JPS5856343A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5856343A
JPS5856343A JP15458381A JP15458381A JPS5856343A JP S5856343 A JPS5856343 A JP S5856343A JP 15458381 A JP15458381 A JP 15458381A JP 15458381 A JP15458381 A JP 15458381A JP S5856343 A JPS5856343 A JP S5856343A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
wafer
semiconductor device
crystal defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15458381A
Other languages
Japanese (ja)
Other versions
JPH0119265B2 (en
Inventor
Kazunori Imaoka
今岡 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15458381A priority Critical patent/JPS5856343A/en
Publication of JPS5856343A publication Critical patent/JPS5856343A/en
Publication of JPH0119265B2 publication Critical patent/JPH0119265B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enhance the characteristic of a semiconductor element, and moreover to eliminate trouble at manufacture of semiconductor device by a method wherein the heat treatment is performed to a silicon substrate by the temperature rising speed of 5 deg.C/min or less, and at the maximum reaching temperature of 950 deg.C or less. CONSTITUTION:The heat treatment is performed to the silicon substrate by the temperaure rising speed of 5 deg.C/min or less, and at the maximum reaching temperature of 950 deg.C or less. By performing the treatment of substrate before formation of the semiconductor element by this way, the intrinsic gettering effect necessary and sufficient after completion of the semiconductor element can be obtained, and moreover generation of trouble to be caused by excess growth of internal crystal defects is eliminated. Accordingly, the treatment thereof has a large effect for enhancement of characteristic of the semiconductor device and elimination of trouble.

Description

【発明の詳細な説明】 本発明は半導体装置製造における前処理工程、即ち半導
体素子形成前の基板処理工種に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pretreatment process in semiconductor device manufacturing, that is, a substrate treatment process before semiconductor element formation.

(3,1)  一般に半導体装置の特性不1に大きな影
響を与える要因に、製造プロセスによって誘起されるい
わゆるプロセス誘起欠陥や有害不純物がある。これらの
欠陥や不純物はキャリアのライフタイムを低下せしめる
のみで々く、不純物拡散プセ七スにおいてスパイク拡散
等により素子特性に重大な悪影響を与えている。
(3,1) In general, factors that have a large effect on the characteristic defects of semiconductor devices include so-called process-induced defects and harmful impurities induced by the manufacturing process. These defects and impurities not only reduce the lifetime of carriers, but also have a serious adverse effect on device characteristics due to spike diffusion and the like in the impurity diffusion process.

素子動作領域におけるこれらの欠陥発生を (防止する
ためや、有害不純物を除去するために、ウェハの内NK
故意に結晶欠陥を発生さゼ、又、素子動作に係るウェノ
Sl1面近傍には欠陥のないデヌーデイドゾーン(De
nad@dZon・以下り、Z、と称す)と呼ばれる領
域を形成して、D、Z、に混入する有害不純物等を内部
結晶欠陥にゲッタリングせしめることKより素子動作に
係る領域を清浄化する、いわゆるイントリンシックゲッ
タリング法(Intrinmlc Gettering
以下IQ法と称す)が製造プロセスに取り入れられてい
る。
In order to prevent the occurrence of these defects in the device operating area and to remove harmful impurities,
In addition, crystal defects are intentionally generated, and a denuded zone (De
By forming a region called nad@dZon (hereinafter referred to as Z) and gettering harmful impurities mixed in D and Z to internal crystal defects, the region related to device operation is cleaned by K. , the so-called intrinsic gettering method
(hereinafter referred to as the IQ method) has been incorporated into the manufacturing process.

IG効果を賜つつ、ハとし?は、有効なゲッタリングを
可能とするためKD、Z、幅は必要最低限とし、また内
部結晶欠陥の密度はで参る限り大き(,10’/−以上
であることが好オしい。
While giving IG effect, is it good? In order to enable effective gettering, KD, Z, and width are set to the minimum necessary, and the density of internal crystal defects is as large as possible (preferably, 10'/- or more).

現在知られているり、Z、及び内部結晶欠陥形成法につ
いて以下図面を参照して説明する・ 3.2)D、Z、及び内部結晶欠陥形成法の第一の方法
として段階的熱処理法がある。この方法は以下に述べる
如くウエノ1に三段階の熱処理を行なう。
The currently known methods for forming D, Z, and internal crystal defects will be explained below with reference to the drawings. 3.2) Stepwise heat treatment is the first method for forming D, Z, and internal crystal defects. . In this method, Ueno 1 is subjected to three stages of heat treatment as described below.

[)N、雰囲気中において、ウェハに温度1100℃、
20時間S度の熱処理を施す。
[)N, in an atmosphere, the wafer was exposed to a temperature of 1100°C.
Heat treatment is performed at S degrees for 20 hours.

本熱処理によシ第1図(a)のウェハ断面図に模式的に
示す如く、ウェノ1の表面近傍に存在する格子間酸素灯
外部へアウトディフ、−ジ曹ンされる。同時にウェハ内
部においてはウェハ形成状11(as−grown状慾
で存在していた内部結晶欠陥核が消滅もしくは固溶し、
図中○で示した内部結晶欠陥が僅に存在する。
As a result of this heat treatment, as schematically shown in the cross-sectional view of the wafer in FIG. 1(a), the wafer is out-diffused to the outside of the interstitial oxygen lamp existing near the surface of the wafer 1. At the same time, inside the wafer, internal crystal defect nuclei that existed in the wafer formation state 11 (as-grown state) disappear or dissolve into solid solution.
There are a few internal crystal defects indicated by ○ in the figure.

CB)  次いで同じ(Nt雰囲気中において700乃
至800℃の温[において40時間S度の熱処理を施す
・いわゆる低温アニールによる第1図伽)のウェハ断面
図に模式的に点て示す内部結晶欠陥核の高密屓形成プロ
セスであシーウ菰ハ内部の格子間酸素が結晶欠陥被形式
の要因となりている。
CB) Next, internal crystal defect nuclei are shown schematically in a cross-sectional view of the same wafer (by performing heat treatment at a temperature of 700 to 800 degrees Celsius in an Nt atmosphere for 40 hours at S degrees, so-called low-temperature annealing). In the process of forming dense scales, interstitial oxygen inside the core is a factor in forming crystal defects.

(C)  更に−同じくN、雰囲気中において、温度1
050℃、20時間程和の熱処理を施す。
(C) Further - also in a N atmosphere, at a temperature of 1
Heat treatment is performed at 050°C for about 20 hours.

本熱処理により、第1図(Qのウエノ・断面図に模式的
に示す如く、前記CB)の熱処理により形成された内部
結晶欠陥核をゲッタリング効果を有する内部結晶欠陥に
成長せしめる。
By this heat treatment, the internal crystal defect nuclei formed by the heat treatment in FIG. 1 (as schematically shown in the sectional view of Q, CB) are made to grow into internal crystal defects having a gettering effect.

以上の[A)、CB)及び(C)の三 段階よりなる熱処理法は、高温かつ長時間に及ぶために
、つ171表面に保護膜が充分に厚く形成されていたと
しても、研磨等の表面処理が必要となるためにり。
The above three-step heat treatment method [A), CB), and (C) requires high temperatures and long periods of time, so even if a sufficiently thick protective film is formed on the surface, polishing, etc. Surface treatment is required.

2、幅の正確な制御が困難であり、又、ウェハの反り又
はゆがみ郷をひき起こしかねない。
2. Accurate control of width is difficult and may cause wafer warpage or distortion.

(3,3)  以上(3,2)において説明した段階的
熱処理法の前IC問題点を解決するり、Z、及び内部結
晶欠陥形成法として、本発明者が特願昭56−0350
24号により提案した連続的昇m熱処理法を説明する。
(3,3) In order to solve the pre-IC problems of the stepwise heat treatment method explained in (3,2) above, and as a method for forming Z and internal crystal defects, the present inventor proposed the patent application No. 56-0350.
The continuous increasing temperature heat treatment method proposed by No. 24 will be explained.

本熱処理方法は以下に述べる方法(AI)十〔B〕或い
は〔A曾)+(B)Kより構成される。
This heat treatment method is composed of the following method (AI) [B] or [A)+(B)K.

〔A、〕格子間酸素濃度が1.5X10”7mよシ高い
シリコンウェ/SK対しては、5乃至14℃/鱈の昇温
速度で熱処理を施す。
[A,] For silicon wafers/SK with an interstitial oxygen concentration higher than 1.5×10”7m, heat treatment is performed at a temperature increase rate of 5 to 14° C./coat.

〔A、〕 格子間酸素濃Kが1.5 X 10”、/′
葛・【゛以下のシリコンウェハ\に対しては、5℃/−
以下の昇温運賃で熱処理を施す。
[A,] Interstitial oxygen concentration K is 1.5 x 10", /'
Kudzu・[For silicon wafers below 5℃/-
Heat treatment is performed at the following temperature increase rate.

(B)  前記〔A、〕或いは〔A、〕の熱処理後、1
4℃/―、以下の昇渥速lで1回以上熱処理を施す。
(B) After the heat treatment of [A,] or [A,], 1
Heat treatment is performed at least once at 4° C./− and the following lifting speed l.

第2図(a)乃至(c)は本熱部廖法による内部結晶欠
陥乃至欠陥核のサイズ対密度分布の変化を示す図である
0図において、縦軸は内部結晶欠陥乃至欠陥核のサイズ
を示し、111117に一昇S*処1捌飴温1嬰希談七
4ル着ニラ−1潰−す//薪矛l、破atは昇温熱処理
開始温皺で消滅してしまう臨界サイズ、破Mlは俵の半
導体装置製造工程で使用する最高温關での内部結晶欠陥
消滅臨界サイズを示す、また横軸は内部結晶欠陥乃至欠
陥核の密匪を示す。
Figures 2 (a) to (c) are diagrams showing changes in the size versus density distribution of internal crystal defects or defect nuclei due to the present thermal zone evacuation method. In Figure 2, the vertical axis is the size of internal crystal defects or defect nuclei. , 111117 indicates the critical size that disappears at the start of heating heat treatment and the wrinkles disappear at the beginning of the heating process. , Ml indicates the critical size for annihilation of internal crystal defects at the highest temperature used in the semiconductor device manufacturing process, and the horizontal axis indicates the density of internal crystal defects or defect nuclei.

第2図(a)は゛寒熱処理開始前の、即ち6エノ・形成
状態を示す、この状態においては、ウェハ内MK各種の
大きさの内部結晶欠陥乃至欠陥核が存在するが、格子間
酸素が多いほどそのサイズ及び密度が大きい方に分布す
る。しかし、通常のcz法(Czochritskim
ethod)VCよるシリコンウェハでハ、全−rの結
晶欠陥が破線璽以下のサイズである。
FIG. 2(a) shows the state before the start of cryo-heat treatment, that is, the 6-eno-formation state. In this state, there are internal crystal defects or defect nuclei of various sizes of MK in the wafer, but interstitial oxygen The larger the number, the larger the size and density of the distribution. However, the usual cz method (Czochritskim
ethod) In silicon wafers produced by VC, all -r crystal defects are smaller in size than the dashed line.

紀2図(bl Fi昇温熱処理〔A、〕緋いは〔At〕
後の状態を示す。この状態においては、大部分の結晶欠
陥核に結晶欠陥に成長し、結晶欠陥サイズ20分布は図
□中上方へと移動して、一部は破線璽に示す臨界サイズ
をも越える。他力筒21W(a)K示すウェハ形成状層
において存在した、破線IK示す昇温開始温度に対する
臨界サイズよシ小さい一部の結晶欠陥核は消滅もしくは
固溶する。
Figure 2 (bl Fi temperature increasing heat treatment [A,] Hiiha [At]
Shows the later state. In this state, most of the crystal defect nuclei grow into crystal defects, and the crystal defect size 20 distribution moves upward in the figure □, and some of them even exceed the critical size indicated by the broken line. Some crystal defect nuclei smaller than the critical size for the heating start temperature shown by the broken line IK, which existed in the wafer forming layer shown by the power tube 21W(a)K, disappear or dissolve into solid solution.

本昇温熱処理によシ形成される内部結晶欠陥の密度は格
子間酸素濃度及び昇温速度により支配される。即ち格子
間酸素fI11度が高く、或いは昇温速度か低゛いとき
内部結晶欠陥の密度が高くなる。
The density of internal crystal defects formed by this heating heat treatment is controlled by the interstitial oxygen concentration and the heating rate. That is, when the interstitial oxygen fI11 degrees is high or the temperature increase rate is low, the density of internal crystal defects becomes high.

他方、D、Z、の幅につh″′CFi、昇温速度が低く
、装いは最高到達温度が低いときKD。
On the other hand, when the width of D and Z is h'''CFi, the heating rate is low and the maximum temperature reached is low.

2、幅が薄くなる。2. The width becomes thinner.

所要の内部結晶欠陥密度及びり、Z幅を得るには前記寮
内の組合せを選択する必要があシ、本昇温熱処理法にお
いては前記の如く方法〔A)〕或いは〔A、〕を選択し
ている。
In order to obtain the required internal crystal defect density and Z width, it is necessary to select the combination of the above-mentioned dormitories, and in this temperature rising heat treatment method, method [A)] or [A,] is selected as described above. ing.

第2図(e)は前記昇温熱処理〔A、〕或いは〔A、〕
に次いで、前記昇温熱処理CB)を1回以上施した後の
状態を示す― この状態においては形成された内部結晶欠陥がすべ″′
C破線■で示される、彼のウェハプルセスで使用する最
高温度での結晶欠陥消滅臨界誉イズを越えて大きくなっ
ている。゛この昇温熱処理[B]は内部結晶欠陥サイズ
の成長を目的とするものであって、6. zrtcツイ
lu前VINIA熱処M熱部 l )或イハ〔As  
)により形成された幅を変化ぜしめなり昇温速鞭或いは
最高到達温度が設定される。
FIG. 2(e) shows the temperature increase heat treatment [A,] or [A,]
Next, the state after the above-mentioned temperature raising heat treatment CB) is performed one or more times - In this state, the formed internal crystal defects are completely removed.
It has become larger than the critical value for crystal defect annihilation at the maximum temperature used in his wafer process, shown by the broken line (■). 6. This temperature-raising heat treatment [B] is aimed at growing the size of internal crystal defects. zrtc twitter before VINIA heat treatment M heat section l) or iiha [As
), the temperature increase rate or the maximum temperature is set.

以上駅−した碧温熱部理決によシ、IG法に必要ときれ
る内部結晶欠陥の成長時間が大帖−、wlH7縮され、
同時KIG効果の効率を高める薄いり、Z、を制御性よ
く形成することがaJ能とf!−)だ。
According to the above-mentioned results, the growth time of internal crystal defects required for the IG method has been shortened, and
It is possible to form a thin layer, Z, with good controllability to increase the efficiency of the simultaneous KIG effect. -).

(3,4)l、かじながら(33)で絣明した如く内部
結晶欠陥密度とり、Z、の幅との双方が昇温速度と密接
な相関関停をもつために、内ぶ・結晶欠陥密度とり、Z
、の幅との双方の要求を制御性よく満足するためには、
以下に説明する本発明者が特願昭56−035023号
により祷案じ次男法を適用することが好ましい場合があ
る。
(3,4) As revealed in (33), both the internal crystal defect density and the width of Z have a close correlation with the heating rate. Take density, Z
In order to satisfy both the width and controllability requirements,
In some cases, it may be preferable for the present inventor to apply the second son method as explained below in accordance with Japanese Patent Application No. 56-035023.

本熱処理方法は以下に述べる方法CA、)、十(B )
Kより構成される。
This heat treatment method is described below as method CA, ), ten (B).
Consists of K.

(A)  シリコンウェハに温度950℃以上の熱処理
を10分間以上施す。
(A) A silicon wafer is subjected to heat treatment at a temperature of 950° C. or higher for 10 minutes or more.

CB)  前記[A)の熱処理後、14℃/−以下の昇
温速度で1回以上の熱処理を施す、なお特に薄いり、Z
、を得るためには、少くともその第一回目の昇温速lI
rを5℃/−mu下とすることが望ましい。
CB) After the heat treatment in [A] above, heat treatment is performed at least once at a temperature increase rate of 14° C./- or less, especially for thin or Z
In order to obtain , at least the first heating rate lI
It is desirable that r be below 5°C/-mu.

本方法の第一の熱処理〔A)F′i、、ウニへ表面近傍
の結晶欠陥核の消滅及び欠陥核形成の要因となる格子間
酸素のアウトディフユージ曹ンを行うものである。
The first heat treatment of the present method [A) F'i is performed to eliminate crystal defect nuclei near the surface of the sea urchin and out-diffusion of interstitial oxygen, which is a factor in the formation of defect nuclei.

tた昇温熱処理(B:l前&’(3,3)の昇温熱処理
と同一の思想に基づく方法であるが熱処理(A)を前置
することによシ、昇温速度を遅くしても集子動作に係る
表面近傍Kまで結晶欠陥乃至欠陥核が形成されることが
なく、内部結晶欠陥密度とり、Z、@とを制御すること
が可能となる。
Temperature-raising heat treatment (B: This is a method based on the same idea as the temperature-raising heat treatment in (3, 3) before l, but by pre-heating the heat treatment (A), the temperature increase rate can be slowed down. Even if crystal defects or defect nuclei are not formed up to the surface vicinity K related to the concentrating operation, it becomes possible to control the internal crystal defect density, Z, and @.

(35)以上の(3,3)及び(34)において説明し
た昇温熱処理法は、第一(ロ)目の昇温熱処理、すなわ
ち(3,3)の〔A、〕或いは〔At )又は(3,4
)の(B)において内部結晶欠陥の密度及びり、Z、の
幅を実質的に決定し、第二(ロ)目以降の昇温熱処理に
よって内部結晶欠陥を特定の臨界サイズを越える大きさ
まで成長ゼしめることにより、ウェハに工G効果を与え
るものである。
(35) The elevated temperature heat treatment method explained in (3, 3) and (34) above is the first (B) elevated temperature heat treatment, that is, [A,] or [At ) of (3, 3) or (3,4
) In (B), the density and width of the internal crystal defects, Z, are substantially determined, and the internal crystal defects are grown to a size exceeding a specific critical size by the second (B) and subsequent temperature-raising heat treatments. By tightening the wafer, it imparts a mechanical effect to the wafer.

しかしながら、半導体装置袈造工程において前記のウェ
ハは更に幾度かの高温熱処理を受けるのが通常である。
However, in the semiconductor device fabrication process, the wafer is usually further subjected to several high-temperature heat treatments.

Cれらの牛導体i#置製造工稚中の高温熱処理は、前記
(3,2)(C)の効果と同様に、内部結晶欠陥を成長
せしめる効果を有する。捷たウェハ内に既に成長した内
部結晶欠陥を有する場合には、これによって生ずる応力
によって半導体装ft製造工程中の高温熱処理の際に、
ウェハに転位(スリップラインと称する)が発生して、
形成された半導体装置の特性或いは寿命尋に障害を及は
す。
The high-temperature heat treatment during the manufacturing process of these conductors has the effect of growing internal crystal defects, similar to the effect of (3,2) (C) above. If the shredded wafer has internal crystal defects that have already grown, the resulting stress may cause damage during high-temperature heat treatment during the semiconductor device manufacturing process.
Dislocations (called slip lines) occur on the wafer,
This may adversely affect the characteristics or lifespan of the formed semiconductor device.

従ってIQ効果を必要かつ充分に具備し、更に形成され
た半導体装置に障害を及埋すスリ、プラインの発生を排
除するためK、半導体装置完成時におけるり、Z、及び
内部結晶欠陥の目標となる状態が半導体装置製造工程中
に完成されるように、ウェハ前処理工程では、予め半導
体装置製造工程中の熱処理の影響を考慮して内部結晶欠
陥或いは欠陥核の状態を形成する必要がある。
Therefore, in order to provide the necessary and sufficient IQ effect, and to eliminate the occurrence of slits and lines that can cause problems in the formed semiconductor device, we have set the targets for K, slits, Z, and internal crystal defects during the completion of the semiconductor device. In order to achieve this state during the semiconductor device manufacturing process, it is necessary to form the state of internal crystal defects or defect nuclei in advance in the wafer pretreatment process, taking into consideration the influence of heat treatment during the semiconductor device manufacturing process.

(3,6)  本発明は、半導体装置完成時においてり
、Z、及び内部結晶欠陥の1欅とする状態を完成するウ
ェハ前処理方法を得ることを目的とする。
(3, 6) It is an object of the present invention to obtain a wafer pretreatment method that eliminates Z and internal crystal defects when a semiconductor device is completed.

本発明の前記目的は、シリコンウニ/1に対して、5℃
/―、以下の昇温速屓で最高到達温度950℃以下の熱
処理を含む前熱処理を施すことによって達成されるが、
その熱処理時間等を (a)  ウェハ前処理工l!俵の半導体装置製造工程
中おける熱処理効果。
The object of the present invention is to prepare silicon sea urchin/1 at 5°C.
/-, achieved by performing pre-heat treatment including heat treatment to a maximum temperature of 950°C or less at the following temperature increase rate,
The heat treatment time, etc. (a) Wafer pretreatment process l! Effects of heat treatment on bales during the semiconductor device manufacturing process.

缶) シリコンウェハの格子間酸素!11jjLの初期
値。
Can) interstitial oxygen in silicon wafers! Initial value of 11jjL.

(cl  半導体装置完成後において内部結晶欠陥の密
層及びサイズの最適値を与える格子間酸素#Ifのウェ
ハ前処理及び半導体装置製造工程中の減少量〔格子間酸
素濃度の初期値と半導体装置完成後の値との差〕。
(cl The amount of decrease in interstitial oxygen #If during wafer pretreatment and semiconductor device manufacturing process that gives the optimal value of the dense layer and size of internal crystal defects after semiconductor device completion [Initial value of interstitial oxygen concentration and semiconductor device completion difference with the latter value].

の三条性に基づいて決定し、半導体装置製造工程開始時
点における最適値の密度及びサイズの内部結晶欠陥乃至
欠陥核を形成する・(37) 実施例に先立つて、第3
図乃至第5図を参照して実験結果の一例について説明す
る。
(37) Prior to the example, the third
An example of experimental results will be described with reference to FIGS. 5 to 5.

第3図は内部結晶欠陥乃至欠陥核形成のためのウェハ前
熱処理の実験過稈の一例を示す図でj+って、 (A)  窒素雰囲気中において、ウェハを温度650
℃に4時間置く。
Figure 3 is a diagram showing an example of an experimental result of pre-wafer heat treatment for internal crystal defects or defect nucleation.
Place at ℃ for 4 hours.

〔B〕 2℃/―、の昇温速度にて、最高到達温1fT
C1で温1jを上昇する。
[B] Maximum temperature reached 1fT at a heating rate of 2℃/-.
C1 increases temperature 1j.

(C)  最高到達温度T″cK3時間管〈。(C) Maximum temperature reached T″cK3 hour tube.

を継続して実施する。初期格子関醗素濃度〔01〕寵1
.8 X I O”/−のウェハについて第3図の前熱
処理を実施後MO8FETを形成し、ウェハ前熱処理後
及びMO8FET完成後の格子間酸素濃度を測定した結
果を第4図に示す、第4図において、横軸は最高到達温
II′T(℃)、縦軸は格子間酸素濃度の初期値に対す
る減少量Δ[01)(xtosマ/ed)を示し、曲!
IAけ第3図のウェハ前処理後、曲11BFiMO8F
ET完成後を示す。
Continue to implement. Initial lattice barrier element concentration [01] 1
.. A MO8FET was formed after performing the preheat treatment shown in FIG. 3 on a wafer of 8 X I O"/-, and the interstitial oxygen concentration was measured after the wafer preheat treatment and after the completion of the MO8FET. The results are shown in FIG. In the figure, the horizontal axis shows the maximum temperature II'T (°C), and the vertical axis shows the amount of decrease Δ[01) (xtosma/ed) in the interstitial oxygen concentration from the initial value.
After the wafer pretreatment shown in IA diagram 3, the song 11BFiMO8F
Shown after ET is completed.

本実験例の如く半導体装置製造熱処理工程の累計が比較
的長い場合には、半導体装置完成後における格子間酸素
濃度減少量Δ〔01〕については、第4図の曲線Bの如
くウェハ前熱処理の最高到達温度Tが1000℃或いは
1100℃の高温域にある場合と、低温域特に900℃
8!度にある場合とで殆んど差がない。
When the cumulative total of semiconductor device manufacturing heat treatment steps is relatively long as in this experimental example, the amount of decrease in interstitial oxygen concentration Δ[01] after the semiconductor device is completed is determined by the wafer preheat treatment as shown by curve B in Figure 4. When the maximum temperature T is in the high temperature range of 1000℃ or 1100℃, and in the low temperature range especially 900℃
8! There is almost no difference between the two cases.

これに対してウェハ前熱処理後におけるΔ[01)につ
いては、第4図の曲1mAの如くウェハ前処理の最高到
達温度Tが950℃附近を境界として低温域にある場合
には高温域にある場合に比較して極めて小さい。前記の
格子間酸素濃度の減少量Δ〔0量〕は当該酸素が結晶欠
陥部分に移動することによって生じたもので、内部結晶
欠陥の成長を意味する。
On the other hand, regarding Δ[01) after the wafer pre-heat treatment, if the maximum temperature T of the wafer pre-treatment is in the low temperature range with the boundary around 950°C as in the curve 1mA in Figure 4, it is in the high temperature range. It is extremely small compared to the case. The amount of decrease Δ[0 amount] in the interstitial oxygen concentration is caused by the oxygen moving to the crystal defect portion, and means the growth of internal crystal defects.

本実験例における内部結晶欠陥乃至欠陥核のサイズ対密
度分布の変化を第5図(&)乃至(e)K図示する。た
だし、最高到達温1fTが前記の低温域にあるときを実
線、高温域にあるときを破線によって示し、C1はウェ
ハ前熱処理前、(b)は紡配[A’l終了後、(c)け
前記(C)終了後、(dlは半導体装置製造工程中の一
例、(elは半導体装置完成後の状態を示す。
FIGS. 5(&) to (e)K illustrate changes in the size versus density distribution of internal crystal defects or defect nuclei in this experimental example. However, when the maximum temperature 1fT is in the above-mentioned low temperature range, it is shown by a solid line, and when it is in a high temperature range, it is shown by a broken line. After completing step (C) above, (dl indicates an example of the semiconductor device manufacturing process, and (el indicates the state after the semiconductor device is completed).

更に図中の横軸に平行な破#Iけ夫々下記各i!度に対
する内部結晶欠陥乃至欠陥核の消滅臨界サイズを示し、
IFiウェハ前処う開始温1[、lは半導体装置製造工
程の最初の熱処理温贋に対応する。
Furthermore, each i! below is parallel to the horizontal axis in the figure. shows the annihilation critical size of internal crystal defects or defect nuclei with respect to the degree of
The IFi wafer pretreatment starting temperature 1[,l corresponds to the first heat treatment temperature in the semiconductor device manufacturing process.

最初は第5図(a)の吠聾にあったウェハに前記熱処理
(A)を実施することにより、伽)に示す如く欠陥核が
形成される。j!に前記昇温熱処理(B)cよって欠陥
核が成長し、定温熱処理(C)終了後において臨界サイ
ズ厘を超える。
By performing the heat treatment (A) on the wafer that was initially in a state of failure as shown in FIG. 5(a), defective nuclei are formed as shown in FIG. 5(a). j! Then, defect nuclei grow due to the temperature-raising heat treatment (B)c, and exceed a critical size after the constant-temperature heat treatment (C) is completed.

最高到達ii度が低温竣にある場合には、[B]十〔C
〕による成!に後においても未だ欠陥核の段階にあり、
格子間酸素の減少は僅少である。これに対し、最高到達
温fTが高温琥に達した場合には欠陥核の埴を脱し、欠
陥Kまで成長し、格子間酸素の減少は大きい。
If the highest attained ii degree is at a low temperature, [B]
] by! Even after that, it is still in the stage of a defective nucleus,
The decrease in interstitial oxygen is slight. On the other hand, when the highest temperature fT reaches a high temperature, the defect nucleus breaks out and grows to the defect K, resulting in a large decrease in interstitial oxygen.

ウェハ前熱処理の最高到達温fTが低温埴に止まったウ
ェハについては、半導体装置製造工程中に最高到達11
fTを越える温fKよる熱処理により、欠陥核は次第に
成長して欠陥の段階に到達して格子間酸素濃度は減少す
る。
For wafers whose maximum temperature fT during pre-wafer heat treatment remains at a low temperature, the maximum temperature fT reached during the semiconductor device manufacturing process is
By heat treatment at a temperature fK exceeding fT, defect nuclei gradually grow and reach the stage of defects, and the interstitial oxygen concentration decreases.

これに対して、ウェハ前熱処理の最高到達形成されてい
る内部結晶欠陥はさほど成長せず、この間における格子
間酸素1111&の減少は僅少である。
On the other hand, the internal crystal defects formed at the maximum during the pre-wafer heat treatment do not grow much, and the decrease in interstitial oxygen 1111& during this period is slight.

本実験例の如く、半導体装置製造熱処理工程の累計が長
い場合には、半導体装置完成後においては、ウェハ前熱
処理の最高到達温lTが低温緘に止まったウェハにおい
ても、内部結晶欠陥は充分eIG効果を得るまでに成長
する。これに対し、ウェハ前熱処理が高惺竣に達したウ
ェハについては(35)で述べた障害の危険性が大きい
When the cumulative heat treatment process for semiconductor device manufacturing is long, as in this experimental example, after the semiconductor device is completed, internal crystal defects are sufficiently removed by eIG even in wafers where the maximum temperature lT of the pre-wafer heat treatment remains at a low temperature. grow until it becomes effective. On the other hand, for wafers that have been subjected to pre-wafer heat treatment to a high degree of completion, there is a high risk of the failure described in (35).

(38) 以下に本発明を実施例により図面を参照して
具体的に説明する。
(38) The present invention will be specifically explained below using examples with reference to the drawings.

第6図は本発明の実施例の時間と温度との関係を示す。FIG. 6 shows the relationship between time and temperature for an embodiment of the invention.

(A)  シリコンウェハに例えば温[1100℃で6
0分間の熱処理を施す。
(A) A silicon wafer is heated to a temperature of, for example, 1100°C
Heat treatment is performed for 0 minutes.

この高温熱処理により、ウェハの表面 近傍の欠陥核は消滅もしくは固溶する。This high-temperature heat treatment allows the surface of the wafer to Nearby defect nuclei disappear or dissolve into solid solution.

同時に該表面近傍に存在する欠陥核形成の要因となる格
子間酸素をアウトディ7龜−ジ■ンする。
At the same time, interstitial oxygen, which is a factor in the formation of defect nuclei existing near the surface, is out-engineered.

ここで、核熱処理の温lとしては、950℃以上でなけ
れはウェハ表面近傍を充分に清浄化することは困離であ
る。オた、1300℃以上とすることはウェハに与える
熱の影響がチ過大となり望ましくない、熱処理時間とし
ては、10分間以上でなければこの熱処理の効果が充分
に得られず、60分間程&も行なえば充分である。
Here, unless the nuclear heat treatment temperature is 950° C. or higher, it is difficult to sufficiently clean the vicinity of the wafer surface. Additionally, setting the temperature to 1,300°C or higher is undesirable because the effect of heat on the wafer will be excessive.The heat treatment time must be at least 10 minutes to obtain the full effect of the heat treatment, and it takes about 60 minutes and more. It is enough if you do it.

更に、ウェハ表面保饅のため、表面に 二il化シリコン(SiOr)  等の保護膜を形成し
た上で前記熱処理を開始することが望ましいが、この高
温熱処理の写囲気を酸化性のものとし、ウェハ表面に Sin、膜を形成することも可能である。
Furthermore, in order to preserve the wafer surface, it is desirable to start the heat treatment after forming a protective film such as silicon diilide (SiOr) on the surface. It is also possible to form a Sin film on the wafer surface.

前ロピ[A)のN3温熱処理終了後、第6図中にaで示
す如く、一旦例えば650℃VCまで温度を低下せしめ
る0本降温処環は本発明の効果に大きな影響を与えるこ
とがないため、ウェハを炉から取り出して冷却を行なっ
ても差支えない。
After the N3 heat treatment of the previous process [A], as shown by a in FIG. 6, the temperature-lowering treatment in which the temperature is once lowered to, for example, 650°C VC does not have a large effect on the effects of the present invention. Therefore, there is no problem even if the wafer is removed from the furnace and cooled.

続いて本発明の特徴とする定温熱処理 CB)及び昇温熱処理〔C〕を実施する。Next, constant temperature heat treatment which is a feature of the present invention CB) and elevated temperature heat treatment [C].

〔B〕 シリコンウェハに例えば温f650℃で後に説
明する方法により求められる時間の定温熱処理を施す。
[B] The silicon wafer is subjected to constant-temperature heat treatment at, for example, a temperature of 650° C. for a time determined by a method to be described later.

(C)  シリコンウェハに昇温速度例えば2C/ a
−1で最高到達温度例えば900℃までの昇温熱処理を
施す。
(C) Temperature increase rate for silicon wafer, e.g. 2C/a
-1, heat treatment is performed to raise the temperature to a maximum temperature of, for example, 900°C.

1記熱処理時間の決定を第7図を参照 しτ欽明する・ 第7図は横軸そシリコンウェハの格子 間酸素fa度の初期値(Ol)o縦軸を前記熱処理CB
)の時間tBと前記熱処理〔C〕の時間tCとの合計時
間tとする。
1. Determine the heat treatment time with reference to FIG. 7. In FIG.
) and the time tC of the heat treatment [C], which is the total time t.

半導体装置完成後において内部結晶欠 陥の密度及びサイズの最適値を与える格子間酸素#度の
減少量Δ〔O1〕 Δ(Of)=(Of)o  (O1〕f但し、(Ol 
)o :格子関酸章濃rの前記初期値 [01)f  格子間酸素濃度の半導 体装置完成後の値 の例として1.1.1 X ] O”/cd、 0.7
5XIO’″/cli及び0.2X10”/jをとり、
半導体装置製造工程中の熱処理の効果を換算し友熱部1
911!f及び時間1050℃、1時間7?−実線、1
050℃、2時間を一点鎖線、1050℃3時間を破線
に広1 より例不ものである。
After completion of the semiconductor device, the amount of decrease in interstitial oxygen degree that gives the optimum value for the density and size of internal crystal defects Δ[O1] Δ(Of) = (Of) o (O1] f However, (Ol
)o: The initial value of the lattice oxygen concentration r [01)f An example of the value of the interstitial oxygen concentration after the semiconductor device is completed is 1.1.1
Take 5XIO'''/cli and 0.2X10''/j,
Converting the effect of heat treatment during the semiconductor device manufacturing process
911! f and time 1050℃, 1 hour 7? - solid line, 1
The dashed line indicates 2 hours at 050°C, and the broken line indicates 3 hours at 1050°C.

今、与えられたウェハの格子間酸素濃 度の初期値〔0I)oが1.7X10’・/−であり、
格子間酸素濃度の減少量の最適値が0.75X 10”
/afT4ツ?、半導体装置製造工程中の熱処理の換算
値が1050℃、1時間であるとき、第7図によりt=
5時間40分か得られる。
Now, the initial value [0I)o of the interstitial oxygen concentration of a given wafer is 1.7X10'·/-,
The optimal value for the amount of decrease in interstitial oxygen concentration is 0.75X 10”
/afT4? , when the converted value of the heat treatment during the semiconductor device manufacturing process is 1050°C and 1 hour, t=
You will get 5 hours and 40 minutes.

しかるに昇温熱処理〔C〕の時間tc は、本実施例においては t、=(900−65’O)÷2;2時間5分であるた
めK、定温熱部PCB )の時間BIi t B =t  t c = 3時間35分が最適値と
なる。
However, the time tc of the temperature raising heat treatment [C] is t = (900-65'O) ÷ 2; 2 hours and 5 minutes in this example, so the time tc of the constant temperature heat treatment (PCB) is BIi t B = The optimum value is t t c = 3 hours and 35 minutes.

定温熱処理CB)以後は、先K(3,7)において詩明
した実験例の最高到達11&が950℃以下の低温竣に
ある場合に相当し、前述の如く、定温熱処理(:B)K
よって欠陥核が形a!ばれる0本定温熱処理[B)Vc
より前記効果が得られる温度とし′″7550℃乃至7
50℃程度が適当である。
Constant-temperature heat treatment (CB) and later corresponds to the case where the highest attainment 11& of the experimental example mentioned in K (3, 7) is completed at a low temperature of 950°C or less, and as mentioned above, constant-temperature heat treatment (:B) K
Therefore, the defective nucleus has the shape a! Constant temperature heat treatment [B) Vc
The temperature at which the above effects can be obtained is from 7,550℃ to 7,550℃.
Approximately 50°C is appropriate.

昇温熱処理(C)はヂWFfl’蛯ヂy定温熱処理rB
)に工す形成され次欠陥核のサイズを成長せしめること
を主羽的とするが、同時に、欠陥核密gの増大も行なわ
れ、この欠陥核密度の増大は昇温速度が5℃/―、り下
のときに顕著である。前述の如く、第7図により求めた
時間tK対しt C=tを選択して、定温熱処理〔B〕
を省略しても同等の密度及びサイズの欠陥核が形成され
る。
Temperature increasing heat treatment (C) is ヂWFfl'蛯もy constant temperature heat treatment rB
), the main objective is to increase the size of the defect nuclei that are formed, but at the same time, the defect nucleus density g is also increased, and this increase in the defect nucleus density is achieved by increasing the heating rate by 5℃/- , it is noticeable when you are at the bottom of the mountain. As mentioned above, constant temperature heat treatment [B] was performed by selecting tC=t for the time tK determined from FIG.
Even if omitted, defect nuclei with the same density and size are formed.

内部結晶欠陥核の密質を充分に大きく するためK、前記の如く昇温熱部IF (C)の弁速度
を5℃/―、以下とし、かつ欠陥核サイズの過大が成長
を防止するために前述の如く最高到達温度を950℃以
下とするが、この条件は、後に説明するり、Z、の幅の
11制御のためにも適している・ 前記昇温熱処理〔C〕終了後の欠陥核 サイズが半導体装fI#造工程、特にその最初の熱部f
!l温度における臨界サイズ以上に成長していないとき
には、前記昇温熱処理〔C〕に続いて足温熱処理〔D〕
を施すことが必要となる。
In order to sufficiently increase the density of internal crystal defect nuclei, the valve speed of the heating heating section IF (C) is set to 5°C/- or less as described above, and in order to prevent the excessive size of defect nuclei from growing. As mentioned above, the maximum temperature reached is 950°C or less, and this condition will be explained later and is also suitable for controlling the width of Z. The size of the semiconductor device fI# manufacturing process, especially the first hot part f
! If the growth has not exceeded the critical size at 1 temperature, the above-mentioned temperature raising heat treatment [C] is followed by foot warming heat treatment [D].
It is necessary to carry out

〔D〕 シリコンウェハ・を〔C〕の最高到達温度に例
えば3時間置く。
[D] Place the silicon wafer at the maximum temperature of [C] for, for example, 3 hours.

本定温熱処理〔D〕は必要に応じて実施され、半導体装
置製造工程に即して時間が決定される。
This constant-temperature heat treatment [D] is performed as necessary, and the time is determined according to the semiconductor device manufacturing process.

内部結晶欠陥乃至欠陥核の密度及びサ イズ形成のための本発明によるウエノ・前熱処理は以上
にて終了する。
This concludes the Ueno preheat treatment according to the present invention for forming the density and size of internal crystal defects or defect nuclei.

他方、前に’熱処理によって、D、Z。On the other hand, before’D, Z by heat treatment.

も形成される。D、Z、の幅を決定する要因としては、
前記定温熱処理(A)及びCB)の温度及び時間、並び
に前記層温熱処理〔C〕の昇温速度及び最高到達温度が
あり、CA〕の温度、〔C〕の最高到達m度が高く、〔
A〕の時間が長く(C’)の昇温速度が速いときにり、
Z。
is also formed. The factors that determine the width of D and Z are:
There are the temperature and time of the constant temperature heat treatment (A) and CB), and the temperature increase rate and maximum temperature of the layer temperature heat treatment [C], and the temperature of CA] and the maximum temperature of [C] are high;
When the time of A] is long and the temperature increase rate of (C') is fast,
Z.

の幅は広くなる。becomes wider.

前記実施例については、定温熱処理〔 ARKよって支配され、D、Z、の幅は約10−mを得
ている。
For the example described above, the constant temperature heat treatment [ARK] was used to obtain widths of D, Z, of about 10-m.

本実施例のシリコンウェハを用いて予 定した半導体装置を製造した結果、充分なIC効果を具
備し、がっ、スリップラインの発生叫による障害が排除
されていることが確認された。
As a result of manufacturing a semiconductor device as planned using the silicon wafer of this example, it was confirmed that it had a sufficient IC effect and that problems caused by the generation of slip lines were eliminated.

(3,9)  以上、実施例からも明らかなる如く、本
発明によるウェハ前熱処理は、ウェハの格子関酸票濃賓
の初期値の高低、半導体装置製造工程における熱処理温
度の高低、十の時間の長短、TI!に完成された半導体
装置についてlli求されるIC効果の大小にかかわら
ず統一された方法によって処理することを可能とするも
のである。
(3, 9) As is clear from the examples above, the wafer pre-heat treatment according to the present invention can be carried out by adjusting the initial value of the wafer's lattice temperature, the height of the heat treatment temperature in the semiconductor device manufacturing process, and the time required for the wafer. The long and short of TI! This makes it possible to process a semiconductor device completed in 2008 using a unified method regardless of the magnitude of the IC effect required.

(3,10)  本発8AFf、、以上説明した如く、
シリコンウェハに対して5℃/−以下の昇m’速度で、
鮫高到運i!度950℃以下の熱処理を含む前熱処理を
施すことによって、半導体装置完成後に会費かつ充分な
IC効果を得、かつ、内部結晶欠陥の過匿の成長による
障害の発生を排除するものであって、半導体iMfIt
の特性の向上及び障害の排除に大きい効果を有する。
(3,10) The original 8AFf, As explained above,
At a rising m' rate of 5°C/- or less relative to the silicon wafer,
Shark high luck i! By performing preheat treatment including heat treatment at a temperature of 950 degrees Celsius or less, a sufficient IC effect can be obtained after the completion of the semiconductor device, and the occurrence of failures due to excessive growth of internal crystal defects can be eliminated, Semiconductor iMfIt
It has a great effect on improving the characteristics of the system and eliminating obstacles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(c)は従来技術によるり、Z、及び
内部結晶欠陥成長を示すウニへの模式断面図、第2図(
at乃至(c)は従来技術による内部結晶欠陥サイズ及
び密度の成長を示す図、第3図は実験例の温度と時間と
の関91を示す図、第4図は実験例の格子間繊素濃度減
少量を示す図、第5図Fi賽験例の内部結晶欠陥サイズ
及び密度の成長を示す図、第6図は本発明の実施例の温
lと時間との関係を示す図、第7図は熱処理時間を求め
る図表の例である・ 第 1 図 第 2 図 ((2)      (b)      (C)第 3
 図       晃4 図 晃 5  回
FIGS. 1(a) to (c) are schematic cross-sectional views of a sea urchin showing Z and internal crystal defect growth according to the prior art, and FIG.
at to (c) are diagrams showing the growth of internal crystal defect size and density according to the prior art, Figure 3 is a diagram showing the relationship between temperature and time in the experimental example, and Figure 4 is the interstitial fiber in the experimental example. Figure 5 is a diagram showing the amount of decrease in concentration; Figure 5 is a diagram showing the growth of internal crystal defect size and density in the Fi test example; Figure 6 is a diagram showing the relationship between temperature l and time in the example of the present invention; The figure is an example of a chart for determining heat treatment time. Figure 1 Figure 2 ((2) (b) (C) Figure 3
Figure 4 Figure 5 Figure 5

Claims (1)

【特許請求の範囲】[Claims] シリコン基板に対して5℃/−以下の昇温速度で、最高
到達源R950℃以下の熱処理を施すことを特徴とする
半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, which comprises performing heat treatment on a silicon substrate at a temperature increase rate of 5°C/- or less and a maximum source R of 950°C or less.
JP15458381A 1981-09-29 1981-09-29 Manufacture of semiconductor device Granted JPS5856343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15458381A JPS5856343A (en) 1981-09-29 1981-09-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15458381A JPS5856343A (en) 1981-09-29 1981-09-29 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5856343A true JPS5856343A (en) 1983-04-04
JPH0119265B2 JPH0119265B2 (en) 1989-04-11

Family

ID=15587374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15458381A Granted JPS5856343A (en) 1981-09-29 1981-09-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5856343A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887833A (en) * 1981-11-20 1983-05-25 Hitachi Ltd Manufacture of semiconductor device
JPS58501927A (en) * 1981-12-31 1983-11-10 インタ−ナシヨナル・ビジネス・マシ−ンズ・コ−ポレ−シヨン Method for reducing oxygen precipitation in silicon wafers
JPH03185831A (en) * 1989-12-15 1991-08-13 Komatsu Denshi Kinzoku Kk Manufacture of semiconductor device
JPH0897222A (en) * 1994-09-26 1996-04-12 Toshiba Ceramics Co Ltd Manufacture of silicon wafer, and silicon wafer
EP2345753A1 (en) * 2009-12-29 2011-07-20 Siltronic AG Silicon wafer and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838865B1 (en) * 2002-04-23 2005-10-14 Soitec Silicon On Insulator PROCESS FOR PRODUCING A SUBSTRATE WITH USEFUL LAYER ON HIGH RESISTIVITY SUPPORT

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887833A (en) * 1981-11-20 1983-05-25 Hitachi Ltd Manufacture of semiconductor device
JPS58501927A (en) * 1981-12-31 1983-11-10 インタ−ナシヨナル・ビジネス・マシ−ンズ・コ−ポレ−シヨン Method for reducing oxygen precipitation in silicon wafers
JPH03185831A (en) * 1989-12-15 1991-08-13 Komatsu Denshi Kinzoku Kk Manufacture of semiconductor device
JPH0897222A (en) * 1994-09-26 1996-04-12 Toshiba Ceramics Co Ltd Manufacture of silicon wafer, and silicon wafer
EP2345753A1 (en) * 2009-12-29 2011-07-20 Siltronic AG Silicon wafer and production method therefor
US8357939B2 (en) 2009-12-29 2013-01-22 Siltronic Ag Silicon wafer and production method therefor

Also Published As

Publication number Publication date
JPH0119265B2 (en) 1989-04-11

Similar Documents

Publication Publication Date Title
JP5188673B2 (en) Silicon wafer for IGBT and method for manufacturing the same
US7977219B2 (en) Manufacturing method for silicon wafer
US8476149B2 (en) Method of manufacturing single crystal silicon wafer from ingot grown by Czocharlski process with rapid heating/cooling process
CN106715765B (en) Method for producing single crystal and method for producing silicon wafer
JP6945805B2 (en) Manufacturing method of epitaxial wafer
CN107210223B (en) Method for manufacturing silicon wafer
KR20090116748A (en) Method for manufacturing silicon single crystal wafer
JPH07321120A (en) Heat treatment of silicon wafer
KR101313462B1 (en) Method for heat treating silicon wafer
TW524898B (en) A silicon wafer for epitaxial growth, an epitaxial wafer, and a method for producing it
KR101703696B1 (en) Method of manufacturing silicon substrate and silicon substrate
KR20180080271A (en) Semiconductor wafer made of single crystal silicon and manufacturing method thereof
JP3381816B2 (en) Semiconductor substrate manufacturing method
JP4154881B2 (en) Heat treatment method for silicon semiconductor substrate
TWI628317B (en) Method for growing monocrystalline silicon by using czochralski method
KR100944030B1 (en) Method for vanishing defects in single crystal silicon and single crystal silicon
JP4196602B2 (en) Epitaxial growth silicon wafer, epitaxial wafer, and manufacturing method thereof
JP4055343B2 (en) Heat treatment method for silicon semiconductor substrate
JPS5856343A (en) Manufacture of semiconductor device
CN110730831A (en) Method for producing silicon single crystal, method for producing epitaxial silicon wafer, silicon single crystal, and epitaxial silicon wafer
JP7207204B2 (en) Method for producing carbon-doped silicon single crystal wafer
TW202113978A (en) Carbon-doped silicon single crystal wafer and manufacturing method thereof
JP4385539B2 (en) Heat treatment method for silicon single crystal wafer
CN115135818B (en) Method for manufacturing semiconductor silicon wafer
JP3944958B2 (en) Silicon epitaxial wafer and manufacturing method thereof