JPS59107998A - Crystal growth method - Google Patents
Crystal growth methodInfo
- Publication number
- JPS59107998A JPS59107998A JP21416482A JP21416482A JPS59107998A JP S59107998 A JPS59107998 A JP S59107998A JP 21416482 A JP21416482 A JP 21416482A JP 21416482 A JP21416482 A JP 21416482A JP S59107998 A JPS59107998 A JP S59107998A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- crystal substrate
- growth
- tube
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/08—Reaction chambers; Selection of materials therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】 (a) 発明の技術分野 本発明は未成長部分を伴わない結晶成長方法に関する。[Detailed description of the invention] (a) Technical field of the invention The present invention relates to a crystal growth method that does not involve ungrown portions.
(b) 技術の背景
MO−CVD法は化合物結晶の気相成長に隙して、この
化合物の成分元素を含む有機金属化合物を原料として用
いることから名付けられたものであり、これまで1−v
族化合物およびII−V族化合物結晶の気相成長が多く
行われている。(b) Background of the technology The MO-CVD method was named because it uses an organometallic compound containing the component elements of this compound as a raw material in the vapor phase growth of compound crystals.
Vapor phase growth of crystals of group compounds and group II-V compounds is often carried out.
こ\でI−V族の場合について説明すると、■族元素成
分としては■族金属元素例えばガリウム(Ga)、アル
ミニウム(At)、インジウム(In)などのアルキル
化物例えばメチル化物或はエチル化物が、捷だ■族元素
成分としてはV族非金属元素例えば窒素(N)、燐(P
)、砒素(As)などの水素化物が用いられている。Now, to explain the case of groups IV, group Ⅰ element components include alkylated products such as methylated products or ethylated products of group Ⅰ metal elements such as gallium (Ga), aluminum (At), and indium (In). , Group V nonmetallic elements such as nitrogen (N), phosphorus (P
), arsenic (As), and other hydrides are used.
MO−CVD法の特徴は成長させる化合物結晶の成分元
素をガスの状態で成長炉に導入することができ、結晶成
長の行われる基板領域だけを一定温度に加熱すればよい
ために装置の構成が簡単であり、結晶成長反応が非可逆
的で且つ熱分解的に進行するので異種基板上へのエピタ
キシャル成長が可能であり、まだ結晶成長速度を大幅に
変化できるなどの利点がある。The characteristics of the MO-CVD method are that the constituent elements of the compound crystal to be grown can be introduced into the growth furnace in a gaseous state, and only the region of the substrate where crystal growth is to be performed needs to be heated to a constant temperature, so the configuration of the equipment can be simplified. It is simple, and since the crystal growth reaction is irreversible and proceeds thermally, epitaxial growth on a different type of substrate is possible, and the crystal growth rate can still be changed significantly.
こ\でエピタキシャル成長に当って必要なことは結晶基
板上に均一に結晶成長が行われることであって僅かの未
成長部分があってはならない。What is required for epitaxial growth is that crystal growth be performed uniformly on the crystal substrate, and there must be no ungrown portions.
それで結晶成長に当っては結晶基板に対して充分な清浄
化処理が行われている。Therefore, during crystal growth, sufficient cleaning treatment is performed on the crystal substrate.
然し乍ら結晶成長に際して反応管壁に分解析出した成分
元素或は化合物が管壁との接着力が弱いためキャリアガ
スのガ;・−流により剥離し、これが結晶基板上に飛来
し析出し、これが原因して未成長部分を生ずることがあ
る。本発明はか\る未成長部分を排除した結晶成長方法
に関するものである。However, the component elements or compounds separated and separated on the reaction tube wall during crystal growth have a weak adhesion to the tube wall, so they are peeled off by the carrier gas flow, and they fly onto the crystal substrate and precipitate. This may result in ungrown areas. The present invention relates to a crystal growth method that eliminates such ungrown portions.
(c) 従来技術と問題点
第1図はMO−CVD法により結晶成長を行う反応管の
構成図であってガリウム砒素(GaAs ) 、サファ
イア(α・At 20 s ) 、マグネシャスピネル
(MgOeAt20s )などの結晶基板1の上にGa
Asのエピタキシャル成長を行う場合について説明する
と次のようになる。(c) Prior art and problems Figure 1 is a block diagram of a reaction tube for crystal growth using the MO-CVD method. Ga on a crystal substrate 1 such as
The case of epitaxial growth of As will be explained as follows.
石英製の縦型反応管2の中央部にはカーボンサセプタ3
が回転軸4の上に設けられてモータにより低速回転する
ように構成されている。カーボンサセプタ3は反応管2
の外側に設けた高周波コイル5によシ誘導加熱されるが
、このカーボンサセプタ3の上部に設けられている四部
には結晶成長が行われる結晶基板1が載置されている。A carbon susceptor 3 is placed in the center of the vertical reaction tube 2 made of quartz.
is provided on the rotating shaft 4 and is configured to be rotated at low speed by a motor. Carbon susceptor 3 is reaction tube 2
The carbon susceptor 3 is heated by induction by a high-frequency coil 5 provided outside the carbon susceptor 3, and a crystal substrate 1 on which crystal growth is to be performed is placed on four parts provided at the top of the carbon susceptor 3.
こ\で反応ガスはGaのアルキル化物例えばトリメチル
ガリウム(Ga (CH3)3)とAsの水素化物例え
ばアルシン(AsHs)からなるがこれとキャリアガス
として用いる水素ガス(H2)との混合ガスは給気口6
から組成比と流量を調節しながら反応管2の内部へ導入
され、熱分解終了後は排出ロアから排出される。次に結
晶成長が行われる結晶基板1の周囲には石英製のライナ
管8が設けられているが、これを設ける目的は反応管2
の内壁が熱分解生成物によシ汚染されるのを防ぐことで
ある。Here, the reaction gas consists of an alkylated Ga such as trimethylgallium (Ga (CH3)3) and a hydride of As such as arsine (AsHs), and a mixed gas of this and hydrogen gas (H2) used as a carrier gas is supplied. Air mouth 6
It is introduced into the reaction tube 2 while adjusting the composition ratio and flow rate, and after the thermal decomposition is completed, it is discharged from the discharge lower. Next, a liner tube 8 made of quartz is provided around the crystal substrate 1 where crystal growth is performed, but the purpose of providing this is to
The purpose is to prevent the inner walls of the pipe from being contaminated by thermal decomposition products.
こ\でGaAs、α・A40s 9Mg O・A40A
などからなる結晶基板1へのGaAsの成長は高周波誘
導加熱によシカ−ポンサセプタ3を600〜8oo〔℃
〕に加熱し乍ら反応ガスを流すことにより。GaAs, α・A40s 9Mg O・A40A
The growth of GaAs on the crystal substrate 1 consisting of
] by flowing a reactant gas while heating.
Ga (CH3)5 + A sH,−+ GaAs
+ 3 CH4−−(1)の反応を進行させ、エピタキ
シャル成長又はヘテロエピタキシャル成長が行われる。Ga (CH3)5 + A sH, -+ GaAs
The reaction of + 3 CH4-- (1) is allowed to proceed, and epitaxial growth or heteroepitaxial growth is performed.
・然し反応生成物は結晶基板1の上だけに成長するもの
ではなくライナ管8やカーボンサセプタ3にも析出し、
この場合はエピタキシャル成長ではないので付着力が弱
く、キャリアガスのガス流によって剥離し微粉となって
補数することがある。-However, the reaction products do not grow only on the crystal substrate 1, but also precipitate on the liner tube 8 and carbon susceptor 3.
In this case, since epitaxial growth is not performed, the adhesion is weak, and the gas flow of the carrier gas may cause the film to peel off and become fine powder for complementation.
また分解生成物はGaAsに限らすGa (CHs)s
やAsh、が単独に分解して生ずるG al A sな
どがある。そこで結晶成長に先立ち或は成長中にこのよ
うな微粉末が結晶基板上に付着すると、その部分では結
晶成長が行われずピット状の未成長部分を生ずるとと\
なる。これを避けるために結晶基板1の周シに設けられ
ているライナ管8は結晶成長を行った度毎に反応管2か
も取シ出し付着物を溶解除去する清浄化処理を行う必要
があり、結晶成長工程の能率を妨げていた。In addition, the decomposition products are limited to GaAs.Ga(CHs)s
GalA s, which is produced by the independent decomposition of Ash and Ash. Therefore, if such fine powder adheres to the crystal substrate before or during crystal growth, crystal growth will not occur in that area and a pit-like ungrown area will occur.
Become. In order to avoid this, the liner tube 8 provided around the crystal substrate 1 must be removed from the reaction tube 2 every time crystal growth is performed, and a cleaning process must be performed to dissolve and remove deposits. This hindered the efficiency of the crystal growth process.
(d) 発明の目的
本発明はエピタキシャル成長中に結晶基板上に飛来し付
着して未成長部分を形成する微細な反応生成分の発生を
抑制することを目的とする。(d) Purpose of the Invention The object of the present invention is to suppress the generation of minute reaction products that fly and adhere to a crystal substrate during epitaxial growth to form ungrown portions.
(e) 発明の構成
本発明の目的は結晶成長が行われる結晶基板の周囲を反
応ガス流通部を除いて乎ビタキシャル成長が可能な結晶
で取シ囲んだ状態で結晶成長を行うことにより達成する
ことができる。(e) Structure of the Invention The object of the present invention is achieved by performing crystal growth in a state in which the crystal substrate on which crystal growth is performed is surrounded by crystals capable of bitaxial growth, excluding the reaction gas flow area. be able to.
(f)発明の実施例
本発明はエピタキシャル成長が行われる結晶基板の周囲
をエピタキシャル成長或はヘテロエピタキシャル成長が
可変な結晶基板で覆うことによシ反応生成物の密着性を
良クシ、これにより微粉状となって補数するのを抑制す
るものである。(f) Embodiments of the Invention The present invention improves the adhesion of the reaction product by covering the periphery of the crystal substrate on which epitaxial growth is performed with a crystal substrate on which epitaxial growth or heteroepitaxial growth can be varied, thereby improving the adhesion of the reaction product. This prevents the comple- ment from occurring.
第2図は本発明を実施した反応管の構成図であシ、また
第3図はライナ管上部に設けた本発明に係る保護管の斜
視図また第4図は保護管の枠体と結晶基板との関係を示
す平面図である。Fig. 2 is a block diagram of a reaction tube in which the present invention is implemented, Fig. 3 is a perspective view of a protection tube according to the invention provided on the upper part of the liner tube, and Fig. 4 shows the frame of the protection tube and crystallization. FIG. 3 is a plan view showing the relationship with the substrate.
本発明は従来のライナ管を改造し、この上部を結晶基板
を内張すした保護管に置き換えるものである。The present invention modifies a conventional liner tube and replaces its upper part with a protective tube lined with a crystal substrate.
すなわち第2図乃至第4図に示す実施例においては石英
製のライナ管9は角柱状をなし、この上に保護管10が
載置されている。こ\で保護管10の枠体11は石英で
形成されておシ、これに例えばMgO”A403からな
る結晶基板12が挿着されると共に通気窓13が設けら
れている結晶基板14は石英からなる枠体11の上に載
置されている。That is, in the embodiment shown in FIGS. 2 to 4, the quartz liner tube 9 has a prismatic shape, and the protection tube 10 is placed on top of the quartz liner tube 9. Here, the frame 11 of the protective tube 10 is made of quartz, and the crystal substrate 12 made of, for example, MgO''A403 is inserted therein, and the crystal substrate 14 on which the ventilation window 13 is provided is made of quartz. It is placed on a frame 11.
このようにカーボンサセプタ3の上に置かれて結晶成長
が行われる結晶基板1の周囲をこれと同様にエピタキシ
ャル成長が可能な材料からなる結晶基板12.14で囲
っておけば、従来サセプタ3からの輻射により加熱され
てライナ管壁で生じた析出は、本発明においては、結晶
基板12.14上において、単結晶として析出すること
になるので、反応生成物の付着力は従来の石英板と較べ
て格段に強いためキャリアガスの流れにより剥離して補
数することはない。If the crystal substrate 1 placed on the carbon susceptor 3 and subjected to crystal growth is surrounded by a crystal substrate 12, 14 made of a material capable of epitaxial growth in the same manner as above, the crystal substrate 1 placed on the carbon susceptor 3 can be In the present invention, the precipitates generated on the liner tube wall due to heating by radiation are precipitated as single crystals on the crystal substrate 12.14, so the adhesion force of the reaction products is lower than that of conventional quartz plates. Since it is extremely strong, it will not be separated and complemented by the flow of carrier gas.
アルシンとトリメチルガリウムの場合、 400℃程度
から反応が生ずるが、サセプタ側に向ったキャリアガス
流は高温のまま一部結晶基板12.14側の比較的低温
部に到達した場合でも分解する所には結晶基板があるの
でおるから、その場合には単結晶として析出する、こと
になシ、後に、キャリアガスにより補数されることはな
い。In the case of arsine and trimethyl gallium, a reaction occurs from about 400°C, but the carrier gas flow toward the susceptor remains at a high temperature and reaches the relatively low temperature part of the crystal substrate 12.14, where it decomposes. Since there is a crystal substrate, in that case it will be deposited as a single crystal, and in particular it will not be complemented later with a carrier gas.
それで従来は結晶成長が行われる度毎にライナ管を取シ
外して付着物を溶解除去する清浄化処理を行う必要があ
ったが本発明に係る保護管の使用する場合は定期的に行
えばよい。Therefore, in the past, it was necessary to remove the liner tube every time crystal growth was performed and perform a cleaning process to dissolve and remove the deposits, but when using the protection tube according to the present invention, it is necessary to perform a cleaning process periodically. good.
(g) 発明の効果
本発明では、ライナー管の一部を改善し、反応ガスが分
解し、析出する所に単結晶体を配置するようにしたので
、結晶成長過程に飛来して未成長個所を形成する微細反
応生成物の発生を抑制することができるので製造歩留り
を上げることができ、またライナ管の清浄化作業の頻度
を減らせることから作業工程の効率化に寄与することが
できた。(g) Effects of the invention In the present invention, a part of the liner tube is improved so that the single crystal is placed in the place where the reaction gas decomposes and precipitates. By suppressing the generation of fine reaction products that form .
第1図は従来の反応管の構成図、第2図は本発明に係る
反応管の構成図、第3図は保護管の斜視図また第4図は
枠体と結晶基板との関係図である。
図において、1.12.14は結晶基板、2は反応管、
3はカーボンサセプタ、8,9はライナ管、10は保護
管、11は枠体。Fig. 1 is a block diagram of a conventional reaction tube, Fig. 2 is a block diagram of a reaction tube according to the present invention, Fig. 3 is a perspective view of a protection tube, and Fig. 4 is a diagram of the relationship between the frame and the crystal substrate. be. In the figure, 1.12.14 is a crystal substrate, 2 is a reaction tube,
3 is a carbon susceptor, 8 and 9 are liner tubes, 10 is a protection tube, and 11 is a frame body.
Claims (1)
としてMO−CVD法により結晶基板上にエピタキシャ
ル成長を行わせる際、該結晶成長を行う基板の周囲を反
応ガス流通部を除きエピタキシャル成長が可能々結晶で
取り囲んで行うことを特徴とする結晶成長方法。When epitaxial growth is performed on a crystal substrate by the MO-CVD method using an alkylated metal element and a hydride of a non-metal element as raw materials, epitaxial growth is possible around the substrate where the crystal is grown, excluding the reaction gas flow area. A crystal growth method characterized by surrounding the crystal with
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21416482A JPS59107998A (en) | 1982-12-07 | 1982-12-07 | Crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21416482A JPS59107998A (en) | 1982-12-07 | 1982-12-07 | Crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59107998A true JPS59107998A (en) | 1984-06-22 |
JPH039077B2 JPH039077B2 (en) | 1991-02-07 |
Family
ID=16651289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21416482A Granted JPS59107998A (en) | 1982-12-07 | 1982-12-07 | Crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59107998A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2655772A1 (en) * | 1989-12-08 | 1991-06-14 | Thomson Composants Microondes | Anti-contamination device for a vertical stand for gaseous phase deposition |
EP0863228A1 (en) * | 1997-02-25 | 1998-09-09 | Shin-Etsu Handotai Company Limited | Vertical type CVD apparatus |
JP2008180222A (en) * | 2008-02-12 | 2008-08-07 | Kawamoto Pump Mfg Co Ltd | Air trap |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5788099A (en) * | 1980-11-20 | 1982-06-01 | Fujitsu Ltd | Vapor phase growing method for compound semiconductor |
-
1982
- 1982-12-07 JP JP21416482A patent/JPS59107998A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5788099A (en) * | 1980-11-20 | 1982-06-01 | Fujitsu Ltd | Vapor phase growing method for compound semiconductor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2655772A1 (en) * | 1989-12-08 | 1991-06-14 | Thomson Composants Microondes | Anti-contamination device for a vertical stand for gaseous phase deposition |
EP0863228A1 (en) * | 1997-02-25 | 1998-09-09 | Shin-Etsu Handotai Company Limited | Vertical type CVD apparatus |
JP2008180222A (en) * | 2008-02-12 | 2008-08-07 | Kawamoto Pump Mfg Co Ltd | Air trap |
Also Published As
Publication number | Publication date |
---|---|
JPH039077B2 (en) | 1991-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0164928A2 (en) | Vertical hot wall CVD reactor | |
JPS59107998A (en) | Crystal growth method | |
JPS62211914A (en) | Device for vapor growth of semiconductor thin film | |
Kaneko et al. | Epitaxial growth of A1N film by low-pressure MOCVD in gas-beam-flow reactor | |
JPH06298600A (en) | Method of growing sic single crystal | |
JPH05105596A (en) | Method for growing single crystal of silicon carbide | |
JPH01144620A (en) | Semiconductor growth device | |
JPH01313927A (en) | Compound-semiconductor crystal growth method | |
JPH0235814Y2 (en) | ||
JPS63104417A (en) | Semiconductor thin-film deposition system | |
JP2002308698A (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL | |
JPS61132592A (en) | Apparatus for vapor-phase crystal growth by thermal decomposition of organic metal compound | |
JPS6419717A (en) | Vapor growth method for semiconductor layer containing arsenic | |
JPH0296327A (en) | Vapor phase growing method of gallium arsenide | |
JPS6131393A (en) | Vapor phase growth device | |
JPS63190327A (en) | Vapor growth device | |
JPS54102295A (en) | Epitaxial crowth method | |
JPS59164697A (en) | Vapor growth method | |
JPS60136220A (en) | Semiconductor manufacturing equipment | |
JPS63159291A (en) | Production of compound semiconductor single crystal | |
JPH11157999A (en) | Growth of single crystal of ii-vi compound semiconductor | |
GB2192643A (en) | Method of coating refractory vessels with boron nitride | |
JPS62214626A (en) | Vapor phase epitaxial growth process | |
JPH06206795A (en) | Molecular beam epitaxi apparatus | |
JPS61220420A (en) | Vapor growth apparatus |