡散によル生成するNi −
Ti金属間化合物は振動減衰性が大なることに着目した
。このよりなNl/T1接合体の熱処理によル界面KN
1−Tl金属間化合物が生成することは、従来よシ知ら
れていた現象である。しかしながら、このようなN1−
Tl金属間化合物は、機械的にもろ<、N1/Tim1
合体の接合強度を増大するために拡散熱処理を行うにも
拘らず、このようなもろいNi −Ti金属間化合物が
生成しては接合強度の望ましい上昇が得られないとして
、温度条件を含め、その生成を防止する方向での検討が
なされていたものである。しかしながら、この発明のよ
うにN1 管材とT1 管材の嵌挿接合体のような場合
には、本来その構造上5両者間の一体性は良好に保たれ
ているので、両者間の接合強度の向上は、それ程必要と
されない。したがって優れた防振性が要求される用途で
あれば、両者間に、積極的に金属間化合物層を形成する
仁とが好ましい。しかもこのようにして得られたNi/
Ti複合管はT1の軽量性に起因して、ステンレスなど
よりは、はるかに軽量である。
When a bonded body with general kNi & Ti is heat-treated at a temperature of 600"0 or higher, Ni − is generated by diffusion at the boundary.
We focused on the fact that Ti intermetallic compounds have high vibration damping properties. By heat treatment of this stiff Nl/T1 joint, the Le interface KN
The formation of 1-Tl intermetallic compounds is a well-known phenomenon. However, such N1−
The Tl intermetallic compound is mechanically weak <, N1/Tim1
Even though diffusion heat treatment is performed to increase the bonding strength of the composite, if such a brittle Ni-Ti intermetallic compound is generated, the desired increase in bonding strength cannot be obtained, and therefore, there are various measures including temperature conditions. Studies have been conducted to prevent this from occurring. However, in the case of a fitting assembly of N1 pipe material and T1 pipe material as in this invention, the integrity between the two is originally maintained well due to its structure, so the joint strength between the two can be improved. is not so needed. Therefore, for applications requiring excellent vibration damping properties, it is preferable to actively form an intermetallic compound layer between the two. Moreover, the Ni/
Due to the lightness of T1, the Ti composite tube is much lighter than stainless steel or the like.

この発明の防振性複合金属管は、上述の知見に基づくも
のでToシ、よp詳しくは、Nl  基金属管とT1基
金属管の一方が他方に嵌挿されNi−T1金属間化合物
層を介して互いに接合されていることを特徴とするもの
である。
The vibration-proof composite metal tube of the present invention is based on the above-mentioned knowledge, and more specifically, one of the Nl-based metal tube and the T1-based metal tube is fitted into the other, and a Ni-T1 intermetallic compound layer is formed. They are characterized in that they are joined to each other via.

また、この発明の複合金属管の製法は、Ni 基金属管
とT1碁金属管の一方を他方に嵌挿した後。
Further, the method for manufacturing a composite metal tube of the present invention includes inserting one of the Ni-based metal tube and the T1 Go metal tube into the other.

両者を小径化して接合管体を得、この管体を加熱してN
1 基金属管とT1 基金属管との関に拡散によるN1
−T1金属間化合物層を形成させることを響黴とするも
のである。この熱処理によるNi −Ti 金属間化合
物の形成に際しては、生成した金属間化合物N1.T1
層とN1 層との閏でのカーケンドール効果(拡散速度
の異なる二層間で拡散を行った場合に拡散速度の大なる
側から他の側へと優先拡散が起る現象)により境界面に
微小なボイドが発生する。このボイドの形成は、防振効
果を増大する性質を有するものである。更に拡散のため
の熱処理に際しては、α−T1 がより強度の高いβ−
T1 に変化し全体として強度的に優れた複合金属管を
与える上で浸潤である。
Both are reduced in diameter to obtain a joined tube body, and this tube body is heated to produce N.
1 N1 due to diffusion between base metal tube and T1 base metal tube
-The formation of a T1 intermetallic compound layer is used as an acoustic mold. When forming the Ni-Ti intermetallic compound by this heat treatment, the generated intermetallic compound N1. T1
Due to the Kirkendall effect (a phenomenon in which preferential diffusion occurs from the side with the higher diffusion rate to the other side when diffusion occurs between two layers with different diffusion rates) at the interface between the N1 layer and the N1 layer, minute particles are formed at the interface. A void occurs. The formation of this void has the property of increasing the vibration damping effect. Furthermore, during heat treatment for diffusion, α-T1 becomes stronger than β-T1.
Infiltration is important in providing a composite metal tube that changes to T1 and has excellent strength as a whole.

以下、この発明を更に詳細に説明する。This invention will be explained in more detail below.

この発明の複合金属管は、−例として第1図に示すよう
表概念的積層構造を示す。すなわち、この例の複合金属
管はl内層のN1 層l、・中間Ni −Tl金属間化
合物層2および蛾外層のT1 層3を、この順序で積層
してなるものでアシ、その中間N1−Tl金属間化合物
層2の拡大層構造は。
The composite metal tube of the present invention exhibits a schematic laminated structure as shown in FIG. 1, for example. That is, the composite metal tube of this example is formed by laminating in this order the inner layer N1 layer, the intermediate Ni-Tl intermetallic compound layer 2, and the outer layer T1 layer 3. The expanded layer structure of the Tl intermetallic compound layer 2 is as follows.

第1図のAs近傍について第2図に示す通夛である。す
なわち、Ni−T1金属間化合物層2は、より微視的に
は一般にβ−T1 をなしているTi 層3に接する側
から順にNiTig層2a  、NiTi層2bおよび
Ni、Ti層2cに分けられ、j!にN18Ti層2c
とNim1の境界4近傍にはカーケンドール効果による
微小ボイドが形成されている。一般にNi −TI 金
属間化合物層2の厚さは1繍以上、複合金属管全厚みの
5〜30tsの範囲とするのが好ましい◇ 上記のような複合金属管を製造するためにはNi管を、
その外径よシわずかに大きい内径を有するT1 管中に
嵌挿し、得られた積層管体について。
This is the general arrangement shown in FIG. 2 in the vicinity of As in FIG. 1. That is, the Ni-T1 intermetallic compound layer 2 is microscopically divided into a NiTig layer 2a, a NiTi layer 2b, and a Ni, Ti layer 2c in order from the side in contact with the Ti layer 3, which generally forms β-T1. ,j! N18Ti layer 2c
A microvoid is formed near the boundary 4 between and Nim1 due to the Kirkendall effect. Generally, it is preferable that the thickness of the Ni-TI intermetallic compound layer 2 is 1 mm or more, and in the range of 5 to 30 ts of the total thickness of the composite metal tube. ,
Regarding the laminated tube body obtained by inserting it into a T1 tube having an inner diameter slightly larger than its outer diameter.

引き抜き又は押出しなど全体として管形状を保ち得る塑
性加工手段によシ全体として(%に外側をなすNi 管
を)縮径しつつNi 管とT1 管とを接合する。この
際、縮径化の程度は、最終製品における寸法にもよるが
、最大径同士の比較において。
The Ni tube and the T1 tube are joined together while reducing the diameter of the entire Ni tube (the outer Ni tube) by a plastic working means capable of maintaining the tube shape as a whole, such as drawing or extrusion. At this time, the degree of diameter reduction depends on the dimensions of the final product, but when comparing the maximum diameters.

通常5〜10%程度とされる。また、塑性加工は冷間で
あるいは熱間で行われるが、加工を容易とするために2
00〜600℃の範晶関加工を行うことが好ましい。
It is usually about 5 to 10%. In addition, plastic working is performed either cold or hot, but in order to make the working easier,
It is preferable to perform the range processing at 00 to 600°C.

上記のように°して得られたN1/T1接合管体につい
て、必要に応じて最終製品形状に応じた形状を得るため
の塑性加工(変形加工)を行う。たとえば、トーンアー
ム形状としては、直線状のほかに、緩いS字状あるいは
1字状などがある。
The N1/T1 jointed tube body obtained as described above is subjected to plastic working (deformation working) to obtain a shape corresponding to the final product shape, if necessary. For example, the tone arm shape may be a straight shape, a loose S-shape, a single-shape, or the like.

この発明にしたがい、次いで得られた接合管体について
加熱処理を行い、Ni 層とTi 層の境界に熱拡散に
よるNi −Tll金属間化合物音形成する。これら金
属間化合物は、600°Cを超える温度で生成するが、
より積極的な生成を促すために650℃以上の温度が好
ましい。また、Tl のβ−Ti 化を同時に起すため
には、882℃の相転移温度以上に加熱する必要がある
。加熱時間は、複合金属管の寸法によっても異なるが、
外径10〜15u+。
According to the present invention, the obtained joined tube body is then subjected to heat treatment to form a Ni-Tll intermetallic compound at the boundary between the Ni layer and the Ti layer by thermal diffusion. These intermetallic compounds are formed at temperatures above 600°C;
A temperature of 650° C. or higher is preferred in order to promote more active production. Further, in order to simultaneously convert Tl into β-Ti, it is necessary to heat the material to a temperature higher than the phase transition temperature of 882°C. Heating time varies depending on the dimensions of the composite metal pipe, but
Outer diameter 10~15u+.

全肉厚0.5〜1.01131のトーンアームを形成す
る場合、650℃以上の温度に60〜600分程度置く
のが適当である。加熱後の複合金属管は、炉冷めるいは
放冷等により冷却される。
When forming a tone arm having a total wall thickness of 0.5 to 1.0113 mm, it is appropriate to leave the tone arm at a temperature of 650° C. or higher for about 60 to 600 minutes. After heating, the composite metal tube is cooled by furnace cooling, natural cooling, or the like.

このようにして第111、第2図に示°すような複合金
属管が得られる。この複合金属管には、更に。
In this way, a composite metal tube as shown in FIG. 111 and FIG. 2 is obtained. This composite metal tube also has:

最終製品の用途に応じて、たとえばトーンアームの場合
には、ねじ切、穴あけ、メッキ等の仕上加工を、必要に
応じて行う。
Depending on the use of the final product, for example, in the case of a tone arm, finishing processes such as threading, drilling, plating, etc. are performed as necessary.

上記において、この発明の複合金属管およびそして°実
に謔ることが理解できよう。以下にこのような変形例の
いくつかくついて述べる。
In the above, it can be seen that the composite metal tube of the present invention and its advantages are truly appreciated. Some of these modifications will be described below.

まず、Nl 管は、純Ni からなるものだけでな(、
Cr、Cu、F@、Ag、Si、S 、Pb、Pt、A
)x、希土類元素* T1.Nb、AA’tMo、Sn
、Coの一種又は二種以上を含み残部Ni 80% (
重量−0以下、同じ)以上からなるNi 基合金からな
るものも用いられる。本明細書では、純Ni  とこれ
らNi 基合金を含めて「N1  基金属」と称する。
First of all, Nl tubes are made only of pure Ni (
Cr, Cu, F@, Ag, Si, S, Pb, Pt, A
)x, rare earth element* T1. Nb, AA'tMo, Sn
, contains one or more types of Co, and the balance is Ni 80% (
Also used is a Ni-based alloy consisting of weight -0 or less, the same applies) or more. In this specification, pure Ni and these Ni-based alloys are collectively referred to as "N1-based metals."

また純Ti からなるTI 管の代シに、 kl、V、
Mn、Fe、Cu、MarCr、W、C等の元素を含み
残部Ti 90−以上からなるTi 基合金からなる管
も用いられる。本明細書では、純Ti  とこれらT1
 基合金を含めて「Ti基金属」と称する。
In addition, in place of the TI pipe made of pure Ti, kl, V,
A tube made of a Ti-based alloy containing elements such as Mn, Fe, Cu, MarCr, W, and C, and the balance being Ti 90 or more, is also used. In this specification, pure Ti and these T1
The base alloy is also referred to as "Ti-based metal."

また、上記とは異シNl 基金属層が外層をなし、T1
 基金属層が外層をなす構成とすることもできる。ただ
し、Ni の拡散が早い為、N1層内にカーケンドール
効果によるボイドが発生しNi 層の強度が低下する結
果、外部からの衝撃に対しNi層の強度が不足する場合
がある等の理由によシTl基金属層3が外層をなす第1
図の層構成の方が好ましい。ただし、jII1図のよう
な層構成に加えて更に最外層にNi 含有ステンレス鋼
等のステンレス鋼あるいは上述したようなN1 基金属
層を設けて、メッキ性、ロウ付は性等の仕上加工性を改
善することもできる。この際、最外層がN1 含有合金
であれば、加熱処理の過程でこの最外層とその内側のT
1 基金属層との間にもN1−Ti金属間化合物層が形
成され得る。
Also, different from the above, an Nl-based metal layer forms the outer layer, and T1
It is also possible to have a configuration in which the base metal layer forms the outer layer. However, because Ni diffuses quickly, voids occur in the N1 layer due to the Kirkendall effect, reducing the strength of the Ni layer, which may result in insufficient strength against external impacts. First, the Tl-based metal layer 3 forms the outer layer.
The layer structure shown in the figure is preferable. However, in addition to the layer structure as shown in Figure jII1, the outermost layer is made of stainless steel such as Ni-containing stainless steel or a N1 base metal layer as described above to improve finishability such as plating and brazing properties. It can also be improved. At this time, if the outermost layer is an N1-containing alloy, the outermost layer and the inner T
An N1-Ti intermetallic compound layer may also be formed between the base metal layer and the base metal layer.

上述したように、この発明によれば、中間にNi −T
i金属間化合物層を介してNi 層とT1 層が接合さ
れた複合金属管が与えられ、この複合金属管は、軽量で
あるとともに、上記Ni −Ti金属間化合物層ならび
に熱処理に際してこの金属間化合物層とNi 層との境
界にカーケンドール効果により生成する微小ボイドの存
在のために大なる防振効果を有する。したがって、この
ような複合金属11よシピックアップ用トーンアームを
形成すれば、軽量かつ防振性のトーンアームが得られ、
バランスウェイトを小製化できるためピックアップ全体
の小蓋化が可能となシ、またスピーカの音響振動等の外
部振動に妨げられることなく針先から取出された振動エ
ネルギーをスムーズに電気エネルギーに変換することが
可能になる。また、 Ni −T1 金属間化合物を形
成するための熱処理に除して、同時にT1 は強度の優
れたβ−T1  となり、その強度上を分だけトーンア
ームの一層の軽量化が可能となる。
As described above, according to the present invention, Ni-T in the middle
A composite metal tube is provided in which a Ni layer and a T1 layer are bonded via an intermetallic compound layer, and this composite metal tube is lightweight, and the Ni-Ti intermetallic compound layer and the intermetallic compound are bonded together during heat treatment. It has a large vibration damping effect due to the presence of minute voids generated by the Kirkendall effect at the boundary between the Ni layer and the Ni layer. Therefore, by forming a pickup tone arm made of such a composite metal 11, a lightweight and vibration-proof tone arm can be obtained.
Since the balance weight can be made smaller, the entire pickup can be made smaller, and the vibration energy extracted from the tip of the needle can be smoothly converted into electrical energy without being hindered by external vibrations such as acoustic vibrations from speakers. becomes possible. Further, in addition to the heat treatment for forming the Ni-T1 intermetallic compound, T1 becomes β-T1 with excellent strength, and the weight of the tone arm can be further reduced by that strength.

以下、実施例によシ、この発明をJ!に具体的に説明す
る。
Hereinafter, this invention will be described as an example. This will be explained in detail.

! 外径15.3ga*肉厚0.5m11のNi ’11を
、外径18■肉厚0.3su*の′Ti 管中に嵌挿し
、得られた積層管体を300℃、 3oOKg/c11
 で押出して外径15m、内径13.41111の接合
管体を得た。
! A Ni '11 with an outer diameter of 15.3 ga and a wall thickness of 0.5 m11 was inserted into a 'Ti tube with an outer diameter of 18 mm and a wall thickness of 0.3 su*, and the resulting laminated tube was heated at 300°C to 3 o OK g/c11.
A joined pipe body having an outer diameter of 15 m and an inner diameter of 13.41111 mm was obtained by extrusion.

次いで、この接合管体に拡散によpNi −Ti金属間
化合物層を形成するために、高純度アルゴン雰囲気中で
熱処理を行った。熱処理は、接合管体を800℃までは
、100℃/hrで昇温し、以後、熱処理温度である9
50℃までは10℃/hrで昇温し。
Next, heat treatment was performed in a high-purity argon atmosphere in order to form a pNi-Ti intermetallic compound layer on this joint tube by diffusion. The heat treatment was performed by increasing the temperature of the joined tube at a rate of 100°C/hr to 800°C, and thereafter increasing the temperature to 90°C, which is the heat treatment temperature.
Raise the temperature up to 50°C at a rate of 10°C/hr.

この温度で1時間保持し、更に10℃/hrで800℃
まで炉冷し、その後放冷することによシ、この発明のN
i/Ti複合管を得た。
Hold at this temperature for 1 hour, then increase to 800°C at 10°C/hr.
The N of this invention can be obtained by cooling in a furnace until
An i/Ti composite tube was obtained.

X線マイクロアナライザーによる分析の結果。Results of analysis using an X-ray microanalyzer.

この複合管には、合計厚さ0.12u+のNi −Ti
金属間化合物層が形成されていた。この境界層近傍の厚
さ方向硬度分布を、熱処理前のそれとともにまとめて、
第3図に示す。第3図からも、熱処理の結果として硬い
Nl −Ti金属間化合物層が形成されていることがわ
かる。
This composite tube includes Ni-Ti with a total thickness of 0.12u+.
An intermetallic compound layer was formed. The hardness distribution in the thickness direction near this boundary layer is summarized together with that before heat treatment,
It is shown in Figure 3. It can also be seen from FIG. 3 that a hard Nl-Ti intermetallic compound layer is formed as a result of the heat treatment.

一方、上記の複合管製造工程において、熱処理温度を7
00℃、800℃、900℃、950℃(時間はいずれ
も5時間)と変化させて得た複合管についてNi、/”
PL境界部における硬度をプロットしたのが第4図であ
る。
On the other hand, in the above composite pipe manufacturing process, the heat treatment temperature was set to 7
Regarding the composite tubes obtained by changing the temperature to 00°C, 800°C, 900°C, and 950°C (all for 5 hours), Ni, /”
FIG. 4 is a plot of the hardness at the PL boundary.

災に、上記操作を、熱処理温度850℃、950℃の二
水単について、熱処理時間を5〜20時間と変化させて
、Ni/Ti複合管を得、得られた複合管について、生
成した金属間化合物層厚さならびに振動減衰率Q−1を
測定した。結果を第5図に示す。
Unfortunately, the above operation was repeated for dihydrogen at heat treatment temperatures of 850°C and 950°C, and the heat treatment time was varied from 5 to 20 hours to obtain a Ni/Ti composite tube. The interlayer compound layer thickness and vibration damping rate Q-1 were measured. The results are shown in Figure 5.

振動減衰率は、複合管(長さ200m+11)の端面よ
シバルス入力を与え逆側端面よりの出力をシンクロスコ
ープにより波形検出することにより測定した。
The vibration damping rate was measured by applying a cibaric input to the end face of a composite pipe (length 200 m + 11) and detecting the waveform of the output from the opposite end face using a synchroscope.

第5図を見れば、熱処理時間の増加ならびに熱処理温度
の上昇とともに、Ni −Ti金属間化合物層の厚みが
増大し、それとともに効果的な振動減衰能の増大が得ら
れていることがわかる。
Looking at FIG. 5, it can be seen that as the heat treatment time increases and the heat treatment temperature increases, the thickness of the Ni-Ti intermetallic compound layer increases, and the effective vibration damping ability increases accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

jI1図は、この発明の一実施例にががる複合金属管の
概念的積層構造を示す管径方向断面図。 JI2図は第1図のA部近傍の拡大断面図。 JII3図はこの発明の一実施例にかかる複合金属等の
Ni/’f’i境界近傍の厚さ方向硬度分布を熱処理前
のそれとともに示すグ27゜ 第4図は熱処理温度の変化にょるNi/Ti境界での硬
度の変化を示すグラフ、 第5図は熱処理温度および時間の変化による金属間化合
物層の厚みならびに振動減衰率の変化を示すグラフであ
る。 l・・・Ni層 2 ・N1−Tin属間化合物層(2a ・=NiT1
m −2b・・・NiTi 、 2c・・・NtaT口
3・・・T1 層@ 出願人代理人  猪  股     清第4図 第5LfIJ 塾処理哨間(hv)
Figure jI1 is a sectional view in the pipe diameter direction showing a conceptual laminated structure of a composite metal pipe according to an embodiment of the present invention. Figure JI2 is an enlarged sectional view near section A in Figure 1. Figure JII3 shows the hardness distribution in the thickness direction near the Ni/'f'i boundary of a composite metal, etc. according to an embodiment of the present invention, together with that before heat treatment. Figure 4 shows the hardness distribution of Ni due to changes in heat treatment temperature. Graph showing changes in hardness at the /Ti boundary. FIG. 5 is a graph showing changes in the thickness of the intermetallic compound layer and vibration damping rate due to changes in heat treatment temperature and time. l...Ni layer 2 ・N1-Tin intermetallic compound layer (2a ・=NiT1
m -2b...NiTi, 2c...NtaT port 3...T1 layer @ Applicant's agent Kiyoshi Inomata Figure 4 Figure 5 LfIJ Juku processing center (hv)

Claims (1)

【特許請求の範囲】 1、Ni!金属管とTI 基金属管の一方が他方に嵌挿
され、Ni−Ti金属間化合物層を介して互いに接合さ
れていることを特徴とする防振性複合金属管。 2、  Ni 基金属管がTi基金属管内に嵌挿され接
合されている上記第1項の複合金属管。 3、  Ni基金属管とT1基金属管の接合体が、更に
外層をなすN1含有合金管内に嵌挿されている上記第1
項または第2項の複合金属管。 4、  Ni 基金属管とT1基金属管の一方を他方に
嵌挿した後1両者を小径化して管体を得、この管体を加
熱してNi基金属管とT1 基金属管との間にNi−T
i金属間化合物層を形成させる仁とを特徴とする複合金
属管の製法。 !S、  Nl 基金属管がTi基金属管よルも小径で
ある上記第4項の方法。 611合管体を加熱する前に、変形加工する工程を含む
上記・第2項または第4項の方法。
[Claims] 1. Ni! A vibration-proof composite metal tube characterized in that one of a metal tube and a TI-based metal tube is fitted into the other and joined to each other via a Ni-Ti intermetallic compound layer. 2. The composite metal tube of item 1 above, wherein the Ni-based metal tube is inserted into and joined to the Ti-based metal tube. 3. The first above, wherein the joined body of the Ni-based metal tube and the T1-based metal tube is further fitted into the N1-containing alloy tube forming an outer layer.
Composite metal pipe according to item 2 or item 2. 4. After inserting one of the Ni-base metal tube and the T1-base metal tube into the other, 1. Reduce the diameter of both to obtain a tube body, and heat this tube body to create a space between the Ni-base metal tube and the T1-base metal tube. Ni-T
i. A method for manufacturing a composite metal tube, characterized by a layer of metal that forms an intermetallic compound layer. ! 4. The method of item 4 above, wherein the S, Nl-based metal tube has a smaller diameter than the Ti-based metal tube. 611 The method of item 2 or 4 above, which includes the step of deforming the joint tube before heating it.
JP15625081A 1981-10-02 1981-10-02 Composite metallic pipe and its manufacture Pending JPS5857944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15625081A JPS5857944A (en) 1981-10-02 1981-10-02 Composite metallic pipe and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15625081A JPS5857944A (en) 1981-10-02 1981-10-02 Composite metallic pipe and its manufacture

Publications (1)

Publication Number Publication Date
JPS5857944A true JPS5857944A (en) 1983-04-06

Family

ID=15623663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15625081A Pending JPS5857944A (en) 1981-10-02 1981-10-02 Composite metallic pipe and its manufacture

Country Status (1)

Country Link
JP (1) JPS5857944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116340A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy material
JPS59116342A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy
JP2004518558A (en) * 2001-01-31 2004-06-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Metallurgically bonded layered article with curved surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650629B2 (en) * 1978-05-13 1981-11-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650629B2 (en) * 1978-05-13 1981-11-30

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116340A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy material
JPS59116342A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy
JP2004518558A (en) * 2001-01-31 2004-06-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Metallurgically bonded layered article with curved surface

Similar Documents

Publication Publication Date Title
JPS59151084A (en) Nuclear fusion device
CN113732467B (en) Composite intermediate layer for tungsten/steel connecting piece and diffusion welding method
JPS62182174A (en) Ceramics-metal composite body
JPS5857944A (en) Composite metallic pipe and its manufacture
JPS60166165A (en) Joining method of metal and ceramics
JPS6256380A (en) Ceramic-metal joined member
JPS6033269A (en) Metal ceramic bonding method
JP3504716B2 (en) Ceramic bonded body with stress buffer metal layer
JPS58188561A (en) Production of sintered hard alloy tool
JP2000119072A (en) Joining of silicon nitride to carbon steel
JP2006021211A (en) Manufacturing method of tungsten carbide-based cemented carbide joined body
JPH07138617A (en) Composite material
JP3066571B2 (en) WC-Fe alloy using iron-carbon as binder and method for producing the same
JPH01205053A (en) Joining stress buffer alloy of ceramics and metal and joined body of ceramics and metal formed by using said buffer alloy
JPS63203705A (en) Composite sintered body of cubic boron nitride and cemented carbide
JPS6221768A (en) Graphite joining method
JPS6256378A (en) Silicon carbide-metal bonded structure
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum
JPS63182267A (en) Ceramic-metal joined member
JPS63160828A (en) Titanium-clad steel material and manufacture thereof
JPS61227973A (en) Silicon carbide ceramics-metal joined body
JP3611402B2 (en) Semiconductor substrate heat dissipation material and method for manufacturing the same
JPS60166275A (en) Bonding of ceramic and metal
JPS61227974A (en) Silicon carbide ceramics-metal joined body
JPS61261277A (en) Method of joining ceramics to metal