JPS5852859A - Insulated semiconductor device - Google Patents

Insulated semiconductor device

Info

Publication number
JPS5852859A
JPS5852859A JP56150625A JP15062581A JPS5852859A JP S5852859 A JPS5852859 A JP S5852859A JP 56150625 A JP56150625 A JP 56150625A JP 15062581 A JP15062581 A JP 15062581A JP S5852859 A JPS5852859 A JP S5852859A
Authority
JP
Japan
Prior art keywords
thermal expansion
composite
metal plate
resin film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56150625A
Other languages
Japanese (ja)
Inventor
Yasutoshi Kurihara
保敏 栗原
Michio Ogami
大上 三千男
Komei Yatsuno
八野 耕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56150625A priority Critical patent/JPS5852859A/en
Publication of JPS5852859A publication Critical patent/JPS5852859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters

Abstract

PURPOSE:To reduce the thermal strain caused in case of manufacture or during operation by a method wherein, in the semiconductor device where the metallic supporting members are electrically insulated but thermally and mechanically connected, the thermal expansion coefficient of the insulated members is made approximately coincident with that of the supporting members and the thermal expansion coefficient of composite metallic sheet is made coincident with that of semiconductor substrate. CONSTITUTION:The metallic supporting sheet 1 made of aluminum sheet is provided with the thermal expansion coefficient of 23.9X10<-6>/ deg.C while the composite resin film 2, an integrated film comprising fluorine resin films 221 and 222 on the both main surfaces of polyamide film 21 is also provided with the apparent thermal expansion coefficient of about 21X10<-6>/ deg.C approximateing to that of said metallic supporting sheet 1. The composite metallic sheet 3, a directly integrated sheet by cold rolled process comprising alloy sheets 321 and 322 made of 0.2mm. thick iron and 36% nickel is provided with the apparent thermal expansion coefficient of about 6.0X10<-6>/ deg.C set between the thermal expansion coefficient (3.5X10<-6>/ deg.C) of silicon as the material of the composite resin film 2 and the semiconductor substrate.

Description

【発明の詳細な説明】 本発明は絶縁型半導体装置、特に半導体基体と、半導体
基体を載置する金属支持部材との間を電気的に絶縁し、
熱的及び機械的に接続さrた半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides electrical insulation between an insulated semiconductor device, particularly a semiconductor substrate, and a metal support member on which the semiconductor substrate is placed,
The present invention relates to a thermally and mechanically connected semiconductor device.

従来、半導体装置の支持部材は半導体装置の一電極を兼
ねる場合が多かった。近年、半導体装置の全ての電極を
金属支持部材から電気的に絶縁し、もって半導体装置の
回路適用上の自由度を増すことのできる構造が出現して
いる。例えば双方向性3端子サイリスタ(トライブック
)基体をセラミックス板上に載置し、このセラミックス
板を金属パッケージに封入してなる絶縁型トライアック
では、トライアックの全ての電極はセラミックス板によ
りパッケージと絶縁さ扛て外部へ引出される。
Conventionally, a support member of a semiconductor device often served as one electrode of the semiconductor device. In recent years, structures have emerged that can electrically insulate all electrodes of a semiconductor device from a metal support member, thereby increasing the degree of freedom in circuit application of the semiconductor device. For example, in an insulated triac in which a bidirectional three-terminal thyristor (trybook) substrate is mounted on a ceramic plate and this ceramic plate is enclosed in a metal package, all electrodes of the triac are insulated from the package by the ceramic plate. It is snatched and pulled outside.

そのために、一対の主電極が回路上の接地電位から電気
的に浮いている使用例であっても、電極1位とは無関係
にパッケージを接地電位部に固定できるので、半導体装
置の実装が容易になる。
Therefore, even if the pair of main electrodes is electrically floating from the ground potential on the circuit, the package can be fixed to the ground potential regardless of the first electrode, making it easy to mount the semiconductor device. become.

又、混成集積回路装置あるいは半導体モジュール装置(
以下混成ICと一括して略称する)では、一般に半導体
素子を含むあるまとまった電気回路が組込まnるため、
その回路の少なくとも一部と混成ICの支持部材あるい
は放熱部材等の金属部とを電気的に絶縁する必要がある
。代表的な混成ICでは、金属の支持部材上に無機質あ
るいは有機質の絶縁層を配置し、この絶縁層上に所定の
電気回路を組立てることにより、上述の絶縁を達成して
いる。このような混成ICもまた、絶縁型半導体装置で
ある。
Also, hybrid integrated circuit devices or semiconductor module devices (
In general, a hybrid IC (hereinafter collectively referred to as a hybrid IC) incorporates a certain set of electric circuits including semiconductor elements.
It is necessary to electrically insulate at least a portion of the circuit from metal parts such as supporting members or heat dissipating members of the hybrid IC. In a typical hybrid IC, the above-mentioned insulation is achieved by disposing an inorganic or organic insulating layer on a metal support member and assembling a predetermined electric circuit on this insulating layer. Such hybrid ICs are also insulated semiconductor devices.

一方、半導体装置を安全かつ安定に動作させるためには
、半導体装置の動作時に生ずる熱をパッケージ外部に有
効に発散させる必要がある。この熱発散は通常、発熱源
である半導体基体からこ扛に接着さ扛た各部材を通じて
気中へ熱伝達てせることで達成さ扛る。絶縁型半導体装
置では、この熱伝導経路中に絶縁層および絶縁層と半導
体基体を接着する部分等に用いられた接着材層を含む。
On the other hand, in order to operate a semiconductor device safely and stably, it is necessary to effectively dissipate heat generated during operation of the semiconductor device to the outside of the package. This heat dissipation is normally accomplished by transferring heat from the semiconductor substrate, which is the heat source, to the air through the various members bonded to the substrate. In an insulated semiconductor device, this heat conduction path includes an insulating layer and an adhesive layer used for bonding the insulating layer and the semiconductor substrate.

父、半導体装置を含む回路の扱う電圧が高くな扛ばなる
ほど、あるいは要求さ扛る信頼性(経時的安定性、耐湿
性、耐熱性等)が高くなnばなるほど、完全な絶縁性が
要求さ扛る。上述の耐熱性には、半導体装置の周囲′の
温度が外因により上昇した場合の他、半導体装置の扱う
電力が太きく、半導体基体で発生する熱が大きくなった
場合の耐熱性も含む。
The higher the voltage handled by circuits including semiconductor devices, or the higher the reliability required (stability over time, moisture resistance, heat resistance, etc.), the more perfect insulation is required. Explode. The above-mentioned heat resistance includes heat resistance when the temperature around the semiconductor device increases due to external causes, as well as when the semiconductor device handles a large amount of power and the heat generated in the semiconductor substrate increases.

絶縁型半導体装置内での発熱が比較的小びく、かつ耐圧
や要求さnる信頼性が然程高くない場合には、絶縁層や
接着材層としてどのようなものを用いても問題はない。
If the heat generation within the insulated semiconductor device is relatively small and the withstand voltage and required reliability are not very high, there is no problem with using any material as the insulating layer or adhesive layer. .

しかし、発熱や信頼性に対する要求が高い場合には、絶
縁層や接着材層はその要求を満し得るような材料構成に
選択さnねばならない。このような場合には、通常絶縁
層としてセラミックスのような無機質材料が選択さ扛、
又接着材層としてpb−8n系半田のような金属ろうが
選択される。
However, when there are high demands on heat generation and reliability, the material composition of the insulating layer and the adhesive layer must be selected to meet those demands. In such cases, inorganic materials such as ceramics are usually selected as the insulating layer.
Also, a metal solder such as PB-8N solder is selected as the adhesive layer.

その場合、次のような解決すべき問題点があった。一般
に、絶縁型半導体装置では半導体基体は絶縁層上に面接
ではなく、半導体基体と外部の電源とを結ぶ導電路およ
び半導体基体での発熱を絶縁層に効果的に伝える熱伝導
路としての金属板を介して取付けらnる。この金属板と
しては銅等の低抵抗、高熱伝導性を有するものが選ば扛
る。ところが、この金属と半導体基体および絶縁層とは
熱膨張係数が大幅に異なる。例えば半導体が7リコン、
絶縁層がアルミナである場合、熱膨張係数はそ扛ぞn3
.5X10−’/C,6,3X10−’/IZ’である
のに対し、銅の熱膨張係数は18 X 10−’ /C
と非常に太きい。
In that case, there were the following problems to be solved. In general, in an insulated semiconductor device, the semiconductor substrate is not placed on an insulating layer, but rather as a conductive path connecting the semiconductor substrate and an external power source, and a metal plate as a heat conduction path that effectively transfers heat generated in the semiconductor substrate to the insulating layer. Attached via. As this metal plate, a material having low resistance and high thermal conductivity such as copper is selected. However, the thermal expansion coefficients of this metal and the semiconductor substrate and insulating layer are significantly different. For example, the semiconductor is 7 recon.
When the insulating layer is alumina, the coefficient of thermal expansion is n3
.. 5X10-'/C, 6,3X10-'/IZ', while the coefficient of thermal expansion of copper is 18 X 10-'/C
And very thick.

問題点の第1は、この熱膨張係数の差によって、絶縁型
半導体装置の製造時に半導体基体および絶縁層を上述の
金属板に半田付けした時に生ずる。
The first problem is caused by this difference in thermal expansion coefficients when the semiconductor substrate and the insulating layer are soldered to the above-mentioned metal plate during the manufacture of an insulated semiconductor device.

即ち、絶縁層、金属板、半導体基体をそtぞ扛半田層を
介して積層させた後、半田の融点以上まで温度上昇させ
、室温まで冷却して半田付けするのであるが、冷却工程
において半田の凝固点で各部材が互いに固定さ扛る。そ
の後は凝固した半田により固定された状態で、各部材固
有の熱膨張係数に従って収縮する。この時、上述の熱膨
張係数の差によって各部材の収縮量が異なり、各部材の
接合部にいわゆる熱歪が残留する。熱歪はそ扛が比較的
小さい時は、最も軟かい部材である半田層で吸収さ扛る
が、吸収し@nない時には、接合部\従って接着さrた
各部材が変形するに至る。特に半導体基体の変形は半導
体装置の電気的特性を損うと共に、機械的にもろい性質
を持つ半導体基体を破損させたりアルミナ板を破損させ
る恐扛を生する。
That is, after laminating an insulating layer, a metal plate, and a semiconductor substrate through a solder layer, the temperature is raised to above the melting point of the solder, and then cooled to room temperature and soldered. Each member is fixed to each other at the freezing point. Thereafter, while fixed by solidified solder, each member contracts according to its own coefficient of thermal expansion. At this time, the amount of contraction of each member differs due to the above-mentioned difference in thermal expansion coefficient, and so-called thermal strain remains at the joint of each member. When thermal strain is relatively small, it is absorbed by the solder layer, which is the softest member, but when it is not absorbed, the joints and therefore the bonded members become deformed. In particular, deformation of the semiconductor substrate impairs the electrical characteristics of the semiconductor device, and also causes damage to the mechanically fragile semiconductor substrate and the risk of damaging the alumina plate.

問題点の第2は、この種半導体装置の使用時に生ずる。The second problem occurs when using this type of semiconductor device.

即ち、半導体装置の通電、休止動作に伴って、上述の接
合部には高温状態(約100〜150C)と低温状態(
周囲温度)が繰り返し訪れる。このような高温−低温の
繰り返しくその1周期をヒートサイクルと呼ぶ)毎に、
各部材はそ扛らに固有の熱膨張係数に従って膨張、収縮
を繰り返す。各部材は互に固着さ扛ているから、各部材
の熱膨張係数の違いに基づく膨張、収縮量の差は、最も
軟かい部材である半田層に加わる熱歪となって現れる。
That is, as the semiconductor device is energized and in rest operation, the above-mentioned junction is exposed to a high temperature state (approximately 100 to 150 C) and a low temperature state (approximately 100 to 150 C).
ambient temperature) is visited repeatedly. Each cycle of such repeated cycles of high and low temperatures is called a heat cycle.
Each member expands and contracts repeatedly according to its own coefficient of thermal expansion. Since each member is fixed to each other, the difference in the amount of expansion and contraction due to the difference in the coefficient of thermal expansion of each member appears as thermal strain applied to the solder layer, which is the softest member.

そして、ヒートサイクル数が多くなると、半田層は引張
り歪、圧縮歪の周期的かつ変電なる印加により、次第に
もろくなり、ついには熱疲労現象を生ずるに至る。例え
ば半田層にクラックが生じ、接着力の低下、電気および
熱伝導性の低下を引き起す。このような現象は半田層の
露出端面において顕著である。
As the number of heat cycles increases, the solder layer gradually becomes brittle due to the periodic application of tensile strain and compressive strain as well as electrical changes, eventually leading to a thermal fatigue phenomenon. For example, cracks form in the solder layer, causing a decrease in adhesive strength and a decrease in electrical and thermal conductivity. Such a phenomenon is noticeable on the exposed end face of the solder layer.

上述の第1の問題点、特に半導体基体に加わる応力を緩
和するために、半導体基体と導電、導熱のための金属板
との間に、導電、導熱には若干劣るが熱膨張係数が半導
体基体のそ扛と比較的近似した金属片、例えばモリブデ
ン片を介在させることが知ら扛ている。しかし、このよ
うな対策は半導体基体の劣化防止には役立つものの、そ
の他の部材の変形防止には効果がない。又、上述の第2
の問題点の解決に対しても無力である。更に、部品点数
の増加、ろう付は部分の増加を招き、コスト、熱放散性
の点でも問題があった。
In order to alleviate the first problem mentioned above, especially the stress applied to the semiconductor substrate, a metal plate for conduction and heat conduction is provided between the semiconductor substrate and the metal plate for conduction and heat conduction. It is known to interpose a piece of metal that is relatively similar to the blade, such as a piece of molybdenum. However, although such measures are useful in preventing deterioration of the semiconductor substrate, they are not effective in preventing deformation of other members. Also, the second
It is also powerless to solve the problems. Furthermore, the number of parts increases and brazing increases the number of parts, which causes problems in terms of cost and heat dissipation.

本発明の目的は上述の問題点を解決し、製造時あるいは
運転時に生ずる熱歪を低減し、各部材の変形、変形、あ
るいは破壊の恐nのない絶縁型半導体装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an insulated semiconductor device which reduces thermal strain caused during manufacturing or operation and is free from the risk of deformation, deformation, or destruction of each member.

本発明の特徴は絶縁型半導体装置において、軟化点の異
なる異種の2以上の樹脂層が互に直接接着さ扛た積層構
造を有する複合樹脂フィルムからなる絶縁部材上に複合
樹脂フィルムの少くとも1種の樹脂フィルムを用いて、
異種の2以上の金属層が互いに゛直接接着さ扛た積層構
造を有する複合金属板を接着し、この複合金属板上に直
接金属ろうを用いて半導体基体を接着した構造を有する
点にある。更に具体的に言えば、上述の絶縁部材の全体
としての熱膨張係数(αl )を金属パッケージ又は支
持部材の熱膨張係数(αP)と略一致させ、上述の複合
金属板の全体としての熱膨張係数(αM)を上述の絶縁
部材の熱膨張係数αIと上述の半導体基体の熱膨張係数
(α8)との間の値とした点にある。
A feature of the present invention is that in an insulated semiconductor device, at least one composite resin film is placed on an insulating member made of a composite resin film having a laminated structure in which two or more resin layers of different types with different softening points are directly adhered to each other. Using seed resin film,
It has a structure in which a composite metal plate having a laminated structure in which two or more metal layers of different types are directly bonded to each other is bonded, and a semiconductor substrate is bonded directly onto the composite metal plate using a metal solder. More specifically, the overall thermal expansion coefficient (αl) of the above-mentioned insulating member is made to substantially match the thermal expansion coefficient (αP) of the metal package or supporting member, and the overall thermal expansion coefficient of the above-mentioned composite metal plate is The coefficient (αM) is set to a value between the thermal expansion coefficient αI of the insulating member described above and the thermal expansion coefficient (α8) of the semiconductor substrate described above.

本発明において、複合金属板は半導体基体に対する導電
路および半導体基体での発熱を絶縁部材およびこ扛と運
なって配置されるパッケージ又は支持部材、放熱フィン
等の放熱手段へ効果的に伝達するための熱拡散板として
働く。、この複合金属板の全体としての熱膨張係数とは
、複合金属板の見かけのそnであり、複合金属板が一般
にn層から成る場合、各層の素材金属の熱膨張係数をα
1(C−’)、縦弾性係数をEl  (Kg/101′
)、厚さを’t(m)とす扛ば次式(1)で近似さ牡る
ものである。
In the present invention, the composite metal plate is used as a conductive path for the semiconductor substrate and for effectively transmitting heat generated in the semiconductor substrate to an insulating member and a heat dissipating means such as a package or supporting member, a heat dissipating fin, etc. arranged in conjunction with the insulating member. acts as a heat diffusion plate. , the thermal expansion coefficient of the composite metal plate as a whole is the apparent value of the composite metal plate, and when the composite metal plate generally consists of n layers, the thermal expansion coefficient of the material metal of each layer is α
1 (C-'), the longitudinal elastic modulus is El (Kg/101'
) and the thickness is approximated by the following equation (1).

夕E+1+α。Evening E+1+α.

Σ Eu+ −1 又、複合樹脂フィルムは上述の複合金属板とパッケージ
又は支持部材との間の電気絶縁担体および機械的に一体
化するための接着材として働く。この複合、樹脂フィル
ムの全体としての熱膨張係数とは、複合樹脂フィルムの
見かけのそ扛であり、複合樹脂フィルムが一般にm層か
ら成る場合、各層の素材樹脂の熱膨張係数をαk  (
71:””)、縦弾性係数をEh  (K9/mm2)
%厚さをfh(mm)とすrば次式(渇で近似されるも
のである。
Σ Eu+ −1 The composite resin film also serves as an electrically insulating carrier and an adhesive for mechanically integrating the composite metal plate and the package or support member. The thermal expansion coefficient of the composite resin film as a whole is the apparent resistance of the composite resin film. When a composite resin film generally consists of m layers, the thermal expansion coefficient of the material resin of each layer is αk (
71:””), the longitudinal elastic modulus is Eh (K9/mm2)
% thickness is fh (mm), r is approximated by the following equation (h).

ΣEhlhαh ΣEh’h −1 本発明においては後述するように、特に上述の性 第2の問題点である耐ヒートサイクルを達成するために
αMをα■とαSとの間とし、α■をαPと略一致させ
るものである。特に、大型の混成ICでは半導体基体で
の発熱も多いことから大きな面積の金属板が必要なと、
又複数の半導体基体が用いら扛ることもあって、複合金
属板の面積、従って絶縁部材との接着面積そして絶縁部
材とパッケージ又は支持部材との接着面積は、通常の個
別半導体装置での半導体基体と支持電極間の接着面積と
比較して非常に犬きくなる。このような場合、接合部即
ち接着材の熱疲労を防ぐためには上述の膨張係数の関係
を満足させることが有効であることがわかった。
ΣEhlhαh ΣEh'h −1 In the present invention, as will be described later, αM is set between α■ and αS, and α■ is set between αP and This is to make them approximately match. In particular, large hybrid ICs generate a lot of heat in the semiconductor substrate, so a metal plate with a large area is required.
Also, since multiple semiconductor substrates may be used, the area of the composite metal plate, and thus the bonding area with the insulating member and the bonding area between the insulating member and the package or supporting member, are larger than those of the semiconductor in a normal individual semiconductor device. The bonding area between the substrate and the support electrode is very large. In such cases, it has been found that it is effective to satisfy the above-mentioned expansion coefficient relationship in order to prevent thermal fatigue of the joint, that is, the adhesive material.

以下、本発明を混成ICを例にとり、更に詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail by taking a hybrid IC as an example.

第1図に本発明の一実施例の1.5 K V A級電流
制御用混XICの要部斜視図を示す。図において、金属
支持板1上に2枚の複合樹脂フィルム2が並んで接着さ
扛、各複合樹即フィルム2上にそnと略同形状の複合金
属板3がそnぞれ接着さ扛ている。なお、第1図では図
面の簡単化のために各部材間の接着材は図示さ扛ていな
い。
FIG. 1 shows a perspective view of a main part of a mixed XIC for controlling a 1.5 KVA class A current according to an embodiment of the present invention. In the figure, two composite resin films 2 are adhered side by side on a metal support plate 1, and composite metal plates 3 having substantially the same shape as the composite resin films 2 are respectively adhered to each composite resin film 2. ing. In FIG. 1, the adhesive between each member is not shown to simplify the drawing.

上述の複合金属板3上には、第2図に示す回路が組立て
られている。即ち、ダーリントン接続さ扛たトランジス
タ401および402、フライホイル用ダイオード40
3がそれぞれ複合金属板3上に直接半田付けさnている
。又、スナバ用チップコンデンサ404およびこ扛と直
列に接続さ扛たチップ抵抗405が載置さ扛ている。各
回路素子は配線用ワイヤあるいは条片440、配線用金
属片430によって第2図に示す回路のように接続さ扛
ている。複合金属板3の一端側(図の左端側)には外部
端子4101.4102および4103が設けらnてい
る。外部端子4101は複合金属板3上に直接、410
2は配線用金属片430を介して、4103は絶縁用直
機樹脂膜420およびその上に接着さ扛た配線用金属片
430を介して、設置さ扛ている。又、複合金属板の第
1図上こ扛ら外部端子と反対側の端部には、ドライバ回
路406に連なる端子411が絶縁用有機樹脂膜420
上に接着さ扛た配線用金属片430上に設けらnている
A circuit shown in FIG. 2 is assembled on the above-mentioned composite metal plate 3. That is, Darlington connected transistors 401 and 402, flywheel diode 40
3 are directly soldered onto the composite metal plate 3, respectively. Further, a snubber chip capacitor 404 and a chip resistor 405 connected in series with the snubber chip capacitor 404 are mounted. Each circuit element is connected by a wiring wire or strip 440 and a wiring metal piece 430 as in the circuit shown in FIG. External terminals 4101, 4102, and 4103 are provided at one end of the composite metal plate 3 (the left end in the figure). The external terminal 4101 is directly on the composite metal plate 3,
2 is installed via a metal piece 430 for wiring, and 4103 is installed via an insulating resin film 420 and a metal piece 430 for wiring bonded thereon. Further, at the end of the composite metal plate opposite to the external terminal shown in FIG.
It is provided on the wiring metal piece 430 that is glued on top.

この実施例において重要なことは、複合樹脂フィルム2
を用いた点、複合金属板3を用いた点、複合金属板3の
大きさが複合樹脂フィルム2と略同じであり、その上に
全ての回路素子が載置されている点、半導体基体(トラ
ンジスタ401゜402およびダイオード403)が複
合金属板3に直接半田付けさ扛ている点、複合樹脂フィ
ルム2の少くとも1種の樹脂層により金属支持板1と複
合金属&3とを絶縁しながら一体化している点である。
What is important in this example is that the composite resin film 2
, the composite metal plate 3 is used, the size of the composite metal plate 3 is approximately the same as the composite resin film 2, and all the circuit elements are placed on it, and the semiconductor substrate ( The transistors 401 and 402 and the diode 403) are directly soldered to the composite metal plate 3, and at least one resin layer of the composite resin film 2 insulates and integrates the metal support plate 1 and the composite metal &3. This is a point that is becoming more and more common.

以下、こnらの点について説明する。These points will be explained below.

第3図に本実施例の構造のうち、金属支持板1から複合
金属板3に至る部分のみの断面を模式的に示す。図にお
いて、金属支持板1は、厚さ2Wan。
FIG. 3 schematically shows a cross section of only the portion from the metal support plate 1 to the composite metal plate 3 of the structure of this embodiment. In the figure, the metal support plate 1 has a thickness of 2Wan.

幅61閣、長さ105簡の大きさを有するアルミニウム
板で熱膨張係数は23.9 X 10”’ /cである
。複合樹脂フィルム2は、・厚さ50μmのポリイミド
フィルム21の両生表面に厚さ125μmのふっ素樹脂
フィルム221および222が圧延法により他部材を介
せず直接一体化さf″したフィルムであり幅28肩、長
さ33■であ番。この複合樹脂フィルム2の見かけの熱
膨張係数は約21X10”’/Cと、金属支持板1のそ
れに近似さ扛ている。
It is an aluminum plate with a width of 61 mm and a length of 105 mm and a coefficient of thermal expansion of 23.9 x 10''/c. Fluororesin films 221 and 222 with a thickness of 125 μm are directly integrated by a rolling method without intervening other members.The film has a width of 28 cm and a length of 33 cm. The apparent coefficient of thermal expansion of this composite resin film 2 is about 21×10''/C, which is close to that of the metal support plate 1.

金属支持板1の一方の主表面上には、2枚の複合樹脂フ
ィルム2がふっ素樹脂フィルム221により接着さ扛て
いる。
On one main surface of the metal support plate 1, two composite resin films 2 are adhered with a fluororesin film 221.

各複合樹脂フィルム2上には、複合金属板3がふっ素樹
脂フィルム221と同成分のふっ素樹脂フィルム222
により、そ扛ぞtl−接着さnている。
On each composite resin film 2, a fluororesin film 222 having the same composition as the fluororesin film 221 is placed on the composite metal plate 3.
Due to this, it is glued.

この複合金属板3は、厚さ2■の銅板31の両生表向に
厚さ0.2mmの鉄−36%ニッケル合金板321およ
び322が冷間圧延法により直接一体化されたものであ
り、幅25鴫、長さ30闘である。この複合金属板3の
見かけの熱膨張係数は約6、OX 10−’/Cでめり
積付樹脂フィルム2の熱膨張係数(21X 10−’/
ll:’)と半導体基体の材料であるシリコンの熱膨張
係数(3,5X 10−’/l’?)の間の値にされて
いる。
This composite metal plate 3 is made by directly integrating iron-36% nickel alloy plates 321 and 322 with a thickness of 0.2 mm on the two sides of a copper plate 31 with a thickness of 2 cm by cold rolling, The width is 25 sho and the length is 30 sho. The apparent coefficient of thermal expansion of this composite metal plate 3 is approximately 6, OX 10-'/C, and the coefficient of thermal expansion of the laminated resin film 2 (21X 10-'/C).
ll:') and the coefficient of thermal expansion of silicon, which is the material of the semiconductor substrate (3.5X 10-'/l'?).

本実施例における複合樹脂フィルム2は、混成IC製造
時あるいは運転時に過大な熱歪が発生するのを防ぐため
、見かけの熱膨張係数が金属支持板1の−tnと可及的
に近似するようにさrている。
The composite resin film 2 in this embodiment is designed so that its apparent coefficient of thermal expansion is as close as possible to -tn of the metal support plate 1 in order to prevent excessive thermal strain from occurring during hybrid IC manufacturing or operation. I'm in the middle of the day.

又、複合金属板3は、同じ目的のために見かけの熱膨張
係数が複合樹脂フィルム2のそ扛より小さくかつシリコ
ンのそ扛より犬きくさ扛てい°る。
Further, for the same purpose, the composite metal plate 3 has an apparent coefficient of thermal expansion smaller than that of the composite resin film 2 and significantly higher than that of the silicone plate.

複合樹脂フィルムの見かけの熱膨張係数は、素材として
用いる樹脂フィルムの種類や厚さを変えることによって
、又樹脂層にガラス繊維等を添加するなどしても調整で
きる。例えば、ポリバラパニック酸フィルムの熱膨張係
数は42X10−’/C1ふっ素樹脂フィルムの熱膨張
係数は55×10’−’/?”:であったものが、ガラ
ス繊維を50%添加したフィルムではそnぞn15X1
0″″’/l:’ 。
The apparent coefficient of thermal expansion of the composite resin film can be adjusted by changing the type and thickness of the resin film used as a material, or by adding glass fiber or the like to the resin layer. For example, the thermal expansion coefficient of a polyvaraponic acid film is 42×10′-′/?The thermal expansion coefficient of a C1 fluororesin film is 55×10′-′/? ”: However, in a film with 50% glass fiber added, it was n15X1.
0″″'/l:'.

2 o x 10−6/Cに変化した。It changed to 2 ox 10-6/C.

複合金属板の見かけの熱膨張係数は、素材として用いる
金属層の種類や合金材の場合にはその組成比を変えるこ
とによって、調整可能である。又、各金属層の厚さを変
えることによっても調整可能である。更に、複合金属板
を圧延法にて形成する時の圧延率を変えることによって
調整可能である。
The apparent coefficient of thermal expansion of the composite metal plate can be adjusted by changing the type of metal layer used as the raw material or the composition ratio in the case of an alloy material. It can also be adjusted by changing the thickness of each metal layer. Further, it can be adjusted by changing the rolling rate when forming the composite metal plate by rolling.

例えば、鉄−36%ニッケル合金板(厚さ0.1mm1
の両生表面に銅(厚さ0.1 yen )を直接接着し
た複合金属板の見かけの熱膨張係数は10.9X10’
−67Cを示し、鉄−29%ニッケルー17%コバルト
合金の場合、圧延し゛ないときの熱膨張係数が5.5 
X 10”’ /ll:’であったものが圧延率60%
(厚さが圧延前の40%になる圧延条件)では5×10
″”/Tll’、圧延率90%では6X10−’/Uに
変化した。
For example, an iron-36% nickel alloy plate (thickness 0.1 mm
The apparent coefficient of thermal expansion of a composite metal plate with copper (thickness 0.1 yen) directly bonded to the amphiphilic surface is 10.9X10'
-67C, and in the case of iron-29% nickel-17% cobalt alloy, the coefficient of thermal expansion when not rolled is 5.5.
X 10"'/ll:' is the rolling rate of 60%
(Rolling conditions where the thickness is 40% of that before rolling) is 5 x 10
""/Tll' changed to 6X10-'/U at a rolling rate of 90%.

複合金属板3における一対の外側金属層は、電気、熱伝
導性の観点よりも、熱町張係数がシリコン半導体基体の
そ扛と近似であるという観点から選ばnた。又、中間層
は反対に電気、熱伝導性が高いという観点を主体にして
選ば扛、複合金属板全体としての電気、熱伝導性を高め
るため、一対の外側金属層よりも厚くさ扛ている。
The pair of outer metal layers in the composite metal plate 3 were selected not from the viewpoint of electrical and thermal conductivity, but from the viewpoint that the thermal conductive coefficient was similar to that of the silicon semiconductor substrate. In addition, the middle layer, on the contrary, was selected mainly from the viewpoint of having high electrical and thermal conductivity, and was made thicker than the pair of outer metal layers in order to increase the electrical and thermal conductivity of the composite metal plate as a whole. .

複合樹脂フィルム3にお′ける一対の外側樹脂フィルム
は、電気絶縁性や熱膨張係数を金属支持板に近ずけると
いう観点よりも、軟化温度が中間フィルムより低く比較
的低温で金属との接着を可能にし、外側樹脂フィルムの
伸び率が350%と太きいという観点で選はf′した。
The pair of outer resin films in the composite resin film 3 have a softening temperature lower than that of the intermediate film, and are bonded to metal at a relatively low temperature, rather than having electrical insulation properties and thermal expansion coefficients close to those of the metal support plate. F' was selected from the viewpoint that the outer resin film has a large elongation rate of 350%.

又、中間樹脂フィルムは反対に電気絶縁性を確実に保ち
得るという観点、そして金属支持板1と熱膨張係数が近
似するという観点を主体に選ば扛た。かくして、複合樹
脂フィルムは全体として、確実な電気絶縁性、緻密な接
着性、ヒートサイクルによる耐熱疲労性を保持できるよ
うに構成さnている。
On the other hand, the intermediate resin film was selected primarily from the viewpoint that it could reliably maintain electrical insulation and that its coefficient of thermal expansion was similar to that of the metal support plate 1. In this way, the composite resin film as a whole is configured to maintain reliable electrical insulation, precise adhesion, and thermal fatigue resistance due to heat cycles.

本実施例によ扛ば、従来の構造、即ちパッケージや支持
部材上に半田付けさtたアルミナ板上に銅の熱拡散板が
半田付けさnlその上にモリブデン片を介して半導体基
体が接着さ扛た構造を有する混成ICと比較して、放熱
性を実質上問題となるほど低下させずに、耐ヒートサイ
クル性を向上させることができた。この効果は複合樹脂
フィルムの面積〜従って複合金属板の面積(従来例にお
ける調熱拡散板の面積)が大きくなるほど顕著であった
According to this embodiment, the conventional structure is used, that is, a copper thermal diffusion plate is soldered onto an alumina plate that is soldered onto a package or support member, and a semiconductor substrate is bonded thereon via a molybdenum piece. Compared to a hybrid IC having a stripped structure, heat cycle resistance could be improved without substantially reducing heat dissipation to the point where it becomes a problem. This effect became more remarkable as the area of the composite resin film and therefore the area of the composite metal plate (the area of the heat control diffusion plate in the conventional example) increased.

その−例を第4図により具体的に説明する。第4図は、
本実施例構造(A)を有する混成ICの1枚の複合樹脂
フィルムの面積又は上述の従来構造を有する混成ICの
1枚のアルミナ板の面積と所定のヒートサイクル印加後
の混成ICの故障発生率の関係を示すグラフである。ヒ
ートサイクルは一5511r〜+150Cとし、回数は
150回である。第4図によ扛ば、複合樹脂フィルム又
はアルミナ板の面積が約500m2まではA、B共に故
障発生率は0%であるが、約500mm2を越えると、
Bでは加速的に故障発生率が増加するのに対、し1Aは
依然として0%である。なお、ここで言う故障とは主と
して半田層や接着材を兼ねる樹脂フィルムのクラッタ発
生、あるいは部分的剥離を生じた場合である。
An example thereof will be explained in detail with reference to FIG. Figure 4 shows
The area of one composite resin film of the hybrid IC having the structure (A) of this embodiment or the area of one alumina plate of the hybrid IC having the above-mentioned conventional structure and occurrence of failure of the hybrid IC after application of a predetermined heat cycle It is a graph showing the relationship between rates. The heat cycle was from -5511r to +150C, and the number of times was 150. According to Fig. 4, the failure rate is 0% for both A and B when the area of the composite resin film or alumina plate is up to about 500 mm2, but when the area exceeds about 500 mm2,
While the failure rate increases rapidly in case B, it is still 0% in case 1A. Note that the failure referred to here mainly refers to the occurrence of clutter or partial peeling of a resin film that also serves as a solder layer or adhesive.

又、第4図では面積が約500mm2tではA。Also, in Fig. 4, if the area is about 500 mm2t, it is A.

Bとも差が無いように見えるが、この頌域においても、
金属支持板の反りの大きさという点でAはBに勝ってい
た。即ち、混成IC完成後、Aでは金属支持板lの長手
方向での反りは高さで表わすと約10μmであったが、
Bでは約0.33〜1.5簡にもなった。
It seems that there is no difference with B, but even in this ode,
A was superior to B in terms of the degree of warpage of the metal support plate. That is, after the hybrid IC was completed, in A, the warpage in the longitudinal direction of the metal support plate l was approximately 10 μm in height;
In B, it was about 0.33 to 1.5 k.

このような反りは、金属支持板の外周部にエボキン樹脂
製等の枠あるいは蓋を設置する時に、枠あるいは蓋と金
属支持板との間にすき間を生ずるため密封性、従って耐
湿性、耐蝕性の点で好ましくない。更に、金属支持板を
外部放熱フィン等に取付けるとき、金属支持板に反りが
あるとすき間が生じ、放熱性が低下するので好ましくな
い。本実施例によ扛ばこnらの欠点を生じない。
This kind of warping occurs when a frame or lid made of Evokin resin or the like is installed around the outer periphery of the metal support plate, which creates a gap between the frame or lid and the metal support plate, resulting in poor sealing performance, moisture resistance, and corrosion resistance. Unfavorable in this respect. Furthermore, when attaching the metal support plate to an external heat dissipation fin or the like, if the metal support plate is warped, a gap will be created and the heat dissipation performance will be reduced, which is undesirable. This embodiment does not suffer from the drawbacks described above.

なお、本実施例において、金属支持板1として熱膨張係
数が複合樹脂フィルム2と近似さnた金属板を用いるこ
とは、混成ICの信頼性を高める上で好ましい。しかし
ながら、複合金属板3上に直接接着さ扛た半導体基体の
保護、半導体基体と複合金属板3との間のろう材(半導
体基体の通電放熱特性を左右する)の劣化防止を達成す
るという観点、及び接着材としての樹脂フィルムは伸び
率が太きく金属支持板1の伸縮に良く追随するという観
点からは、金属支持板1としてアルミニウム以外の金属
、例えば銅板、ニッケル板、銅−亜鉛合金等を使用し得
る。
In this embodiment, it is preferable to use a metal plate having a coefficient of thermal expansion similar to that of the composite resin film 2 as the metal support plate 1 in order to improve the reliability of the hybrid IC. However, from the viewpoint of protecting the semiconductor substrate directly adhered to the composite metal plate 3 and preventing deterioration of the brazing material between the semiconductor substrate and the composite metal plate 3 (which affects the current conduction heat dissipation characteristics of the semiconductor substrate), , and from the viewpoint that the resin film as an adhesive has a high elongation rate and follows the expansion and contraction of the metal support plate 1 well, metals other than aluminum, such as copper plates, nickel plates, copper-zinc alloys, etc., can be used as the metal support plate 1. can be used.

又、複合金属板3の半田付は面に、半田のぬf性を良く
するためにニッケル等の金属膜をめっき法等により形成
しておくのは好ましいことでおる。
Further, when soldering the composite metal plate 3, it is preferable to form a metal film of nickel or the like on the surface by plating or the like in order to improve solderability.

次に、本発明の他の実施例について第5図を用いて説明
する。第5図において、複合樹脂フィルムからなる絶縁
部材2は連続して一体化さnfC単一のフィルムであり
1、同フィルムの一方の主平面側にはアルミニウムから
なる支持部材1(幅61醪×長さ105■×厚さ2B)
と接着さ扛、そして他方の主平面側には複数の複合金属
板3と接着されている。複合金属板3上には、例えば第
2図に示したような半導体回路が組立てらrるが、本実
施例ではその記載を省略する。本実施例において、絶縁
部材2は幅60媚、長さ33胴、複合金属板3は幅25
闘、長さ30mmであり、いず扛も第1−図と同様の材
質、厚さを有する積層構造のものである。
Next, another embodiment of the present invention will be described using FIG. 5. In Fig. 5, an insulating member 2 made of a composite resin film is a single nfC film 1 that is continuously integrated, and a support member 1 made of aluminum (width 61 mm x Length 105■ x thickness 2B)
A plurality of composite metal plates 3 are bonded to the other main plane side. For example, a semiconductor circuit as shown in FIG. 2 is assembled on the composite metal plate 3, but its description is omitted in this embodiment. In this embodiment, the insulating member 2 has a width of 60 mm and a length of 33 mm, and the composite metal plate 3 has a width of 25 mm.
The length is 30 mm, and both of the blades are of a laminated structure having the same material and thickness as those shown in Fig. 1.

本実施例によnば、絶縁部材2は単一のフィルムから成
るため、部品点数や工数が簡単になるという効果がある
。こtl−は、絶縁部材2の熱膨張係数が支持部材の熱
膨張係数に近似さびており、しかも伸び率の大きい樹脂
からなる樹脂フィルムで接着さ扛ていることによる効果
である。
According to this embodiment, since the insulating member 2 is made of a single film, the number of parts and man-hours can be reduced. This effect is due to the fact that the coefficient of thermal expansion of the insulating member 2 is close to that of the supporting member, and that the insulating member 2 is bonded with a resin film made of a resin having a high elongation rate.

次に、本発明の各種変形例について例示する。Next, various modifications of the present invention will be illustrated.

本発明は上述した実施例の外、種々の態様にて実施する
ことが可能である。
The present invention can be implemented in various embodiments other than the embodiments described above.

まず、絶縁部材としての複合樹脂フィルムを構成する素
材樹脂としては、ポリイミドやふっ素樹脂の外、ポリエ
ステル樹脂、ポリバラパニック酸樹脂、シリコーン樹脂
、ビロリンポリイミド先駆体樹脂、ポリアミドイミド:
樹脂、エポキシ−ノボラック樹脂、ニトリルゴム−フェ
ノール樹脂、エポキシ−ポリアミド樹脂、エポキシ−ア
クリル樹脂等、又はこnもの樹脂にガラス繊維やアルミ
ナ粉末等の添加剤を含む樹脂が使用できる。この際、構
台樹脂フィルムは4層以上の積層構造になっていても良
い。
First, the material resins constituting the composite resin film as an insulating member include, in addition to polyimide and fluororesin, polyester resin, polybalapic acid resin, silicone resin, biroline polyimide precursor resin, and polyamideimide:
Resins such as epoxy-novolac resins, nitrile rubber-phenolic resins, epoxy-polyamide resins, epoxy-acrylic resins, or other resins containing additives such as glass fiber and alumina powder can be used. In this case, the gantry resin film may have a laminated structure of four or more layers.

複合金属板としては、例えば銅板の両側に種々の組成比
の鉄−ニッケル合金板あるいは鉄−ニッケルーコバルト
合金板が直接一体化さ扛たものが使用できる。又、上述
の構造において銅板の代りにニッケル、亜鉛、アルミニ
ウム、金、銀、パラジウム等、両側に位置する合金板よ
りも電気、熱伝導に優nた金属あるいはこ扛らを主成分
とする合金を用いることができる。又、上述した3層構
造の配列を変え、3層の中央に鉄−ニッケル合金板等を
用い、その両側に中央層よりも電気、熱伝導性に優れた
銅板等を直接一体化したものであっても良い。更に、3
層構造に限らnず、2層構造あるいは4層以上の構造で
あっても良い。ただし、2層構造とした場合あるいは3
層以上の構造であっても熱膨張係数の差に伴なうバイメ
タル作用によって複合金属板が反るのを防止するため、
各層の材料の選択、厚さの選定に留意すべきである。
As the composite metal plate, for example, a copper plate in which iron-nickel alloy plates or iron-nickel-cobalt alloy plates of various composition ratios are directly integrated on both sides can be used. In addition, in the above structure, instead of the copper plate, metals such as nickel, zinc, aluminum, gold, silver, palladium, etc., which have better electrical and thermal conductivity than the alloy plates located on both sides, or alloys mainly composed of these metals can be used. can be used. In addition, the arrangement of the three-layer structure described above is changed, and an iron-nickel alloy plate, etc. is used in the center of the three layers, and copper plates, etc., which have better electrical and thermal conductivity than the central layer, are directly integrated on both sides. It's okay to have one. Furthermore, 3
The structure is not limited to a layered structure, and may be a two-layered structure or a structure of four or more layers. However, in the case of a two-layer structure or a three-layer structure,
In order to prevent the composite metal plate from warping due to the bimetallic action caused by the difference in thermal expansion coefficient, even if it has a structure with more than one layer,
Care should be taken in selecting the material and thickness of each layer.

なお、複合金属板の製法としては上述の冷間圧延法の他
、熱間圧延法や、1の金属板の主表面に他の金属層を蒸
着法、スパッタリング法、気相成長法等により形成する
方法等を用い得る。
In addition to the above-mentioned cold rolling method, the composite metal plate can be manufactured by hot rolling, or by forming another metal layer on the main surface of one metal plate by vapor deposition, sputtering, vapor growth, etc. A method such as that can be used.

半田としては鉛−60%錫の組成の他、例えば鉛5%錫
のもの、あるいはこ扛らに第35!i分として銀、ビス
マス等を含むものが使用できる。その厚さも0.1 m
に限らnず、そnより厚くて・も薄くても良い。一般に
半田層が厚いと熱歪を良く吸収するが、半田そのものの
熱伝導率が左程高くないことから、混成ICの放熱性は
低下する。、上述の実施例のように複合金属板を使用す
ることによって熱歪の発生を抑制し得るから半田層の厚
さを効果的に減少し混成ICの放熱性を高め得たことも
、本発明の効果である。
In addition to solder with a lead-60% tin composition, for example, solder with a lead-5% tin composition, or these solders, etc. A material containing silver, bismuth, etc. can be used as the i component. Its thickness is also 0.1 m
It is not limited to n, but may be thicker or thinner than n. Generally, the thicker the solder layer, the better it absorbs thermal strain, but since the thermal conductivity of the solder itself is not as high as shown in the figure above, the heat dissipation of the hybrid IC is reduced. Another aspect of the present invention is that by using a composite metal plate as in the above embodiment, the occurrence of thermal distortion can be suppressed, thereby effectively reducing the thickness of the solder layer and improving the heat dissipation performance of the hybrid IC. This is the effect of

一般に樹脂フィルムの熱伝導率はアルミナ等のセラミッ
クスに比べ小さいが複合樹脂フィルムの接着材を兼ねる
樹脂フィルムが比較的低温で軟化して流動性を増すため
緻密な接着を実現できること、併せて伸縮性に富むため
大面積の金属板を一体化できること、その結果複合樹脂
フィルムを薄くできしかも熱を広げて伝達できることに
より、混成ICの放熱性を著しく低下させずに済む。こ
のことも本発明の効果である。
Generally, the thermal conductivity of resin films is lower than that of ceramics such as alumina, but the resin film, which also serves as an adhesive for composite resin films, softens at relatively low temperatures and increases fluidity, making it possible to achieve dense adhesion, as well as elasticity. Since the composite resin film is rich in heat, it is possible to integrate a large-area metal plate, and as a result, the composite resin film can be made thin and heat can be spread and transmitted, so that the heat dissipation performance of the hybrid IC does not deteriorate significantly. This is also an effect of the present invention.

次に、複合金属板上に載置さ扛る半導体基体の種類およ
び(ロ)路構成においては、任意の半導体素子(シリコ
ン以外の半導体素子、例えばゲルマニウム、砒化ガリウ
ム、燐化ガリウム、炭化珪素等を用いたものを含む)お
よび回路について適用できることは言うまでもない。
Next, in the type and (b) configuration of the semiconductor substrate placed on the composite metal plate, any semiconductor element (semiconductor element other than silicon, such as germanium, gallium arsenide, gallium phosphide, silicon carbide, etc.) Needless to say, the method can be applied to circuits (including those using the same) and circuits.

以上説明したように、本発明によnば熱歪に基く各部材
の変形、変性あるいは破壊の恐扛のない絶縁型半導体装
置を得るのに効果がある。
As described above, the present invention is effective in obtaining an insulated semiconductor device that is free from the risk of deformation, degeneration, or destruction of each member due to thermal strain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例の混成ICの構
成を示す図、第4図は本発明の他の実施13’lJ (
A )の複合樹脂フィルムの接着面積又は従来例の無機
質絶縁部材の接着面積と混成ICの故障発生率との関係
を示す特性図、第5図は本発明の更に他の実施例の要部
断面図を示す図である。 ■・・・金属支持部材、2・・・複合樹脂フィルム、3
・・・代理人 弁理士 高橋明帽堝坪 9明士
1 to 3 are diagrams showing the configuration of a hybrid IC according to an embodiment of the present invention, and FIG. 4 is a diagram showing the configuration of a hybrid IC according to another embodiment of the present invention
A characteristic diagram showing the relationship between the adhesion area of the composite resin film or the adhesion area of the inorganic insulating member of the conventional example and the failure rate of the hybrid IC; FIG. 5 is a cross section of the main part of yet another embodiment of the present invention. FIG. ■...Metal support member, 2...Composite resin film, 3
...Representative: Patent Attorney Akira Takahashi, 9th Akira Hatsubo

Claims (1)

【特許請求の範囲】 1、軟化点の異なる2以上の樹脂フィルムが直接接着さ
nだ積層構造を有する複合樹脂フィルムからなり、この
複合フィルムの少くとも1種の樹脂フィルムを用いて支
持部材上に支持された絶縁部材と、前記絶縁部材上に前
記複合フィルムの少くとも1種の樹脂フィルムを用いて
接着ざn1異種の2次上の金属層が互に直接接着さn*
積層構造を有する積層金属板と、この複合金属板の前記
絶縁部材の反対側の表面に導電的に接着さnた少なくと
も1の半導体基体とを有し、前記絶縁部材の全体として
の熱膨張係数は前記支持部材の熱膨張係数に近似し、前
記複合金属の全体としての熱膨張係数は前記絶縁部材の
熱膨張係数と前記半導体基体の熱膨張係数の間に選択さ
扛たことを特徴とする絶縁型半導体装置。 2、特許請求の範囲第1項において、前記支持部材は金
属より成ることを特徴とする絶縁型半導体装置。 3、特許請求の範囲第1項において、前記支持部材と前
記複合金属板は、こ扛らより少くとも伸び率の大きい樹
脂フィルムを用いて接着されたことを特徴とする絶縁型
半導体装置。 4、特許請求の範囲第1項において、前記複合金属板の
主表面の形状は前記絶縁部材の主平面の形状と略同等か
そnより小さく、かつ上記複合金属板上に複数の回路素
子が接着さnていることを特徴とする絶縁型半導体装置
。 5、特許請求の範囲第4項において、2以上の前記複合
金属板が前記絶縁部材上に接着さnていることを特徴と
する絶縁型半導体装置。
[Claims] 1. A composite resin film having an n-fold laminated structure in which two or more resin films with different softening points are directly bonded together, and at least one resin film of this composite film is used to place a support member on a support member. an insulating member supported on the insulating member and at least one resin film of the composite film on the insulating member, and an adhesive layer n1 and a second metal layer of different types are directly adhered to each other n*
a laminated metal plate having a laminated structure; and at least one semiconductor substrate electrically conductively adhered to a surface of the composite metal plate opposite to the insulating member, the thermal expansion coefficient of the insulating member as a whole; approximates the coefficient of thermal expansion of the supporting member, and the overall coefficient of thermal expansion of the composite metal is selected between the coefficient of thermal expansion of the insulating member and the coefficient of thermal expansion of the semiconductor substrate. Insulated semiconductor device. 2. The insulated semiconductor device according to claim 1, wherein the supporting member is made of metal. 3. The insulated semiconductor device according to claim 1, wherein the supporting member and the composite metal plate are bonded together using a resin film having at least a higher elongation rate than the supporting member and the composite metal plate. 4. In claim 1, the shape of the main surface of the composite metal plate is approximately equal to or smaller than the shape of the main plane of the insulating member, and a plurality of circuit elements are bonded on the composite metal plate. An insulated semiconductor device characterized in that: 5. An insulated semiconductor device according to claim 4, characterized in that two or more of the composite metal plates are adhered onto the insulating member.
JP56150625A 1981-09-25 1981-09-25 Insulated semiconductor device Pending JPS5852859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56150625A JPS5852859A (en) 1981-09-25 1981-09-25 Insulated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150625A JPS5852859A (en) 1981-09-25 1981-09-25 Insulated semiconductor device

Publications (1)

Publication Number Publication Date
JPS5852859A true JPS5852859A (en) 1983-03-29

Family

ID=15500945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150625A Pending JPS5852859A (en) 1981-09-25 1981-09-25 Insulated semiconductor device

Country Status (1)

Country Link
JP (1) JPS5852859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473750A (en) * 1987-09-16 1989-03-20 Nec Corp Semiconductor device
US5766740A (en) * 1995-05-26 1998-06-16 Sheldahl, Inc. Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473750A (en) * 1987-09-16 1989-03-20 Nec Corp Semiconductor device
US5766740A (en) * 1995-05-26 1998-06-16 Sheldahl, Inc. Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink
US5798171A (en) * 1995-05-26 1998-08-25 Sheldahl, Inc. Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink

Similar Documents

Publication Publication Date Title
JPS6038867B2 (en) Isolated semiconductor device
JPH0936186A (en) Power semiconductor module and its mounting method
US4516149A (en) Semiconductor device having ribbon electrode structure and method for fabricating the same
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
JPH10144967A (en) Thermoelectric element module for cooling
JPS5852859A (en) Insulated semiconductor device
JPS6050354B2 (en) Resin-encapsulated semiconductor device
JP2000323647A (en) Module semiconductor device and manufacture thereof
JP2000164941A (en) Thermoelectric conversion module
JPH11354687A (en) Semiconductor device
JPH06216167A (en) Semiconductor device and manufacture thereof
JP6201297B2 (en) Power module substrate with copper plate and method for manufacturing power module substrate with copper plate
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP4876612B2 (en) Insulated heat transfer structure and power module substrate
JPS5848927A (en) Insulated type semiconductor device
JPS5952853A (en) Semiconductor device
JPS5946051A (en) Insulated type semiconductor device
JP3520607B2 (en) Peltier module and manufacturing method thereof
JPS58135658A (en) Semiconductor device
JPH0982858A (en) Semiconductor device and metal support plate thereof
WO2021240944A1 (en) Semiconductor device
JPS5946036A (en) Insulating type semiconductor device
JPS5835956A (en) Hybrid integrated circuit device
JP2619155B2 (en) Hybrid integrated circuit device
JPS62781B2 (en)