JPS5856324A - Vapor phase growth - Google Patents

Vapor phase growth

Info

Publication number
JPS5856324A
JPS5856324A JP15463581A JP15463581A JPS5856324A JP S5856324 A JPS5856324 A JP S5856324A JP 15463581 A JP15463581 A JP 15463581A JP 15463581 A JP15463581 A JP 15463581A JP S5856324 A JPS5856324 A JP S5856324A
Authority
JP
Japan
Prior art keywords
vapor phase
phase growth
gas
alloy
growth method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15463581A
Other languages
Japanese (ja)
Other versions
JPH0347728B2 (en
Inventor
Kenya Nakai
中井 建弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15463581A priority Critical patent/JPS5856324A/en
Publication of JPS5856324A publication Critical patent/JPS5856324A/en
Publication of JPH0347728B2 publication Critical patent/JPH0347728B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To remove oxygen existing as impurities in gas for vapor phase growth by a method wherein gas for vapor phase growth is made to come in contact with an easily oxidizable metal or an alloy thereof. CONSTITUTION:A boat 20 is arranged in a reaction tube 13. The boat 20 is provided in front of a susceptor 15 mounting substrates 11, and is made to adjoin to outlets of gas for treatment to be fed from the gas supplying partIand the gas piping system II. The alloy 19 of the easily oxidizable metal of Al, Mg, etc., and low melting point metals of Ga, Sn, Pb, etc., are filled up in the boat 20. Accordingly oxygen being contained in gas for treatment is removed by coming in contact with the alloy 19.

Description

【発明の詳細な説明】 本発明は半導体等の製造に対して酸素の影響を極めて低
くするために、製造に用いるガスに不純物として存在す
るH、0,0.、GO等の酸素分をMあるいはMg等極
めて酸化しや丁い晶酸化性金”異材料の性質を利用して
低減Tる方法である。
DETAILED DESCRIPTION OF THE INVENTION In order to extremely reduce the influence of oxygen on the production of semiconductors, etc., the present invention uses H, 0,0. This is a method of reducing the oxygen content of GO, etc., by utilizing the properties of extremely oxidizable, crystalline oxidizing materials such as M or Mg.

トリメチ少ガリウムTMG、)リメチIレアルミニ17
 A TMA I トAsH,を用いた0 @ A I
 A @0)MO−CVDによる気相エビ成長ではAI
の存在のためにG―結晶中に電子トラップが多量に混入
することが知られており、これは、AIが酸化しや丁い
ことと関係していると考えられる。気相成長に用いるキ
ャリヤーガスにはCO、H,0,0,等のal1票を含
む不純書が考えられ、用いるガスの純化が計られている
が、現在のところ不完全である。MO−CVD装置のガ
ス配管系の配管内壁・に吸着したCO,H,0゜0、或
いは純化装置が存在しない人mHsガス等からのO嘗が
原因であると考えられる。キャリヤーガス自身について
は、はぼ完全な純度が期待されるPd拡敏膜を利用した
純化装置かあるが、前記原因によるものは装置の長期に
渡る使用等により改善が考えられるが、成長装置の酸素
のリーク等もあり、不完全である。
Trimethi Small Gallium TMG,) Rimethi I Real Mini 17
0 @ A I using A TMA I and AsH,
A @0) AI in vapor phase shrimp growth by MO-CVD
It is known that a large amount of electron traps are mixed into the G-crystal due to the presence of Al, and this is thought to be related to the fact that Al is difficult to oxidize. The carrier gas used in vapor phase growth may contain impurities such as CO, H, 0, 0, etc., and efforts are being made to purify the gas used, but it is currently incomplete. The cause is thought to be CO, H, 0°0 adsorbed on the inner wall of the gas piping system of the MO-CVD apparatus, or O from human mHs gas for which there is no purification device. As for the carrier gas itself, there is a purification device that uses a Pd diffusion membrane, which is expected to achieve almost perfect purity. There are oxygen leaks, etc., and it is incomplete.

謳1図は従来公知であるGaAlAsのエビ成長装置の
概略である。キャリヤーガスにはP″′d拡歓膜式の純
化装置9により超高MI J[a)kl 、ガス、純化
装置として過通なものがない、AsH,H,8を含むH
,ガスが各々ボンベ7Irjjンベ8から供給される。
Figure 1 is a schematic diagram of a conventionally known GaAlAs shrimp growth apparatus. The carrier gas has an ultra-high MI J[a)kl by a P″'d diffusion membrane type purification device 9, and H containing AsH, H, and 8 is not passed through the purification device.
, gas are supplied from cylinders 7 and 8, respectively.

原料(1)TMG、TMA、L)MZn(Zn(CHs
)鵞)は各々ボンベ式のバブラー3.4.5により気化
され成長反応管12に供給される。反応管13内のサヤ
ブタ−15を高周波コイIし14で誘導加熱してサセプ
ター15上に於れた基板11を加熱して、熱分解反応に
よりGaAlAsをエビ成長するもである。ガス配管等
ガスの通路は主にステンレスパイプが使用されている。
Raw materials (1) TMG, TMA, L) MZn (Zn(CHs
) are each vaporized by a cylinder-type bubbler 3.4.5 and supplied to the growth reaction tube 12. The substrate 11 placed on the susceptor 15 is heated by induction heating of the pod 15 in the reaction tube 13 with a high frequency coil 14, and GaAlAs is grown by a thermal decomposition reaction. Stainless steel pipes are mainly used for gas passages such as gas piping.

ここで、HI3.Aaf(、は高純度な水素をベースに
作られたガスを使用するが、残貿分として、又、ボンベ
7.8ガス配管バイブ1111圧器lO流量計2バーレ
ブ6等の内壁には成長装置の組立時に多量のHlO,O
□CO等が吸着し、容易に脱着することなし長期に渡り
H,ガス中のH,0,0□COv源となる。ざらに成長
装置の各機器からのOtのリークが考えられ、良質のG
aAlAsがエビ成長しない。低キャリヤー濃度の結晶
は得られず、エビ層は高抵抗化しやすく、易動度は低い
。Ga0.7AI0.3人SはG a A s O)易
動度の1/2以下である。
Here, HI3. Aaf (, uses a gas made based on high-purity hydrogen, but as a residual quantity, the inner walls of the cylinder 7.8 gas piping vibe 1111 pressure vessel lO flow meter 2 bar rev 6 etc.) A large amount of HlO,O during assembly
□CO etc. are adsorbed and become a source of H, 0,0□COv in H gas for a long time without being easily desorbed. It is possible that there is a leak of Ot from each device in the Rough Growth Apparatus, resulting in a high quality G.
aAlAs does not cause shrimp to grow. Crystals with low carrier concentration cannot be obtained, and the shrimp layer tends to have high resistance and low mobility. Ga0.7 AI0.3 person S is less than 1/2 of Ga As O) mobility.

本発明は上述の点に鑑みてなされたものでガス中の酸素
分を低減するため、酸化しやすい物質を酸化反応が進行
しやすい状態に保持しざらに酸化しやすい物質の酸化生
成物が、目的である気相処理に障害を与えないようにし
て利用丁6方法を提供するものである。
The present invention has been made in view of the above-mentioned points, and in order to reduce the oxygen content in gas, substances that are easily oxidized are kept in a state where oxidation reactions easily proceed, and the oxidation products of substances that are easily oxidized are The purpose is to provide six methods of utilization without interfering with the purpose of gas phase treatment.

本発明は、AIやMg等の極めて酸化しやTい資質に処
理して用いるガスJi−接触させることによりガス中の
不純物であるO、 H,COCo、等を除去下へ通常の
反応では上記AI、Mg等の表面に酸化膜が形成T^た
め、酸化反応が停止あるいは低下してしまう。従って、
酸化膜の影響を低減Tるために、本発明者は上記物質を
合金化丁ればよいと舊う着想を得た。上記金属とGa、
In、So等の低融点金属との合金では比較的低温で、
液体状態となる。液体金属では、安定な酸化膜が形成さ
れない0なおAI、Mgを合金化することなしに高温に
加熱しても同様の効果を期待丁にとが可能テあるf;)
1、GaAlAsの成長を考えた場合、原料ガス中のA
sH,TMA (AI(CHs)a)等の分解反応が通
行し、GaAlAlの成長制御が困難となる障害を生じ
る。
In the present invention, impurities such as O, H, COCo, etc. in the gas are removed by treating extremely oxidizable materials such as AI and Mg and bringing them into contact with the gas that is difficult to oxidize. Since an oxide film is formed on the surface of AI, Mg, etc., the oxidation reaction is stopped or reduced. Therefore,
In order to reduce the influence of the oxide film, the inventor came up with the idea that the above substances should be alloyed. The above metal and Ga,
In alloys with low melting point metals such as In and So, at relatively low temperatures,
It becomes a liquid state. Liquid metals do not form stable oxide films; however, it is possible to expect similar effects by heating AI and Mg to high temperatures without alloying them;)
1. When considering the growth of GaAlAs, A in the source gas
Decomposition reactions such as sH and TMA (AI(CHs)a) pass through, creating obstacles that make it difficult to control the growth of GaAlAl.

、以下本発明の実施例について説明する。, Examples of the present invention will be described below.

1g2図(alは本発明を利用して作られた成長装置の
概略である。従来の1lI1図のものとの違いは、反応
管内に於て、本発明の易酸化性金属と低融点金−との合
金のを入れた合金ポートに出来るだけ近接し、ガスを纂
2図(blに41!、部を示す如く吹き付けるようにし
た点である@ 1g2図においても第1図と同一物には同符号で示した
・ g211には反応管13内にポー1−20が配設され、
ポート20には処理用ガスを吹き付けてガス中の不純物
である酸累分を除去Tる人1.M1等の易酸化性金属と
Ga、In、an、Pb等の低融点金属との合金が充填
されている@反応管13内部又は外部のヒーター18に
より加熱されたボート20内の合金19は液体となって
おり、ガスを吹き付けることにより、液体は流動し、酸
化膜は除去されやTくなっている。加熱温度は例えば合
金としrA I tfi 30 atomic XのG
a−AI(30X)合金を用いると約300℃に加熱す
ることにより液体合金となるOGa中のAIは選択的に
酸化されるのでGa、0.等の気化しゃ丁い酸化物は生
成しない・又目的で、y)4.GaAlAsのエビ成長
の原料であ4 A @ H@ e T M G (G 
a (CHm ) s ) * TM’(” (cHs
)i)は熱分解反応には温度低いので分解することはな
い。従ってほぼ原料及びそのキャリヤーガス中に含まれ
るCOH,0,0,CO,等の酸素は合金中のAIと結
合T6ためにガス中の酸素分はほぼ完全に除去これ従り
て、GaAlAsの特性は酸素が混入されないために著
しく向上する。Ga 0.7 AIO,!IA$の結晶
の鳥動度として、 Ga、Asの約90%以上のものが
得られるようになりた。又GaAsの成長に於ても、酸
素の低減により、カーボンの混入の楊度が低減し、不純
物濃度としてlQl’c11−1一度のものが得られる
ようになった。これは炭素の混入に対して酸素が重要な
作用があるものと考えられ、GaAsの成長にも有効で
あることが判った。
Figure 1g2 (Al is a schematic diagram of a growth apparatus made using the present invention. The difference from the conventional one in Figure 1lI1 is that in the reaction tube, the easily oxidizable metal of the present invention and the low melting point gold The point is that the gas is sprayed as close as possible to the alloy port containing the alloy in Figure 2 (41! on BL), as shown in Figure 1g2. The port 1-20 is arranged in the reaction tube 13 in g211 indicated by the same symbol,
Person 1. Blows processing gas into the port 20 to remove accumulated acid, which is an impurity in the gas. The alloy 19 in the boat 20 heated by the heater 18 inside or outside the reaction tube 13 filled with an alloy of an easily oxidizable metal such as M1 and a low melting point metal such as Ga, In, an, Pb, etc. becomes a liquid. By spraying gas, the liquid flows and the oxide film is removed. The heating temperature is, for example, the G of the alloy rA I tfi 30 atomic
When an a-AI (30X) alloy is used, AI in OGa, which becomes a liquid alloy by heating to about 300°C, is selectively oxidized, so Ga, 0. y)4. GaAlAs is the raw material for shrimp growth 4 A @ H @ e T M G (G
a (CHm) s ) * TM'(” (cHs
) i) does not decompose because the temperature is too low for the thermal decomposition reaction. Therefore, most of the oxygen contained in the raw material and its carrier gas, such as COH, 0, 0, CO, etc., is combined with the AI in the alloy T6, so the oxygen content in the gas is almost completely removed. Therefore, the characteristics of GaAlAs is significantly improved because no oxygen is mixed in. Ga 0.7 AIO,! It has become possible to obtain IA$ crystals with a mobility of about 90% or more of Ga and As. Also, in the growth of GaAs, the degree of carbon incorporation is reduced by reducing oxygen, and an impurity concentration of 1Ql'c11-1 can now be obtained. This is thought to be because oxygen has an important effect on carbon contamination, and it has been found that it is also effective for the growth of GaAs.

GaAsGaAlAs等の化合物半導体の成長に適用丁
にとを目的の発明であり従って実施例で合金とじrGa
−As合金を用いたが、P形の01リムの場合にはGa
 −Mg−AI合金を、n形の結晶に対してハGa−8
n −AI 8n −AI 、 Pb−Al等の合金を
使用丁れば嵐い。他の物質の気相成長に対して不純物と
しての影響を考慮した合金を使用することが可能である
This invention is intended to be applied to the growth of compound semiconductors such as GaAsGaAlAs, and therefore, in the embodiments, alloy binding rGa
-As alloy was used, but in the case of P type 01 rim, Ga
-Mg-AI alloy for n-type crystals
If alloys such as n-AI, 8n-AI, and Pb-Al are used, it will be a storm. It is possible to use an alloy that takes into account its influence as an impurity on the vapor phase growth of other substances.

また本実施例ではガス中のl!素分を除却する方法とし
て、反応管内に溶融合金を置いたが、場合によっては、
ガス配管系の内部あるいは前部に置設することも可能で
あり、善に純化装置を通じないAsH1ガスやドーピン
グのためのH,8ガスについて重点的に脱酸処理するこ
とも有効である。
In addition, in this example, l! As a method to remove elemental components, molten alloy was placed in the reaction tube, but in some cases,
It is also possible to install it inside or at the front of the gas piping system, and it is also effective to intensively deoxidize AsH1 gas and H, 8 gas for doping, which do not pass through the purification device.

又、上記合金には酸化膜が形Jilc75れこれが酸化
反応を低減する左用を成丁。従りて、反応ガスを吹付け
るだけでは合金表面に形成される酸化膜を除去Tるのに
不十分であるような場合には積極的に、機械的に合金a
mを攪拌もしくは、融液上面に形成された酸化膜をスク
イズし、常時合金の清浄面を与えるようにすることは、
本発明の作用をより有効にすることが出来る。
In addition, the above alloy has an oxide film in the form of JILC75, which reduces oxidation reactions. Therefore, in cases where spraying a reactive gas is insufficient to remove the oxide film formed on the alloy surface, it is necessary to actively and mechanically remove the oxide film formed on the alloy surface.
Stirring m or squeezing the oxide film formed on the top surface of the melt so that the surface of the alloy is always clean is as follows:
The effect of the present invention can be made more effective.

1.0a又はIn、Pb、8a等低融点金属とアルミニ
ウム(A1)あるいはマグネシウム(Mg)との合金を
室温又は室温から約SOO℃m度の温度に加熱し、半導
体処理あるいは半導体成長に用いる、H□Ar 、He
 、N、等の牛ヤリャガス或いはA魯Ha eHaSs
G”(CHs)m sλl(CHs)s−2n(CHs
)m等の反応性のガスを接触させて該ガス中に不純物と
して存在する酸素分を、AI又はMgの酸化物として一
定し、該ガス中より除去丁6方法。
An alloy of low melting point metal such as 1.0a or In, Pb, 8a and aluminum (A1) or magnesium (Mg) is heated to room temperature or a temperature of about SOO ℃ m degrees from room temperature and used for semiconductor processing or semiconductor growth. H□Ar, He
, N, etc.'s Ox Yaryagas or A Lu Ha eHaSs
G”(CHs)m sλl(CHs)s-2n(CHs
) A method of removing oxygen present as an impurity in the gas by bringing it into contact with a reactive gas such as oxide of AI or Mg, and removing it from the gas.

1 上記低融点金属と、ム■又はMgとの合金を111
m1状態として、酸素分を不純物として含むガスを接触
させ6方法。
1 An alloy of the above low melting point metal and Mg or Mg is 111
6 methods by contacting a gas containing oxygen as an impurity in the m1 state.

3、上記溶融状態の合金上に生成したAI、Mgの酸化
物の表面形成物を該溶融金属を攪拌もしくは表面をスク
イズして、除去しつつ、半導体処理用ガスを接触せしめ
る方法。
3. A method in which surface formations of AI and Mg oxides formed on the above-mentioned molten alloy are removed by stirring the molten metal or squeezing the surface, while bringing the semiconductor processing gas into contact with the molten metal.

4、トリノ千少ガリウム、トリメチフレアIL/にラム
等の■族元素の有機金属化合物と、AaH,PH。
4. Organometallic compounds of group Ⅰ elements such as trimethychelium gallium, trimethyflare IL/niram, etc., and AaH, PH.

等のV族元素の水素化物を用いてff−V族化合物中導
体を熱分解して気相成長する成長法に於て、ガスを上記
方法で処理する。
In a growth method in which a conductor in an FF-V group compound is pyrolyzed and grown in a vapor phase using a hydride of a group V element such as, the gas is treated by the above method.

不発明の超高純度ガス処理法番こより下記効果が得らす
る。
The following effects can be obtained by using the uninvented ultra-high purity gas processing method.

1、ガス中の酸素分をほぼ完全に除去することが可能で
ある。
1. It is possible to almost completely remove oxygen from the gas.

2、 9素分除去の効果を持続的に利用出来る・3、酸
素を結合しや丁い物質とそれと温合する物質を選ぶこと
により目的の処理に対して悪影響を与えることはない。
2. The effect of removing 9 elements can be used sustainably. 3. By choosing a substance that binds oxygen and a substance that warms up with it, there will be no negative impact on the target treatment.

4.良質のAIあるいはMgを含みかつ酸素の混入が障
害となる物質の気相感層が可能である・5、  jL質
のGa AI A@の気相エビ成長が可能である・
4. It is possible to create a vapor-phase sensitive layer of a substance that contains high-quality AI or Mg and where oxygen contamination is an obstacle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の気相成長装置を説明する図、票2図は本
発明の気相成長装置を説明する図である。
FIG. 1 is a diagram illustrating a conventional vapor phase growth apparatus, and Figure 2 is a diagram illustrating a vapor phase growth apparatus of the present invention.

Claims (1)

【特許請求の範囲】 (1)ff−V族化合物中溝体を気相成長する気相成長
方法に於て気相成長用ガスを易酸化性金属或いはその合
金Iこ接触させ、該ガス中に不純物として存在する酸素
外を、咳易酸化性金属の酸化物として固定し、該ガス中
より除去することを特徴とする気相成長方法。 (2)上記易酸化性金属がアlレミニウム、マグネシウ
ムであるこt8特徴とする特許請求の範囲第1項記載の
気相成長方法。 (3)上記合金を形成する金属が低融点金属であること
を特徴とする特許請求の範囲第111記載の気相成長方
法。 (4)上記低融点金属がGa、In、Pb又は8nであ
ることを特徴とする特許請求の範囲wca項記載の気相
成長方法。 (均 上記ガスが不活性ガス又は反応性ガスであること
を特徴とする特許請求の範囲第1項記載の気相成長方法
。 (6)易酸化性金属或いはその合金に被処理ガスを所定
の温度で接触させることをIF#徽とする特許請求の範
囲第1項記載の気相成長方法◎(7)上記温度を反応性
ガスの分解温度より低温とすることを特徴とするI¥#
杵請求の範囲6項記載の気相成長方法。 (8)易酸化性金属と低融金属との合金を溶融状態とす
ることを%黴とする!f#杵請求の範囲181項記載の
気相成長方法。 (9)上記S融状態の合金融液上に生成する咳酸化智の
表面形成物を、該合金融液を攪拌或いは表面をスクイズ
して除去しつつ処理することを特徴とする特許請求の範
囲第8項記載の気相成長方法。 (幻)上記反応性ガスが有機金属化合物、非金属元素の
水素化物、又は水素であることを特徴とする特許請求の
範囲第5項記載の気相成長方法。 (11)上記不活性ガスがHe、Ar、Ne、Nlであ
ることを41黴とTる特許請求の範囲第5項記載の気相
成長方法◎
[Scope of Claims] (1) In a vapor phase growth method for vapor phase growth of an ff-V group compound medium, a gas for vapor phase growth is brought into contact with an easily oxidizable metal or its alloy I, and in the gas A vapor phase growth method characterized in that oxygen present as an impurity is fixed as an oxide of an easily oxidizable metal and removed from the gas. (2) The vapor phase growth method according to claim 1, wherein the easily oxidizable metal is aluminum or magnesium. (3) The vapor phase growth method according to claim 111, wherein the metal forming the alloy is a low melting point metal. (4) The vapor phase growth method according to claim wca, wherein the low melting point metal is Ga, In, Pb or 8n. (6) A vapor phase growth method according to claim 1, characterized in that the gas is an inert gas or a reactive gas. The vapor phase growth method according to claim 1, wherein contact is made at a temperature of IF# (7) I¥# characterized in that the temperature is lower than the decomposition temperature of the reactive gas
A method for vapor phase growth according to claim 6. (8) An alloy of an easily oxidized metal and a low-melting metal is called molten mold! f# pestle The vapor phase growth method according to claim 181. (9) A claim characterized in that the surface formation of cough oxidation particles generated on the alloy liquid in the S molten state is removed by stirring or squeezing the surface of the alloy liquid. The vapor phase growth method according to item 8. (Phantom) The vapor phase growth method according to claim 5, wherein the reactive gas is an organometallic compound, a hydride of a nonmetallic element, or hydrogen. (11) The vapor phase growth method according to claim 5, wherein the inert gas is He, Ar, Ne, or Nl.
JP15463581A 1981-09-29 1981-09-29 Vapor phase growth Granted JPS5856324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15463581A JPS5856324A (en) 1981-09-29 1981-09-29 Vapor phase growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15463581A JPS5856324A (en) 1981-09-29 1981-09-29 Vapor phase growth

Publications (2)

Publication Number Publication Date
JPS5856324A true JPS5856324A (en) 1983-04-04
JPH0347728B2 JPH0347728B2 (en) 1991-07-22

Family

ID=15588505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15463581A Granted JPS5856324A (en) 1981-09-29 1981-09-29 Vapor phase growth

Country Status (1)

Country Link
JP (1) JPS5856324A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042854A (en) * 2005-08-03 2007-02-15 Tokyo Univ Of Agriculture & Technology Process for producing aluminium based iii nitride crystal and crystal multilayer substrate
US7968362B2 (en) 2001-03-27 2011-06-28 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL PHYS LETT *
JAPAN J APPL PHYS *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968362B2 (en) 2001-03-27 2011-06-28 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
US8293555B2 (en) 2001-03-27 2012-10-23 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
JP2007042854A (en) * 2005-08-03 2007-02-15 Tokyo Univ Of Agriculture & Technology Process for producing aluminium based iii nitride crystal and crystal multilayer substrate
JP4749792B2 (en) * 2005-08-03 2011-08-17 国立大学法人東京農工大学 Method for producing aluminum group III nitride crystal and crystal laminated substrate

Also Published As

Publication number Publication date
JPH0347728B2 (en) 1991-07-22

Similar Documents

Publication Publication Date Title
JPS5856324A (en) Vapor phase growth
US8728233B2 (en) Method for the production of group III nitride bulk crystals or crystal layers from fused metals
US3824082A (en) Process for preparing superconducting niobium-gallium alloy
US3425825A (en) Method of producing intermetallic superconducting compounds of niobium and gallium
CA1036340A (en) Method and apparatus for the manufacture of a superconductor with a layer of the a-15 phase on the system nb-a1 or nb-a1-ge
JPH0194613A (en) Vapor growth method
JPS60222127A (en) Purifying apparatus of gas
JPS6242517A (en) Semiconductor vapor processing
JPS6021518A (en) Vapor growth method of iii-v group compound semiconductor
JPH04202091A (en) Vapor growth device of compound semiconductor
JPH0689874A (en) Manufacture of semiconductor device
JPS61150323A (en) Manufacture of semiconductor material
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH039173B2 (en)
JPS6131393A (en) Vapor phase growth device
JPS59107998A (en) Crystal growth method
JPS5895696A (en) Vapor-phase growing method with controlled vapor pressure
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
JPS63159291A (en) Production of compound semiconductor single crystal
JPS59169123A (en) Epitaxial growth of compound semiconductor
JPS62214626A (en) Vapor phase epitaxial growth process
JPS62296415A (en) Vapor growth of iii-v compound semi-conductor
JPS62155511A (en) Vapor growth device
JPS63227009A (en) Vapor growth method
JPS59156997A (en) Method for epitaxially growing compound semiconductor