JPS63227009A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS63227009A
JPS63227009A JP6154687A JP6154687A JPS63227009A JP S63227009 A JPS63227009 A JP S63227009A JP 6154687 A JP6154687 A JP 6154687A JP 6154687 A JP6154687 A JP 6154687A JP S63227009 A JPS63227009 A JP S63227009A
Authority
JP
Japan
Prior art keywords
gas
vapor phase
contain
susceptor
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6154687A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Masaya Manou
萬濃 正也
Junichi Hoshina
保科 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6154687A priority Critical patent/JPS63227009A/en
Publication of JPS63227009A publication Critical patent/JPS63227009A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an abrupt boundary in doping characteristics by introducing gas which does not contain reaction gases at least from two directions to the upstream side of a susceptor. CONSTITUTION:Gases which do not contain reaction gases are introduced from gas inlet tubes 22 of at least two directions to the upstream side of a susceptor 4. Accordingly, it can not only prevent a reaction substance from adhering to the upstream side of the susceptor 4 of a quartz furnace tube 2, but improve the disconnection of the gas in the tube 2. Thus, when the GaAs of an undoped layer, an N-type layer, a P-type layer, and an Al0.3Ga0.7As layer are continuously grown, the transition regions of the impurity, the composition in the boundaries are 20Angstrom or less to obtain an abrupt boundary with good reproducibility.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体等を基板上に結晶成長する場合に
用いられる気相成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth method used for growing crystals of compound semiconductors and the like on a substrate.

従来の技術 近年、III−V族および■−■族化合物半導体の気相
エピタキシャル成長法、特に有機金属気相成長法(M 
OV P Tt ; Metal Organic V
apor PhaseEp工taxy)が、大面積にわ
たる均一性、量産性、膜厚や組成の制御性等の点から注
目を集め、各所で研究開発が活発に行われている。
Background of the Invention In recent years, vapor phase epitaxial growth methods for III-V and ■-■ group compound semiconductors, particularly metal-organic vapor phase epitaxy (M
OV P Tt ; Metal Organic V
Apor PhaseEp (taxy) has attracted attention due to its uniformity over a large area, mass productivity, and controllability of film thickness and composition, and research and development are being actively conducted in various places.

従来、この種の気相成長方法に用いられる装置は第6図
のようになっていた。1は入口で反応ガス例えばGaA
sの成長の場合、トリメチルガリウムT M G ((
OH,)、 Ga)とアルシンAsH、およびキャリア
ガスH2の入口となる。2は石英炉芯管、3はサセプタ
支持棒、4はサセプタ、6は基板例えばGaAs基板で
ある。基板5は結晶成長室すなわち石英炉芯管2の外部
に設けられた例えば高周波コイル6により、サセプタ4
を加熱し、所望の温度に保持される。反応ガスが入口1
から導入され所定の温度に加熱された基板6上を通過す
る時、一部が結晶成長に寄与し、残りは排気される。反
応ガスを入口1から導入した時、サセプタ4の熱がサセ
プタ上流側にも伝わり、サセプタ4の上流側の石英炉芯
管2にも多量の付着物が付く。この付着物を防ぐために
、第7図、第8図に示すような石英炉芯管が用いられて
いた。第7図に示す石英炉芯管は二重管になっており、
内側は無数の小さな穴が設けられ、矢印の如< N2 
t N2 ’fたは不活性ガスを送り込み、管壁8の内
表面に防護ガス層を生じさせ、反応ガスが石英炉芯管管
壁8に向うことを妨げる構造になっていた。又、第8図
は、サセフリ4の上流側には二重管になっており、内側
(g、)には反応ガスが導入され、外側(gヶ)には、
gl  よりも流速の速い’2 ’ N2または不活性
ガスが送り込まれ、石英炉芯管内壁に反応ガスが向うこ
とを妨げていた。
Conventionally, an apparatus used for this type of vapor phase growth method was as shown in FIG. 1 is the inlet of the reactant gas, for example GaA.
For the growth of trimethylgallium T M G ((
This serves as an inlet for OH, ), Ga), arsine AsH, and carrier gas H2. 2 is a quartz furnace core tube, 3 is a susceptor support rod, 4 is a susceptor, and 6 is a substrate, for example, a GaAs substrate. The substrate 5 is connected to the susceptor 4 by, for example, a high frequency coil 6 provided outside the crystal growth chamber, that is, the quartz furnace core tube 2.
is heated and held at the desired temperature. Reaction gas is inlet 1
When passing over the substrate 6 which has been introduced from the source and heated to a predetermined temperature, part of it contributes to crystal growth, and the rest is exhausted. When the reaction gas is introduced from the inlet 1, the heat of the susceptor 4 is also transmitted to the upstream side of the susceptor, and a large amount of deposits are also attached to the quartz furnace core tube 2 on the upstream side of the susceptor 4. In order to prevent this deposit, a quartz furnace core tube as shown in FIGS. 7 and 8 has been used. The quartz hearth tube shown in Figure 7 is a double tube.
There are countless small holes inside, as shown by the arrows <N2
The structure was such that an inert gas was fed in to form a protective gas layer on the inner surface of the tube wall 8, and to prevent the reaction gas from flowing toward the quartz furnace core tube wall 8. Also, in Fig. 8, there is a double pipe on the upstream side of the sassefuri 4, the reaction gas is introduced into the inside (g), and the outside (g) is
'2' N2 or an inert gas having a faster flow rate than gl was fed to prevent the reaction gas from moving toward the inner wall of the quartz furnace core tube.

発明が解決しようとする問題点 上記に述べたように、一般によく用いられている第6図
に示す結晶成長室では、サセプタ4の熱によりサセプタ
4の上流側の石英炉芯管2の内壁に付く付着物が次の結
晶成長に悪い影響を及ぼす。
Problems to be Solved by the Invention As described above, in the commonly used crystal growth chamber shown in FIG. The attached deposits have a negative effect on the next crystal growth.

先ず、石英炉芯管2内が全く見えなくなる。これらが、
次の結晶成長においてガスの切れに悪影響を及ぼし、特
にドーピング特性において急峻な界面が得られなくなる
First, the inside of the quartz furnace core tube 2 becomes completely invisible. These are
This adversely affects the gas flow during the next crystal growth, making it impossible to obtain a steep interface, especially in terms of doping characteristics.

又、第7図や第8図に示される炉芯管は、共に二重構造
であり、石英炉芯管内が非常に複雑になり、取りあつか
いが不便である。さらに、第7図に示される構造では管
壁8に設けられた無数の穴からでてくるガス流が、反応
ガスの流れに対し均一に保つことは難しく、基板上で層
流を実現するのは困難である。
Further, the furnace core tubes shown in FIGS. 7 and 8 both have a double structure, which makes the interior of the quartz furnace core tube extremely complicated and inconvenient to handle. Furthermore, in the structure shown in FIG. 7, it is difficult to maintain the gas flow coming out of the countless holes provided in the tube wall 8 evenly with respect to the flow of the reaction gas, and it is difficult to realize a laminar flow on the substrate. It is difficult.

問題点を解決するための手段 本発明は、上記問題点を解決するため、サセプタ上流側
に、少なくとも二方向から反応ガスを含まないガスを導
入することのできる気相成長方法を提供するものである
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a vapor phase growth method in which a gas not containing a reaction gas can be introduced into the upstream side of a susceptor from at least two directions. be.

作用 この技術的な手段による作用は次の通りである。action The effect of this technical means is as follows.

本発明によるガス導入方法は、反応ガス導入管のまわり
に少なくとも二方向から反応ガスを含まないガスを導入
しサセプタ上流側の石英炉芯管内壁に付着物が付着する
のを妨ぐだけでなく、石英炉芯管内におけるガスの切れ
をよくするものである。
The gas introduction method according to the present invention not only prevents deposits from adhering to the inner wall of the quartz furnace core tube on the upstream side of the susceptor by introducing a gas that does not contain a reaction gas from at least two directions around the reaction gas introduction tube. , to improve gas drainage in the quartz furnace core tube.

装置が非常に簡単であり、サセプタ上で層流が容易に得
られ、超格子等の超薄膜が制御性よく作成できる。
The device is very simple, laminar flow can be easily obtained on the susceptor, and ultra-thin films such as superlattices can be created with good controllability.

実施例 本発明による具体的な実施例を第1図に示す。Example A specific embodiment according to the present invention is shown in FIG.

21は反応ガスとキャリアガス用水素ガスの入口すなわ
ち反応ガス導入管、22は反応ガスを含まないガス例え
ばN2. N2もしくは不活性ガス等の導入管、2は石
英炉芯管である。第2図は例えば反応ガスを含まないガ
スの導入口が四方向から導入されているフランジ23で
ある。中心における導入管21からは反応ガスが供給さ
れる。これは、ステンレス製であり、フランジ23に直
ちに溶接すればよく、構造が簡単であり、工作も非常に
楽である。又、石英炉芯管も二重構造でない。反応ガス
及び反応ガスを含まないガス導入管21.22の先端に
は、先端にステンレス管が表われないように石英ガラス
の管をつけておくと、石英ガラス管の熱伝導率が小さい
ため、ガス導入管21.22の先端はサセプタからの熱
によりあまり上昇しない。すなわち、7ランジ23を水
冷しなくてもよい。又、反応ガスを台筐ないガスの導入
管は結晶成長室外で一本化することにより、結晶成長室
内における各々の導入管に等圧力でガスを供給できる。
21 is an inlet for reactant gas and hydrogen gas for carrier gas, that is, a reactant gas introduction pipe; 22 is an inlet for a gas not containing reactant gas, such as N2. The introduction pipe for N2 or inert gas, etc., 2 is a quartz furnace core pipe. FIG. 2 shows, for example, a flange 23 in which gases not containing a reaction gas are introduced from four directions. A reaction gas is supplied from an inlet pipe 21 at the center. This is made of stainless steel, can be welded to the flange 23 immediately, has a simple structure, and is very easy to work with. Also, the quartz furnace core tube does not have a double structure. If a quartz glass tube is attached to the tip of the reactant gas and the gas introduction tubes 21 and 22 that do not contain the reactant gas so that the stainless steel tube does not appear at the tip, since the thermal conductivity of the quartz glass tube is low, The tips of the gas introduction pipes 21 and 22 do not rise much due to the heat from the susceptor. That is, it is not necessary to water-cool the 7-lunge 23. In addition, by integrating the gas introduction pipes without a reaction gas stand outside the crystal growth chamber, gas can be supplied to each introduction pipe within the crystal growth chamber at the same pressure.

さらに、反応ガスを含まないガスの導入管の先端が、反
応ガス導入管に比して上流側にあるため、反応ガスが、
フランジ23の方へ流れるのを防ぐだけでなく、反応ガ
ス導入管上に付着することも同時に防ぐ効果がある。
Furthermore, since the tip of the gas introduction tube that does not contain a reaction gas is located on the upstream side compared to the reaction gas introduction tube, the reaction gas
This has the effect of not only preventing the gas from flowing toward the flange 23, but also preventing it from adhering to the reaction gas introduction pipe.

本発明の気相成長方法を用いて、実際に結晶成長を行な
い良好な結果を得たので、以下に成長条件を含め詳細に
のべる。undopad層42.n型層43、p型層4
4のGaAsを連続的に成長し、さらに、undope
d層の人(Jo、5 G2L0.7人S層4!5を成長
し、ドーパント及び組成の遷移層が極めて小さい良好な
結果を得だ。用いた反応ガスは、■族にはTMG、)リ
メチルアルミニウムTMA((aH3)3A#) 、 
 V族はAsHs (6% ) 、p型ドーパントは、
ジメチルジンクD M Z ((OH3)2Zn)、n
型ドーパントは、セレン化水素H2Seを用いた。
Crystal growth was actually performed using the vapor phase growth method of the present invention and good results were obtained, so details including the growth conditions will be described below. undopad layer 42. n-type layer 43, p-type layer 4
4 GaAs is continuously grown and further undoped.
We grew a d-layer (Jo, 5G2L0.7, S-layer 4!5, and obtained good results with very small dopant and compositional transition layers.The reaction gas used was TMG for the group II). Remethylaluminum TMA ((aH3)3A#),
Group V is AsHs (6%), p-type dopant is
Dimethyl zinc DM Z ((OH3)2Zn), n
Hydrogen selenide H2Se was used as a type dopant.

キャリアガスはH2である。GaAs層及び人l。、3
Ga、’、As層を成長する時、TMG、TMA、DM
Z。
The carrier gas is H2. GaAs layer and layer. ,3
When growing Ga, ', As layers, TMG, TMA, DM
Z.

H2Se (1ooppm)H,、tD流量は、それぞ
れ30cc/min、1 occ/min、200cc
/min。
H2Se (1ooppm) H, and tD flow rates are 30cc/min, 1 occ/min, and 200cc, respectively.
/min.

is cc/min、 6 cc7min、 2 l/
minである。成長温度は760℃であり、この時の成
長速度は171m/m1n(GaAs層の場合) 、 
1.2 μm/m1n(人e。、s Ga。、、As層
の場合)である。反応ガスを含まないガス導入管には、
3d/minのH2のみが導入された。undoped
層42.n型層43゜p型層44のGaAs層及び人e
 o、’s G2Lo、7As層46をそれぞれ100
人成長し、SIMS により界面の急峻性を評価した。
is cc/min, 6 cc7min, 2 l/
It is min. The growth temperature was 760°C, and the growth rate at this time was 171 m/m1n (in the case of a GaAs layer).
1.2 μm/m1n (in the case of a layer of Ga, Ga, and As). For gas inlet pipes that do not contain reactive gases,
Only 3 d/min of H2 was introduced. undoped
Layer 42. n-type layer 43° p-type layer 44 GaAs layer and layer
o,'s G2Lo, 7As layer 46 each 100
The specimens were grown and the steepness of the interface was evaluated by SIMS.

反応ガスを含まないガス導入管に水素を流さない場合、
石英炉芯管2のみならずフランジ23まで付着物がつき
、石英炉芯管がよごれるだけでなくガスの切れがよくな
いことがわかる。反応ガスを含まないガス導入管に水素
を2 d/min  流しただけで、第3図の斜線部2
4に示すように、反応後の付着物は、サセプタの上流側
には見えなかった。この場合、対称性よく四方向から水
素が導入されているので、付着物も、対称性よくリング
状になる。
If hydrogen is not passed through a gas inlet pipe that does not contain reactant gas,
It can be seen that not only the quartz furnace core tube 2 but also the flange 23 are covered with deposits, which not only makes the quartz furnace core tube dirty but also does not drain the gas well. By simply flowing hydrogen at 2 d/min into the gas introduction pipe that does not contain a reaction gas, the shaded area 2 in Figure 3
As shown in Figure 4, no deposits after the reaction were visible on the upstream side of the susceptor. In this case, since hydrogen is introduced from four directions with good symmetry, the deposits also form a ring shape with good symmetry.

次に上記に示した条件で作成した結晶のSIMSの結果
を、反応ガスを含まないガスの導入管にガスを流さない
場合と合せて第4図に示す。第5図のSrMS の結果
から、反応ガスを含まないガスの導入管にガスを流しだ
時遷移領域は20Å以下であり、極めてガスの切れがよ
いことがわかる(実線部)。反応ガスを含まないガスの
導入管にガスを流さない場合、遷移領域は40八以上あ
りガスの切れがよくないことがわかる(破線部)。
Next, FIG. 4 shows the results of SIMS of the crystals produced under the conditions shown above, together with the results obtained when no gas was flowed through the gas introduction tube that did not contain the reaction gas. From the SrMS results in FIG. 5, it can be seen that the transition region is 20 Å or less when the gas is flowed into the gas introduction pipe that does not contain the reaction gas, indicating that the gas is extremely well cut (solid line part). It can be seen that when the gas is not flowed into the gas introduction pipe that does not contain the reactant gas, the transition region is 408 or more, which indicates that the gas is not well drained (broken line area).

すなわち、反応ガスを含まないガス導入口を設けること
により、サセプタより上流側の石英炉芯管がよごれない
だけでなく、5s−1pZnのメモIJ−効果がほとん
ど皆無となった。
That is, by providing a gas inlet that does not contain a reactive gas, not only was the quartz furnace core tube upstream of the susceptor not contaminated, but the IJ-effect of 5s-1pZn was almost completely eliminated.

又、上記ではAgGaAs/GaAsについて述べたが
InGaAsP/InPやA%aInP/ GaAs及
びZuSe/ZuSなどに適用できることは言うまでも
ない。さらに、有機金属気相成長方法に限らずその他の
気相成長法にも適用可能である。
Furthermore, although the above description has been made regarding AgGaAs/GaAs, it goes without saying that the present invention can also be applied to InGaAsP/InP, A%aInP/GaAs, ZuSe/ZuS, and the like. Furthermore, it is applicable not only to organometallic vapor phase growth methods but also to other vapor phase growth methods.

発明の効果 本発明によりサセプタ上流側に、少なくとも二方向から
反応ガスを含まないガスを導入することにより、石英炉
芯管のサセプタ上流側に、反応物質の付着を防ぐことが
できるだけでなく、石英炉芯管内のガスの切れがよくな
り、undoped層。
Effects of the Invention According to the present invention, by introducing a gas that does not contain a reactive gas into the upstream side of the susceptor from at least two directions, it is possible not only to prevent the adhesion of reactive substances to the upstream side of the susceptor of the quartz furnace core tube, but also to The gas in the furnace core tube is better drained, resulting in an undoped layer.

n型層、p型層のCaAsおよびklo、、 Gao、
、As層を連続的に成長した場合各界面における不純物
や組成の遷移領域が20Å以下であり急峻な界面が再現
性よく得られるようになった。
CaAs and klo, Gao, n-type layer and p-type layer
When the As layer is continuously grown, the transition region of impurities and composition at each interface is 20 Å or less, and a steep interface can be obtained with good reproducibility.

したがって、Quantum Well v−ザや超格
子を用いたデバイスの作製には極めて効力を発揮するも
のである。又、高品質の結晶が大面積にわたって均一性
よく得られるので、この結晶より作られるデバイスのコ
ストも大幅に削減することが可能となり、非常に実用的
効果は大である。
Therefore, it is extremely effective in producing devices using Quantum Well v-za or superlattices. Furthermore, since a high-quality crystal can be obtained with good uniformity over a large area, it is possible to significantly reduce the cost of devices made from this crystal, which has a very large practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法に用いる装置の概略断面
図、第2図(a) 、 (b)は本実施例方法における
ガス導入部の概略平面図及び側面図、第3図は本実施例
方法における結晶成長後の石英炉芯管の概略断面図、第
4図は本実施例方法を用いて作製したエピタキシャル膜
の断面図、第6図は同エピタキシャル膜のSIMS の
結果を示す特性図、第6図、第7図、第8図は従来方法
における結晶成長室部を示す概略断面図である。 1・・・・・・入口、2・・・・・・石英炉芯管(結晶
成長室)4・・・・・・サセプタ、6・・・・・・基板
、21・・・・パ反応ガスの導入管、22・・・・・・
反応ガスを含まないガスの導入管。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名2−
5更・功庖オ 第2図 (。+    (1))   ”’−’ 77
’ −’牛!−・−侃A5鯨 44−−−PI!!  #
FIG. 1 is a schematic cross-sectional view of an apparatus used in the method of one embodiment of the present invention, FIGS. 2(a) and (b) are schematic plan and side views of the gas introduction part in the method of this embodiment, and FIG. A schematic cross-sectional view of the quartz furnace core tube after crystal growth in the method of this example, FIG. 4 is a cross-sectional view of the epitaxial film produced using the method of this example, and FIG. 6 shows the SIMS results of the epitaxial film. The characteristic diagrams, FIGS. 6, 7, and 8 are schematic cross-sectional views showing the crystal growth chamber in the conventional method. 1...Inlet, 2...Quartz furnace core tube (crystal growth chamber) 4...Susceptor, 6...Substrate, 21...P-reaction Gas introduction pipe, 22...
Gas introduction pipe that does not contain reactive gas. Name of agent: Patent attorney Toshio Nakao and 1 other person2-
5 Sara・Kojoo Figure 2 (.+ (1)) ”'-” 77
'-'Cow! --・-Kan A5 whale 44---PI! ! #

Claims (6)

【特許請求の範囲】[Claims] (1)結晶成長室内に反応ガスを導入し、該結晶成長室
内に載置されたサセプタ上の基板上に薄膜を形成する際
、少なくともサセプタ上流側に、少なくとも二方向から
、反応ガスを含まないガスを導入してなる気相成長方法
(1) When introducing a reactive gas into the crystal growth chamber and forming a thin film on the substrate on the susceptor placed in the crystal growth chamber, the reactive gas is not included at least on the upstream side of the susceptor from at least two directions. A vapor phase growth method that involves introducing gas.
(2)反応ガスを含まないガスの導入口は、結晶成長室
においてガス流に対し垂直に切った面に等間隔に並べら
れている特許請求の範囲第1項に記載の気相成長方法。
(2) The vapor phase growth method according to claim 1, wherein the inlets for the gas not containing the reactant gas are arranged at equal intervals on a plane cut perpendicular to the gas flow in the crystal growth chamber.
(3)反応ガスを含まないガスの導入口は、結晶成長室
内においてガスの流れ方向に向いている特許請求の範囲
第1項に記載の気相成長方法。
(3) The vapor phase growth method according to claim 1, wherein the inlet for the gas that does not contain the reactive gas is oriented in the direction of gas flow within the crystal growth chamber.
(4)反応ガスを含まないガスの導入口の結晶成長室内
の先端には、石英ガラス治具が具備されて特許請求の範
囲第1項に記載の気相成長方法。
(4) The vapor phase growth method according to claim 1, wherein a quartz glass jig is provided at the tip of the inlet for the gas that does not contain the reactant gas inside the crystal growth chamber.
(5)反応ガスを含まないガスは、水素あるいはチッ素
あるいはアルゴンあるいは前記ガスの少なくとも二種混
合ガスである特許請求の範囲第1項に記載の気相成長方
法。
(5) The vapor phase growth method according to claim 1, wherein the gas that does not contain a reactive gas is hydrogen, nitrogen, argon, or a mixture of at least two of the above gases.
(6)反応ガスを含まないガスの導入口は結晶成長室外
において、一本の管に接続されているかあるいは各々独
立にガスを供給する特許請求の範囲第1項に記載の気相
成長方法。(7)反応ガスを含まないガスの導入口の結
晶成長室内の先端は、反応ガスの導入口の先端よりも少
なくとも上流側にある特許請求の範囲第1項に記載の気
相成長方法。
(6) The vapor phase growth method according to claim 1, wherein the gas inlets that do not contain the reaction gas are connected to a single pipe outside the crystal growth chamber, or each gas is supplied independently. (7) The vapor phase growth method according to claim 1, wherein the tip of the gas inlet that does not contain a reactive gas in the crystal growth chamber is at least upstream of the tip of the reactive gas inlet.
JP6154687A 1987-03-17 1987-03-17 Vapor growth method Pending JPS63227009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6154687A JPS63227009A (en) 1987-03-17 1987-03-17 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6154687A JPS63227009A (en) 1987-03-17 1987-03-17 Vapor growth method

Publications (1)

Publication Number Publication Date
JPS63227009A true JPS63227009A (en) 1988-09-21

Family

ID=13174227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6154687A Pending JPS63227009A (en) 1987-03-17 1987-03-17 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS63227009A (en)

Similar Documents

Publication Publication Date Title
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPS63227009A (en) Vapor growth method
JPH02203520A (en) Growth of compound semiconductor crystal
JPS62296510A (en) Formation of compound semiconductor thin film and apparatus therefor
JPH0547668A (en) Crystal growth method for compound semiconductor
JPH03171634A (en) Epitaxial wafer with formation layer of electrode for fet
JPS63222420A (en) Epitaxial growth method for atomic layer of iii-v compound semiconductor
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS62155511A (en) Vapor growth device
JPS61258413A (en) Vapor growth equipment
JPH04139816A (en) Vapor deposition method
JPS62247520A (en) Vapor phase treating device
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JPH0788276B2 (en) Vapor phase epitaxial growth method
JPS61111518A (en) Vapor phase epitaxial growth equipment
JPH0360800B2 (en)
JPS62230693A (en) Vapor growth apparatus
JPH06124900A (en) Epitaxial growth method for compound crystal and method for doping
JPS61294811A (en) Semiconductor crystal manufacturing equipment
JPH0645264A (en) Vapor growing method
JPH01109715A (en) Vapor phase epitaxy method
JPS6333811A (en) Vopor growth method
JPS63287015A (en) Vapor growth apparatus for compound semiconductor thin film
JPS60109222A (en) Device for vapor growth of compound semiconductor of iii-v group
JPS6373615A (en) Vapor growth device