JPS5856831B2 - Tankasisosokuteisouchi - Google Patents

Tankasisosokuteisouchi

Info

Publication number
JPS5856831B2
JPS5856831B2 JP2529575A JP2529575A JPS5856831B2 JP S5856831 B2 JPS5856831 B2 JP S5856831B2 JP 2529575 A JP2529575 A JP 2529575A JP 2529575 A JP2529575 A JP 2529575A JP S5856831 B2 JPS5856831 B2 JP S5856831B2
Authority
JP
Japan
Prior art keywords
flow path
column
methane
methane group
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2529575A
Other languages
Japanese (ja)
Other versions
JPS51100794A (en
Inventor
孚 西川
健三郎 野林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Seisakusho Ltd
Original Assignee
Shimadzu Seisakusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Seisakusho Ltd filed Critical Shimadzu Seisakusho Ltd
Priority to JP2529575A priority Critical patent/JPS5856831B2/en
Publication of JPS51100794A publication Critical patent/JPS51100794A/en
Publication of JPS5856831B2 publication Critical patent/JPS5856831B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 この発明は炭化水素測定装置、特にガスクロマトグラム
のカラムを利用して分離測定する場合の流路構成に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrocarbon measuring device, and particularly to a channel configuration for separating and measuring using a gas chromatogram column.

大気汚染の測定にあっては大気中の炭化水素を測定する
ことが行なわれ、この場合メタンと非メタングループを
分離測定する必要がある。
In measuring air pollution, hydrocarbons in the air are measured, and in this case it is necessary to measure methane and non-methane groups separately.

従来装置にあっては、ガスクロマトグラフの第1のカラ
ムでメタングループ(CH4,02,N2等)と非メタ
ングループとに分離し、先に分離流出するメタングルー
プを第2のカラムで各成分に分離後測定し、第1カラム
をバックフラッシングを行なって残る非メタングループ
を一括測定する方式が採用されていた。
In conventional equipment, the first column of the gas chromatograph separates methane groups (CH4,02, N2, etc.) and non-methane groups, and the methane groups that are separated and flow out are separated into each component in the second column. A method was adopted in which measurement was performed after separation, backflushing was performed on the first column, and the remaining non-methane groups were measured all at once.

ところが、この方式によるとメタンと非メタングループ
のピークの出る時間が殆んど同じ程度となるので、この
装置の分離測定の目的が達せられない欠点があった。
However, according to this method, the times at which the peaks of methane and non-methane groups appear are almost the same, so the purpose of the separation measurement of this device cannot be achieved.

このような欠点を解決するために、ダミーカラムにより
遅らせたい特定の成分のみを貯蔵するとともにこれを流
路から遅らせたい時間だけ切離して当該時間経過後に再
び流路内に入れる流路構成(舟唄 渡他1名編「最新ガ
スクロマトグラフィー基礎と応用−1−基礎編」(昭4
0.3.30)広用書店P、110図(l−3)参照)
を第2のカラム流路に採用することもできるが、このた
めにはダミーカラムとともに切換コックを設けなければ
ならず流路構成が複雑となり、その操作も煩雑とならざ
るをえない。
In order to solve these drawbacks, we developed a channel configuration in which only a specific component that is to be delayed is stored in a dummy column, separated from the channel for the desired delay time, and then reintroduced into the channel after the elapse of that time. ``Latest gas chromatography basics and applications - 1 - Basic edition'' edited by 1 other person
0.3.30) General Bookstore P, see Figure 110 (l-3))
It is also possible to employ this in the second column flow path, but for this purpose, a switching cock must be provided together with the dummy column, which complicates the flow path configuration and makes its operation complicated.

また、一般的にガスクロマトグラフ流路において複数成
分のピークが重なる場合には、いずれかの成分の流出を
遅らせるべく当該流路に抵抗を挿入することがしばしば
行われるが、これを上記欠点の解決のために適用すると
、抵抗が挿入される第2のカラム流路のみその抵抗の前
後で圧力降下が生じ、その結果カラム効率、保持時間お
よび検出器の感度に対する影響を考慮して最適値に設定
されたキャリヤガス流量(流速)、圧力に変化をもたら
すので、再度夫々条件設定し直さなければならず、この
ような単なる抵抗を流路に挿入して特定成分を遅らせる
構成を採用する場合には甚だ面倒な操作がともなうこと
になる。
Additionally, in general, when the peaks of multiple components overlap in a gas chromatograph flow path, a resistor is often inserted into the flow path to delay the outflow of one of the components. When applied for this purpose, a pressure drop occurs across the resistor only in the second column flow path where the resistor is inserted, and as a result, the pressure drop is set to an optimal value taking into account the effect on column efficiency, retention time, and detector sensitivity. This causes a change in the carrier gas flow rate (flow velocity) and pressure, so the conditions must be set again.If a configuration is adopted in which a simple resistance like this is inserted into the flow path to delay a specific component, This will involve extremely troublesome operations.

この発明は上記にかんがみ殆ど抵抗のない空力ラムを第
2のカラム流路のカラムの上流側に直列に介設すること
により上述したような不都合をともなうことなく、ピー
クの重なりを避けることができ、非メタングループを先
に検出することを可能にした炭化水素測定装置を提供す
るものである。
In view of the above, this invention can avoid the overlapping of peaks without the above-mentioned disadvantages by interposing an aerodynamic ram with almost no resistance in series on the upstream side of the column in the second column flow path. , to provide a hydrocarbon measuring device that makes it possible to detect non-methane groups first.

なお非メタングループを先に検出することによりピーク
が尖鋭となり、定量精度が向上する。
Note that by detecting the non-methane group first, the peak becomes sharper and the quantitative accuracy improves.

以下、この発明の構成を図面の実施例により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be explained below with reference to embodiments of the drawings.

第1図は、この発明の流路構成の一例を示すもので、■
は切換バルブで実線流路は、サンプリング@(またはバ
ックフラッシュ後)の流路を、また点線はサンプリング
後バックラッシュまでの期間の流路を示す。
FIG. 1 shows an example of the flow path configuration of the present invention.
is a switching valve, the solid line shows the flow path for sampling @ (or after backflushing), and the dotted line shows the flow path for the period after sampling until backlash.

1は、試料採集口で、ポンプPで吸引された試料は、試
量管りを満たすようになる(後述のバルブVの実線流路
)。
Reference numeral 1 denotes a sample collection port, and the sample sucked by the pump P fills the sample pipe (solid line flow path of valve V, which will be described later).

Cはキャリヤガス流路(流入口)で、キャリヤガスは点
2で分岐され、バルブVによって切換可能に接続構成さ
れる2つの流路系、すなわち、 (4)キャリヤガス流路C〜計量管し〜第1カラム(プ
レカラム)PCを有する第1のガスクロマトグラフのカ
ラム流路〜空カラムE〜第2カラム(メインカラム)M
Cを有する第2のガスクロマトグラフのカラム流路〜検
出器を順に接続してなる第1の流路系(バルブVの点線
流路)、および、 (B) キylJヤガス流路C〜第1の流路系(4)
における流れ方向と逆の流れ方向の第1のカラム流路〜
流路抵抗R1〜検出器、およびキャリヤガス流路C〜流
路抵抗R2〜空カラムE−第2のカラム流路〜検出器を
夫々順に接続してなる2流路の第2の流路系、 の両流路系を流れる。
C is a carrier gas flow path (inflow port), and the carrier gas is branched at point 2, and the two flow path systems are configured to be switchably connected by a valve V, namely: (4) Carrier gas flow path C ~ metering pipe - Column flow path of the first gas chromatograph having the first column (pre-column) PC - Empty column E - Second column (main column) M
a first flow path system (dotted line flow path of valve V) connected in order from the column flow path of the second gas chromatograph having C to the detector; and (B) the column flow path C to the first Flow path system (4)
a first column flow path in a flow direction opposite to the flow direction in ~
A second flow path system of two channels, in which flow path resistance R1 - detector, and carrier gas flow path C - flow path resistance R2 - empty column E - second column flow path - detector are connected in order, respectively. , flows through both flow path systems.

以上の流路構成でバルブVの操作によって計量管りにサ
ンプリングされた試料(例えば空気)は、バルブVの実
線から点線流路すなわち、第1の流路系Aへの切換操作
によって、キャリヤガスによって第1カラム(プレカラ
ム)PCに送り込まれ、ここで、CH4,02,N2等
のメタングループと、非メタングループとに大別される
With the above flow path configuration, the sample (for example, air) sampled into the metering pipe by operating the valve V is transferred to the carrier gas by switching from the solid line of the valve V to the dotted line flow path, that is, the first flow path system A. is sent to the first column (pre-column) PC, where it is roughly divided into methane groups such as CH4,02, N2, etc. and non-methane groups.

ついでこのプレカラムPCで分離されたメタングループ
が、このプレカラムPCを流出し切換バルブVを通って
第2のカラム流路に流入した後バルブVを実線流路、す
なわち第2の流路系Bに切換えると、プレカラムPCに
残存する非メタングループは、キャリヤガスの逆流によ
りバックフラッシュされ、抵抗R1を介して検出器りに
達して検出される。
Then, the methane group separated in this pre-column PC flows out of this pre-column PC and flows into the second column flow path through the switching valve V, and then passes through the valve V into the solid line flow path, that is, the second flow path system B. When switched, the non-methane groups remaining in the pre-column PC are backflushed by the backflow of carrier gas, reach the detector via resistor R1, and are detected.

一方メタングループは、空力ラムEを通過したのち、第
2カラム(メインカラム)MCで各々の成分に分離さく
したのち、検出器りで検出される。
On the other hand, after passing through the aerodynamic ram E, the methane group is separated into its respective components in the second column (main column) MC, and then detected by a detector.

この結果、第2図のクロマトグラムにその一例を示すよ
うにメタン(CH4)ピークは、非メタンピークが完全
に溶出し終ったのちに、検出器に達するので、メタンと
非メタンを完全に分離してそれぞれ測定するというこの
測定装置の目的が達せらりるのである。
As a result, as shown in the chromatogram in Figure 2, the methane (CH4) peak reaches the detector after the non-methane peak has completely eluted, so methane and non-methane are completely separated. The purpose of this measuring device is to measure each of the two.

この実施例装置においては、空力ラムのサイズは、内径
3mrL、長さ10mであり、この場合、非メタングル
ープはサンプリング後0.5〜5.5分の間に溶出し、
メタンは7〜8分の間に溶出した。
In this example device, the size of the aerodynamic ram is 3 mrL internal diameter and 10 m length, in which case the non-methane group elutes between 0.5 and 5.5 minutes after sampling;
Methane eluted between 7 and 8 minutes.

(なお、空力ラムを挿入しないときは、メタンは1〜1
.5分で溶出し、非メタンのピークとほぼ完全に重なっ
ていた。
(In addition, when the aerodynamic ram is not inserted, methane is 1 to 1
.. It eluted in 5 minutes and almost completely overlapped with the non-methane peak.

)この空力ラムは、殆ど抵抗がないからこれを挿入する
ことによって、キャリヤガスの流量(流速)、圧力など
の条件を乱すことはない。
) Since this aerodynamic ram has almost no resistance, its insertion does not disturb conditions such as the flow rate (flow rate) and pressure of the carrier gas.

また一般にガスクロマトグラフでは、流路中に死空間を
つくることは拡散によるピークの広がり、しいてはピー
クの分離不良を招くという理由で忌避され、この発明の
ように空力ラムを設けることはガスクロマトグラフの常
識に逆行するものであるが、空力ラムをメインカラムの
上流側に挿入することにより、このようなピークの広が
りなどの問題が生じることはない。
In addition, in general, in gas chromatographs, creating dead spaces in the flow path is avoided because it leads to broadening of peaks due to diffusion and poor peak separation, and providing an aerodynamic ram as in this invention is Although this goes against common sense, by inserting an aerodynamic ram upstream of the main column, problems such as peak broadening do not occur.

以上において明らかなように、この発明では充填剤をつ
める必要がない極めて簡単な空力ラムを挿入しただけの
流路構成により、切換コックの煩雑な操作を要せずメタ
ンの溶出時間を遅らせ、非メタンとの間に時間差をとる
ことができ、さらにその空力ラムの寸法を加減するだけ
で設定済みの測定条件に影響を与えることなく、メタン
の溶出時間を任意に調節できる効果がある。
As is clear from the above, the present invention has a flow path configuration in which only an extremely simple aerodynamic ram is inserted, which does not require filling with filler, thereby delaying the elution time of methane without requiring the complicated operation of a switching cock. It is possible to set a time difference between the methane elution time and the methane elution time, and the elution time of methane can be arbitrarily adjusted simply by adjusting the dimensions of the aerodynamic ram without affecting the set measurement conditions.

なお、非メタンを先に検出することによりピークが尖鋭
となり、定量精度が向上する効果がある。
Note that by detecting non-methane first, the peak becomes sharper, which has the effect of improving quantitative accuracy.

【図面の簡単な説明】 第1図は、この発明の流路構成の一実施例を説明する図
、第2図はクロマトグラムの一例を示すものである。 ■・・・・・・バルブ、L・・・・・・計量管、P・・
・・・・ポンプ、C・・・・・・キャリヤガス、D・・
・・・・検出器、PC・・・・・・第1カラム(プレカ
ラム)、MC・・・・・・第2カラム(メインカラム)
、E・・・・・・空力ラム、R1,R2・・・・・・流
路抵抗。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating an embodiment of a channel configuration of the present invention, and FIG. 2 is a diagram showing an example of a chromatogram. ■・・・Valve, L・・・Measuring tube, P...
...Pump, C...Carrier gas, D...
...Detector, PC...1st column (pre-column), MC...2nd column (main column)
, E...Aerodynamic ram, R1, R2...Flow path resistance.

Claims (1)

【特許請求の範囲】 1(A)キャリヤガス流路〜計量管〜第1のガスクロマ
トグラフのカラム流路〜第2のガスクロマトグラフのカ
ラム流路〜検出器を順に接続してなる第1の流路系、お
よび (B) キャリヤガス流路〜前記第1の流路系(4)
における流れ方向と逆の流れ方向の前記第1のカラム流
路〜前記検出器、およびキャリヤガス流路〜前記第2の
カラム流路〜前記検出器を夫々順に接続してなる2流路
の第2の流路系、 の両流路系を切換バルブで切換可能に接続構成し、前記
第1の流路系(4)で計量管にサンプリングした試料を
前記第1のカラム流路に導入してメタングループと非メ
タングループに分離してメタングループが切換バルブを
通って前記第2のカラム流路に流入した後前記第2の流
路系(B)に切換え、メタングループを前記第2のカラ
ム流路でさらに各成分に分離して測定するとともに非メ
タングループを前記第1のカラム流路のバックフラッシ
ングによって一括測定する方式の装置であって、前記第
2のカラム流路のカラムの上流側に直列に空力ラムを接
続したことを特徴とする炭化水素測定装置。
[Scope of Claims] 1(A) A first flow formed by sequentially connecting a carrier gas flow path, a metering tube, a column flow path of a first gas chromatograph, a column flow path of a second gas chromatograph, and a detector. and (B) carrier gas flow path to the first flow path system (4).
The first column flow path to the detector, and the carrier gas flow path to the second column flow path to the detector are connected in order, respectively, in a flow direction opposite to the flow direction in The flow path system (2) is configured to be connected to be switchable by a switching valve, and the sample sampled in the measuring tube in the first flow path system (4) is introduced into the first column flow path. The methane group is separated into a methane group and a non-methane group, and the methane group passes through the switching valve and flows into the second column flow path, and then is switched to the second flow path system (B), and the methane group is separated into the second column flow path. The apparatus further separates each component in the column flow path and measures it, and also measures the non-methane group all at once by backflushing the first column flow path, the apparatus comprising: a column upstream of the column in the second column flow path; A hydrocarbon measuring device characterized by an aerodynamic ram connected in series on the side.
JP2529575A 1975-02-28 1975-02-28 Tankasisosokuteisouchi Expired JPS5856831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2529575A JPS5856831B2 (en) 1975-02-28 1975-02-28 Tankasisosokuteisouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2529575A JPS5856831B2 (en) 1975-02-28 1975-02-28 Tankasisosokuteisouchi

Publications (2)

Publication Number Publication Date
JPS51100794A JPS51100794A (en) 1976-09-06
JPS5856831B2 true JPS5856831B2 (en) 1983-12-16

Family

ID=12162016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2529575A Expired JPS5856831B2 (en) 1975-02-28 1975-02-28 Tankasisosokuteisouchi

Country Status (1)

Country Link
JP (1) JPS5856831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341863B2 (en) * 1983-10-24 1988-08-19 Nippon Mining Co

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025577Y2 (en) * 1978-06-20 1985-07-31 帝国石油株式会社 Capillary column gas chromatography analyzer with two-stage detection splitter
JPS5555251A (en) * 1978-10-18 1980-04-23 Horiba Ltd Methane and non-methane hydrocarbon measuring method
JPS57139661A (en) * 1981-02-23 1982-08-28 Gasukuro Kogyo Kk Gas analyzer
JPS6225857U (en) * 1986-07-24 1987-02-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341863B2 (en) * 1983-10-24 1988-08-19 Nippon Mining Co

Also Published As

Publication number Publication date
JPS51100794A (en) 1976-09-06

Similar Documents

Publication Publication Date Title
US20100154511A1 (en) Apparatus and method for multi-dimensional gas chromatography
Gritti et al. On the minimization of the band-broadening contributions of a modern, very high pressure liquid chromatograph
US20090150087A1 (en) Chromatography using multiple detectors
US5392634A (en) Hydrocarbon analyzer and method of analyzing hydrocarbon
US3898837A (en) Method of and device for the identification and reduction of peaks in chromatograms
JPS6356948B2 (en)
CN1979172B (en) Gas analyzing method
JPS5856831B2 (en) Tankasisosokuteisouchi
US7237573B1 (en) High pressure, low flow rate fluid flow control
US3405549A (en) Analytical system
CN101162217A (en) Gas-chromatography double investigation apparatus method and system for determining chloroform, carrene, ethinyltrichloride 1, 4-dioxane residual quantity
JPS5949532B2 (en) Gas concentration analyzer
JPH10206406A (en) Device for measuring non-methane hydrocarbon
JPH07209272A (en) Gas-chromatograph system
CN208505986U (en) A kind of high performance liquid chromatograph with liquid storage bottle clamp system
JP2508749B2 (en) Gas chromatograph
JPS62190464A (en) Gas chromatograph
JPH0436451Y2 (en)
CN109283281B (en) Chromatographic column
Lochmüller et al. A systematic approach to thermal conductivity detector design I. Use of computer-aided data acquisition for the evaluation of cell contributions to peak shape
JP2001099822A5 (en)
JP2903454B2 (en) Chromatogram calculation method
JPS58186048A (en) Apparatus of gas chromatograph
Chilcote Computer technique for identification of chromatographic peaks
KR830001219B1 (en) Method for measuring methane and non-methane hydrocarbons