JPS5852442B2 - Method for suppressing surface cracking of steel billet during hot rolling - Google Patents

Method for suppressing surface cracking of steel billet during hot rolling

Info

Publication number
JPS5852442B2
JPS5852442B2 JP53156667A JP15666778A JPS5852442B2 JP S5852442 B2 JPS5852442 B2 JP S5852442B2 JP 53156667 A JP53156667 A JP 53156667A JP 15666778 A JP15666778 A JP 15666778A JP S5852442 B2 JPS5852442 B2 JP S5852442B2
Authority
JP
Japan
Prior art keywords
rolling
hot
steel
temperature range
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53156667A
Other languages
Japanese (ja)
Other versions
JPS5584201A (en
Inventor
洋夫 鈴木
哲 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP53156667A priority Critical patent/JPS5852442B2/en
Publication of JPS5584201A publication Critical patent/JPS5584201A/en
Publication of JPS5852442B2 publication Critical patent/JPS5852442B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing

Description

【発明の詳細な説明】 本発明はアルミキルド、アルミセミキルドまたはアルミ
・シリコンキルド鋼等一般建築素材、造船用、機械構造
用鋼、線材等に供されるSi、Mnを主成分とする炭素
鋼ないしNb、Vを含有するラインパイプ用、もしくは
油井管用素材等の鋼種において、造塊もしくは連続鋳造
直後の鋼片をただちに熱間圧延を行なう(以下直送圧延
と称する)か、または造塊もしくは連続鋳造後そのまま
鋼片を保熱炉に装入してから熱間圧延を行なう(以下ホ
ットチャージ圧延と称する)プロセスにおいて、熱間圧
延時の鋼片の割れを抑制する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to carbon steels containing Si and Mn as main components, such as aluminum killed steel, aluminum semi-killed steel, and aluminum/silicon killed steel, which are used for general building materials, shipbuilding, machine structural steel, wire rods, etc. For steel types that contain Nb or V, such as materials for line pipes or oil country tubular goods, hot rolling is carried out immediately after ingot formation or continuous casting (hereinafter referred to as direct rolling), or ingot formation or continuous casting. The present invention relates to a method of suppressing cracking of a steel billet during hot rolling in a process in which the billet is charged into a heat retention furnace as it is after casting and then hot rolled (hereinafter referred to as hot charge rolling).

従来の鉄鋼材料製造プロセスは以下のような方法が採用
されていた。
Conventional steel material manufacturing processes employ the following methods.

すなわち、転炉ないしは電気炉で溶製された溶湯は次に
示すような ■ 造塊→ffi→同→分塊圧延 一+U→圏→熱間圧延 ■ 連続i造→!→口熱間圧 延 ■ないしは■の工程を経ていた。
In other words, the molten metal melted in a converter or electric furnace is processed as shown below ■ Ingot making → ffi → same → blooming rolling + U → zone → hot rolling ■ Continuous i making →! →It went through the process of mouth hot rolling ■ or ■.

しかしながら、近年製造工程の省略化による生産性の向
上と熱エネルギー原単位の低減による省エネルギーを目
的として、■ないしは■の工程から[]印をつけた精整
工程と加熱工程とを省略するプロセスとして、前述の直
送圧延ないしはホットチャージ圧延プロセス技術の開発
が注目を浴びるようになってきた。
However, in recent years, with the aim of improving productivity by shortening the manufacturing process and saving energy by reducing the unit heat energy consumption, a process has been developed in which the finishing process and heating process marked [ ] are omitted from the process marked with ■ or ■. The development of the above-mentioned direct rolling or hot charge rolling process technology has been attracting attention.

かような新プロセスへの移行のためには製品材質の保証
がなされるのは当然であるが、加うるに鋼片表面割れの
生成防止策の開発が必須となる。
In order to transition to such a new process, it is natural to guarantee the quality of product materials, but it is also essential to develop measures to prevent the formation of cracks on the surface of steel billets.

本発明者らは本プロセス開発のために長年無欠陥鋼塊な
いしは無欠陥鋳片の製造法に関する検討と熱間圧延時の
割れ防止策の研究開発に努力を積み重ねてきた結果、以
下の諸点を明らかにした。
In order to develop this process, the inventors of the present invention have spent many years studying methods for manufacturing defect-free steel ingots or slabs, and researching and developing measures to prevent cracking during hot rolling. revealed.

すなわち、従来の冷片を再加熱圧延し、ざらに冷片にし
て疵取りを行なった後再加熱−圧延を施すプロセスにお
いては冷却−加熱のくり返し熱処理により、鋳造組織の
破砕、凝固時の粒界への偏析・析出の軽減、オーステナ
イト粒の微細化に加えて、熱間科工性に有害な働きをす
るs、p、。
In other words, in the conventional process of reheating and rolling a cold piece, making it into a rough cold piece, removing defects, and then reheating and rolling, the repeated heat treatment of cooling and heating causes the fracture of the cast structure and the grain size during solidification. In addition to reducing segregation and precipitation in boundaries and refining austenite grains, s, p, etc. have a detrimental effect on hot engineering properties.

等の元素が硫化物、リン化物、ならびに酸化物として粒
内に固定される。
Elements such as sulfides, phosphides, and oxides are fixed within the grains.

従ってアルミキルド、アルミシリコンキルド鋼等一般構
造用鋼に供されているSi)Mnを主成分とする炭素鋼
、ないしは含Nb、V鋼においても、従来の再加熱・圧
延プロセスにおいては熱間加工時の割れ疵はほとんど問
題視されない程疵発生は軽微であった。
Therefore, even in carbon steel containing Si)Mn as a main component, or Nb and V steel containing Nb, which is used for general structural steels such as aluminum killed and aluminum silicon killed steel, hot working during conventional reheating and rolling processes is difficult. The occurrence of cracks was so slight that they were hardly considered a problem.

それに反して直送圧延、またはホットチャージ圧延プロ
セスにおいては、溶融−凝固−冷却過程でデンドライト
界面とか、オーステナイト粒界面上に上述したような諸
元素の偏析、析出が生じ、そのために熱間加工による引
張応力が加わると粒界割れをひき起し、鋼片表面疵を発
生する。
On the other hand, in the direct rolling or hot charge rolling process, the above-mentioned segregation and precipitation of various elements occur on dendrite interfaces and austenite grain interfaces during the melting-solidification-cooling process, which causes tensile stress caused by hot working. When stress is applied, intergranular cracking occurs and surface flaws occur on the steel billet.

従って、かかる新プロセスにおいては熱間加工性に有害
な元素をあらかじめ以下に述べるような量にまで制限し
ておくか、あるいは、析出物の析出特性を制御すること
が肝要である。
Therefore, in such a new process, it is important to limit the amount of elements harmful to hot workability to the amounts described below, or to control the precipitation characteristics of precipitates.

本発明で対象とするような51−Mn鋼においてはPを
0.02%以下、Sを0.01%以下、さらには0([
素)を0.001%以下に抑えることにより、熱間加工
性は大巾に改善されるが、安価な鋼種において脱硫とか
脱リンプロセスの導入は生産コストの上昇につながり、
工業的にはかならずしも最善の策とはならない場合があ
る。
In the 51-Mn steel targeted by the present invention, the P content is 0.02% or less, the S content is 0.01% or less, and even 0 ([
Although hot workability can be greatly improved by suppressing the content of 0.001% or less, the introduction of desulfurization and dephosphorization processes in inexpensive steel types will lead to an increase in production costs.
From an industrial perspective, this may not always be the best solution.

そこで本発明者等は熱間加工性に有害なP、S。Therefore, the present inventors investigated P and S, which are harmful to hot workability.

0、N等の元素の偏析・析出がある特定の温度域におい
て生じることに着目してこれらの元素の析出形態を制御
することにより鋼片の熱間割れ抑制法を開発した。
Focusing on the fact that segregation and precipitation of elements such as 0 and N occur in a certain temperature range, we developed a method for suppressing hot cracking in steel slabs by controlling the precipitation form of these elements.

以下に本発明の内容を詳述する。The content of the present invention will be explained in detail below.

第1図には連続鋳造した鋳片あるいは造塊した鋼塊の直
送圧延(第1図■)、ならびにホットチャージ圧延(第
1図■)における鋼片の受ける温度履歴を模式図的に示
した。
Figure 1 schematically shows the temperature history of continuously cast slabs or ingots during direct rolling (Figure 1 ■) and hot charge rolling (Figure 1 ■). .

直送圧延ならびにホットチャージ圧延では、旧来の再加
熱・圧延プロセス(第1図■)と違い、鋼片を室温まで
冷やすことなく熱間圧延ないしは加熱炉に装入した後圧
延することを特徴としている。
Direct rolling and hot charge rolling differ from the traditional reheating/rolling process (Fig. 1 ■) in that the billets are hot rolled or charged into a heating furnace and then rolled without being cooled to room temperature. .

かかる熱間圧延において通常の圧延温度域である120
0〜900℃温度域で連続多パス圧延を行なった際には
、1〜5パス目の圧延で鋼片の表面に横割れあるいは鋼
片エツジ部Qこ耳割れが発生し、それに引き続く連続圧
延中に割れが拡大し表面疵として残存し、それらの疵の
ひどい場合には製品として使用に耐えないものが出て歩
留りの低下を来たしてしまうことが多々ある。
120, which is the normal rolling temperature range in such hot rolling.
When continuous multi-pass rolling is performed in the temperature range of 0 to 900°C, transverse cracks or cracks on the edges of the billet occur on the surface of the billet in the 1st to 5th passes of rolling, and subsequent continuous rolling Cracks expand inside the product and remain as surface flaws, and if these flaws are severe, products often become unusable, resulting in a decrease in yield.

特にP。S、0.N、AA等をある量以上に含有した鋼
においては、直送圧延ないしはホットチャージ圧延に際
して最初の数パス圧延を1140〜990°C温度域で
行なった場合には鋼片の表面割れが顕著になる。
Especially P. S, 0. In steel containing more than a certain amount of N, AA, etc., surface cracking of the steel billet becomes noticeable when the first few passes of rolling are carried out in the temperature range of 1140 to 990°C during direct rolling or hot charge rolling. .

この新プロセス(こおける熱間圧延時の割れ機構につい
ては後述するシミュレーション実験法等を用いて研究を
重ねてきた結果、以下の諸点が明確になった。
As a result of repeated research on the cracking mechanism during hot rolling in this new process using simulation experiment methods described below, the following points have become clear.

すなわち、溶融−凝固一冷却時昏こ(Fe。Mn)S、
(Fe、Mn)0.AlN等がデンドライト界面ないし
はオーステナイト粒界面に析出した場合、熱間圧延等に
よりある値以上の引張応力が負荷されると割れが生成す
る。
That is, melting-solidification-cooling coma (Fe.Mn)S,
(Fe, Mn)0. If AlN or the like is precipitated at the dendrite interface or austenite grain interface, cracks will occur if a tensile stress of a certain value or more is applied due to hot rolling or the like.

直送圧延ないしはホットチャージ圧延時の鋼片の熱間加
工性を評価するためのシミュレーション実験法(こつい
て説明する。
A simulation experiment method for evaluating the hot workability of steel slabs during direct rolling or hot charge rolling (we will explain the trick).

通電加熱による横型引張試験機を用いて、10關φの断
面をもつ試験片を−たん溶融し、それに引き続く凝固−
冷却時に熱間圧延(こ相当する変形速度(50mm/5
ec)で一軸引張を行ない、各温1iにおける断面収縮
率を測定する。
Using a horizontal tensile tester using electrical heating, a test piece with a cross section of 10 mm diameter was melted and then solidified.
Hot rolling during cooling (corresponding deformation speed (50mm/5
ec) to perform uniaxial tension and measure the cross-sectional shrinkage rate at each temperature 1i.

この実験手法で得られた断面収縮率の値と実際の大形熱
間圧延機を用いての直送圧延ないしはホットチャージ圧
延時の表面割れとの相関を整理したところ、第2図に示
すようにシミュレーション実験法により1300〜90
0℃の温度域での断面収縮率が60%以上を示す鋼にお
いては、直送圧延ないしはホットチャージ圧延時(こ表
面割れ発生頻度が非常に少なくなる。
When we examined the correlation between the cross-sectional shrinkage rate obtained by this experimental method and the surface cracking during direct rolling or hot charge rolling using an actual large-sized hot rolling mill, we found that the results are as shown in Figure 2. 1300-90 by simulation experiment method
In steel exhibiting a cross-sectional shrinkage rate of 60% or more in the temperature range of 0°C, the frequency of surface cracking during direct rolling or hot charge rolling is extremely low.

逆に断面収縮率60%未満になると表面割れが多発する
傾向にある。
Conversely, when the cross-sectional shrinkage rate is less than 60%, surface cracks tend to occur frequently.

従って熱間加工性はシミュレーション実験において、1
300〜900℃で温度域で断面収縮率の最少値が60
%を超えるかどうかで判断しうろことになる。
Therefore, hot workability was determined to be 1 in simulation experiments.
The minimum value of cross-sectional shrinkage in the temperature range of 300 to 900℃ is 60
It will be difficult to judge whether it exceeds %.

さらにここで述べたシミュレーション法を用い、溶融−
凝固一冷却時の粒界析出特性を調べた結果の一例を第3
図に示す。
Furthermore, using the simulation method described here, melting
An example of the results of investigating grain boundary precipitation characteristics during solidification and cooling is shown in Part 3.
As shown in the figure.

この図は大気炉溶製の0.13%C−0,2%5i−0
,4%Mn−0,021%P−0.017%S(いずれ
も重量パーセント)の鋼を用い、−たん再溶融した後2
0℃/secの冷却速度で凝固−冷却させ、各温度で焼
入れ、オーステナイト粒界に析出した準安定な(Fe、
Mn)Sならびに(Fe、Mn)0析出物の析出開始温
度ならびにそれらの準安定な析出物が球状化、粗大化開
始する温度・時間曲線を示したものである。
This figure shows 0.13%C-0,2%5i-0 produced by atmospheric furnace melting.
, 4%Mn-0,021%P-0.017%S (all percentages by weight), after remelting -2
Solidification and cooling at a cooling rate of 0°C/sec, quenching at each temperature, and metastable (Fe,
This figure shows the precipitation onset temperature of Mn)S and (Fe,Mn)0 precipitates, and the temperature/time curve at which these metastable precipitates start to become spheroidal and coarse.

なおここで(Fe、Mn)Sと書いたのはFeとMnと
Sよりなる複合析出物を意味する。
Here, (Fe, Mn)S means a composite precipitate consisting of Fe, Mn, and S.

これらの析出物の析出挙動と熱間加工性とは非常に密接
(こ関連しており、たとえば第3図中の■曲線に沿うよ
うな熱履歴のもとに1140〜900℃温度域で直接加
工を施した場合には、熱間加工性も著しく悪く(表面割
れ感受性大)、さらにシミュレーション実験における1
140〜900°C温度域の断面収縮率の値も60%以
下となり、激しい場合には10%(こ満たないものもあ
る。
The precipitation behavior of these precipitates and hot workability are very closely related. When processed, the hot workability was extremely poor (high susceptibility to surface cracking), and furthermore, 1.
The value of cross-sectional shrinkage in the temperature range of 140 to 900°C is also 60% or less, and in severe cases it is less than 10% (sometimes less than 10%).

他方、第3図中の■曲線に沿うような熱履歴のもとに1
140〜900℃温度域で直接加工を施しても熱間加工
性は非常に良好(表面割れ感受性は小)で、さらにシミ
ュレーション実験における1140〜900℃温度域の
断面収縮率の値も60%以上の値を示している。
On the other hand, under the thermal history along the ■curve in Figure 3,
Even when directly processed in the 140-900°C temperature range, hot workability is very good (susceptibility to surface cracking is small), and the cross-sectional shrinkage rate in the 1140-900°C temperature range in simulation experiments is over 60%. shows the value of

従って熱間加工性を向上させる一つの方法として溶融−
凝固一冷却時にデンドライトまたはオーステナイト粒界
面に析出する準安定な硫化物ないしは酸化物あるいはそ
の複合折物を球状化、・粗大化させること(こある。
Therefore, one method for improving hot workability is melting.
Spheroidizing and coarsening metastable sulfides or oxides, or composite folds thereof, that precipitate at dendrite or austenite grain boundaries during solidification and cooling.

さらに、これらの有害な準安定析出物とマトリックスと
の界面にはしばしばリンの存在も認められている。
Furthermore, the presence of phosphorus is often observed at the interface between these harmful metastable precipitates and the matrix.

また、他の熱間加工性を阻害する析出物としてAAN等
の窒化物が挙げられる。
Further, other precipitates that inhibit hot workability include nitrides such as AAN.

しかしながら、AlNの析出温度域は通常上述した硫化
物、酸化物ないしはその複合析出物の析出温度域より低
く、■000〜Ar5(Ar3はオーステナイトリフエ
ライト変態開始温度)温度域である。
However, the precipitation temperature range of AlN is usually lower than the precipitation temperature range of the above-mentioned sulfides, oxides, or their composite precipitates, and is in the temperature range of 1000 to Ar5 (Ar3 is the austenite-riferite transformation start temperature).

以下に直送圧延ならびにホットチャージ圧延プロセスに
おいて、有害な析出物を無害化させることにより鋼片割
れを抑制する方法について述べる。
The following describes a method for suppressing steel billet cracking by rendering harmful precipitates harmless in direct rolling and hot charge rolling processes.

その方法は準安定析出物が析出する温度域で十分な保定
熱処理を施し、析出物の球状化、粗大化を行なわしめる
ことにより、加工性を向上させるものである。
In this method, sufficient retention heat treatment is performed in the temperature range where metastable precipitates precipitate, and the precipitates become spheroidal and coarse, thereby improving workability.

そのためには1150〜900℃温度域で10分間以上
の保定を施した後熱間圧延を行なう方法である。
For this purpose, there is a method in which hot rolling is carried out after holding in a temperature range of 1150 to 900° C. for 10 minutes or more.

第3図からうかがえるように1パス目を1150℃で圧
延する場合には3分以上待ってから、また1パス目を1
050°Cで行なう場合(こは8分間保持後、さらに1
パス目を1000°Cで行なう際には20分保持後行な
うことにより析出物の形態変化が生じ、熱間圧延に際し
て表面疵の生成を抑制しうる。
As shown in Figure 3, when rolling the first pass at 1150°C, wait at least 3 minutes before rolling the first pass again.
When performing at 050°C (in this case, hold for 8 minutes, then hold for 1 more time)
When the pass is performed at 1000°C, the shape of the precipitates changes by holding the roll for 20 minutes, thereby suppressing the formation of surface flaws during hot rolling.

実操業での鋼片表面温度管理等を考慮した場合には、望
ましいのは1150〜950℃温度域で10分間以上保
持してから圧延を開始することである。
When considering the surface temperature control of the steel billet in actual operation, it is desirable to hold the temperature in the 1150-950°C temperature range for 10 minutes or more before starting rolling.

従ってここでは10分間以上の保定か好ましい。Therefore, retention for 10 minutes or more is preferred here.

なお、本効果は長時間保定でもさしつかえないが、実用
的見地からは60分間程度が上限となる。
Although this effect can be maintained for a long time, from a practical standpoint, the upper limit is about 60 minutes.

本発明は51−Mnを主成分とする炭素鋼において、特
に脱硫とか脱リンとかいう精錬処理を施さない低廉な鋼
種に適用しうるもので、例えばPが0.02%以上、M
n/S 比が40以下あるいはそれらに加えてl’が0
.04%以上含まれている鋼種の直送圧延ならびにホッ
トチャージ圧延に非常(こ有効な方法である。
The present invention can be applied to carbon steels whose main component is 51-Mn, especially low-cost steel types that do not undergo refining treatments such as desulfurization and dephosphorization.
n/S ratio is 40 or less, or in addition l' is 0
.. This method is very effective for direct rolling and hot charge rolling of steel types containing 0.4% or more.

第3図に示した例は熱間加工性に有害な準安定析出物、
(F e 2 Mn ) S 、(F e+Mn)0、
あるいはその複合析出物の析出曲線と、それらの析出物
の球状化、粗大化開始曲線を示しているが、この曲線は
基本成分系によりいく分ずれる可能性はあるが、基本的
には傾向は変らない。
The example shown in Figure 3 is a metastable precipitate that is harmful to hot workability.
(Fe2Mn)S, (Fe+Mn)0,
Alternatively, it shows the precipitation curve of the composite precipitate and the spheroidization and coarsening initiation curve of those precipitates. Although this curve may deviate somewhat depending on the basic component system, the basic trend is It doesn't change.

なお、AlNの粒界析出も熱間加工性(こ著しく悪影響
を及ぼすが、本発明法にのっとって熱間圧延することに
よりその有害性は極微に抑えうろことが判った。
It should be noted that grain boundary precipitation of AlN also has a significant adverse effect on hot workability, but it has been found that by hot rolling according to the method of the present invention, this harmful effect can be minimized.

以下に本発明の内容を実施例にもとづいて説明する 実施例 I C0,12%、Si0.01%、Mn0.32%。The content of the present invention will be explained below based on examples. Example I C0.12%, Si0.01%, Mn0.32%.

Po、021%、80.017%、A70.05%。Po, 021%, 80.017%, A70.05%.

NO,004%(いずれも重量パーセント)の組成を有
する連鋳片から小型試片(10mmφ)を準備してシミ
ュレーション実験を行なった。
A simulation experiment was conducted using a small sample (10 mmφ) prepared from a continuously cast piece having a composition of NO. 004% (all weight percentages).

小型試験片を−たん溶融してから20°C/5e(5)
冷却速度で凝固に引き続く冷却を行ない、1200〜9
00℃温度域で一定時間保定を行なった後、熱間圧延相
当の歪速度(5/5ec)で一軸引張を行ない、保持条
件と断面収縮率の変化を測定した。
After melting a small test piece, 20°C/5e (5)
Cooling following solidification is performed at a cooling rate of 1200 to 9
After holding in the 00°C temperature range for a certain period of time, uniaxial tension was applied at a strain rate equivalent to hot rolling (5/5ec), and changes in holding conditions and cross-sectional shrinkage were measured.

結果は第4図に示す。The results are shown in Figure 4.

1150℃では3分以上、また950%温度域では10
分以上の保持を行なうことにより断面収縮率は60%以
上の値を示すことからホットチャージ圧延、ないし直送
圧延に際しても本処理を施すことにより熱間圧延時の割
れ発生は抑制出来る。
3 minutes or more at 1150℃, and 10 minutes at 950% temperature range.
Since the cross-sectional shrinkage ratio shows a value of 60% or more by holding the steel for more than 10 minutes, the occurrence of cracks during hot rolling can be suppressed by applying this treatment even during hot charge rolling or direct rolling.

実施例 2 C0,42%、SiO,24%、Mn1.2%、PO,
022%、80.018%、Al 0.022%(いず
れも重量パーセント)の組成を有する鋼塊より小型試片
(10mmφ)を準備し、シミュレーション実験を行な
った。
Example 2 C0, 42%, SiO, 24%, Mn 1.2%, PO,
A simulation experiment was conducted using a small specimen (10 mmφ) prepared from a steel ingot having a composition of 0.022%, 80.018%, and 0.022% Al (all weight percentages).

小型試片を−たん1425℃で溶融してから20℃/s
ecの冷却速度で凝固に引き続く冷却を行ない、120
0〜900℃温度域で一定時間保定を行なつ後、熱間圧
延相当の歪速度(5/5ec)で軸引張を行ない、保持
条件と断面収縮率の変化を測定した。
20℃/s after melting a small specimen at 1425℃
Cooling following solidification was performed at a cooling rate of 120 ec.
After holding in the temperature range of 0 to 900°C for a certain period of time, axial tension was applied at a strain rate equivalent to hot rolling (5/5ec), and changes in holding conditions and cross-sectional shrinkage were measured.

結果は第5図に示す。1200〜1000’C温度域で
10分間以上保定処理を施すことにより、断面収縮率は
60%以上の良好な熱間延性を示す。
The results are shown in Figure 5. By performing a holding treatment in a temperature range of 1200 to 1000'C for 10 minutes or more, the cross-sectional shrinkage rate shows good hot ductility of 60% or more.

実施例 3 C0,13%)Si0.2%、Mn0.4%、PO,0
21%、80.016%、AA?0.06%(いずれも
重量パーセント)の組成を有する鋼を真空溶解炉で溶製
しく25kg)、鋳型(上部135mm角、下部145
間角、高さ180mm)に鋳込んだ直後大気中にとり出
し、鋳型抜きを行ない熱間圧延を施した。
Example 3 C0.13%) Si0.2%, Mn0.4%, PO,0
21%, 80.016%, AA? Steel having a composition of 0.06% (all weight percentages) was melted in a vacuum melting furnace, weighing 25 kg), and a mold (upper part 135 mm square, lower part 145 mm square).
Immediately after casting to a diameter of 180 mm in height, the mold was taken out into the atmosphere, removed from the mold, and hot rolled.

** 第6図に
は、その際の鋼塊表面温度の推移を示す。
** Figure 6 shows the transition of the steel ingot surface temperature at that time.

型抜き完了までに6分要し、鋼塊中心部まで凝固が完了
していたことを別途確認している。
It took six minutes to complete the mold removal, and it was separately confirmed that solidification had been completed to the center of the steel ingot.

第7図には本発明法と比較例の加工・熱履歴を模式図的
に示した。
FIG. 7 schematically shows the processing and heat history of the method of the present invention and a comparative example.

また第1表には結果を示す。溶融−凝固に引き続く冷却
過程で直接1150〜1000℃の温度域で熱間圧延を
施した比較例の場合には鋼片表面割れが著しい。
Table 1 also shows the results. In the case of the comparative example in which hot rolling was directly performed in the temperature range of 1150 to 1000°C during the cooling process following melting and solidification, cracks on the surface of the steel piece were significant.

それに対して、冷却途中−たん保持処理を行なった後圧
延を施すと鋼片表面割れが著しく抑制されている。
On the other hand, when rolling is performed after performing a holding treatment during cooling, surface cracking of the steel piece is significantly suppressed.

実施例 4 C0,06%t S t 0.25%、Mn0.78
%。
Example 4 C0.06%t S t 0.25%, Mn 0.78
%.

Po、025%、80.02%、Al O,067%。Po, 025%, 80.02%, AlO, 067%.

NbO,045%、Vo、04%(いずれも重量パーセ
ント)の組成を有する鋼を真空溶解炉で溶製しく 25
kg)、実施例3と同様な方法で熱間圧延を施した。
Steel having a composition of NbO, 0.45% and Vo, 0.4% (both weight percentages) is melted in a vacuum melting furnace. 25
kg), and hot rolling was performed in the same manner as in Example 3.

第2表には結果を示す。Table 2 shows the results.

溶融−凝固に引き続く冷却過程で直接1200〜100
0’Cの温度域で熱間圧延を施した比較例の場合には鋼
片表面割れが著しい。
1200-100 directly during the cooling process following melting-solidification.
In the case of a comparative example in which hot rolling was performed in a temperature range of 0'C, cracks on the surface of the steel piece were significant.

それに対して、冷却途中−たん所定の時間保定処理を行
なった後圧延を施すと鋼片表面割れが著しく抑制されて
いる。
On the other hand, if rolling is carried out after carrying out holding treatment for a predetermined period of time during cooling, surface cracking of the steel billet is significantly suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種の製造プロセスの模式図、第2図はシミュ
レーション実験結果と直送圧延時の鋼片表面割れの相関
を示す図、第3図は準安定析出相および球状析出物の析
出曲線、第4図は実施例1における断面収縮率と保持時
間の関係を示す図表、第5図は実施例2における断面収
縮率と保持時間の関係を示す図表、第6図は鋼塊表面温
度の推移を示す図表、第7図は各種加工熱処理の模式図
である。
Figure 1 is a schematic diagram of various manufacturing processes, Figure 2 is a diagram showing the correlation between simulation experiment results and surface cracking of a steel billet during direct rolling, Figure 3 is a precipitation curve of metastable precipitate phases and spherical precipitates, Figure 4 is a chart showing the relationship between cross-sectional shrinkage rate and holding time in Example 1, Figure 5 is a chart showing the relationship between cross-sectional shrinkage rate and holding time in Example 2, and Figure 6 is a graph showing the change in steel ingot surface temperature. FIG. 7 is a schematic diagram of various processing heat treatments.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼片の直送圧延もしくはホットチャージ圧延におい
て、溶融・凝固に引き続く冷却過程の1150〜950
℃の温度域で10分間以上の保定を行った後圧延を行う
ことを特徴とする熱間圧延時の鋼片表面割れ抑制方法。
1 1150-950 during the cooling process following melting and solidification in direct rolling or hot charge rolling of steel billets
A method for suppressing surface cracking of a steel billet during hot rolling, which comprises rolling after holding in a temperature range of 10 minutes or more.
JP53156667A 1978-12-19 1978-12-19 Method for suppressing surface cracking of steel billet during hot rolling Expired JPS5852442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53156667A JPS5852442B2 (en) 1978-12-19 1978-12-19 Method for suppressing surface cracking of steel billet during hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53156667A JPS5852442B2 (en) 1978-12-19 1978-12-19 Method for suppressing surface cracking of steel billet during hot rolling

Publications (2)

Publication Number Publication Date
JPS5584201A JPS5584201A (en) 1980-06-25
JPS5852442B2 true JPS5852442B2 (en) 1983-11-22

Family

ID=15632662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53156667A Expired JPS5852442B2 (en) 1978-12-19 1978-12-19 Method for suppressing surface cracking of steel billet during hot rolling

Country Status (1)

Country Link
JP (1) JPS5852442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218529A (en) * 1984-04-13 1985-11-01 Mitsubishi Electric Corp Combustion condition detecting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212001A (en) * 1986-03-13 1987-09-18 Sumitomo Metal Ind Ltd Hot rolling method for preventing surface cracking of ingot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105520A (en) * 1976-03-02 1977-09-05 Nippon Steel Corp Continuous casting and continuous hot rolling of aluminium-killed stee l
JPS52108319A (en) * 1976-03-10 1977-09-10 Nippon Steel Corp Production of high strength steel sheet
JPS52131919A (en) * 1976-04-28 1977-11-05 Nippon Steel Corp Production of a1-s# killed steel plate by direct fot rolling of continuous cast slab
JPS5333919A (en) * 1976-09-10 1978-03-30 Nippon Steel Corp Production of cold rolled aluminum killed steel sheet with excellent deep drawability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105520A (en) * 1976-03-02 1977-09-05 Nippon Steel Corp Continuous casting and continuous hot rolling of aluminium-killed stee l
JPS52108319A (en) * 1976-03-10 1977-09-10 Nippon Steel Corp Production of high strength steel sheet
JPS52131919A (en) * 1976-04-28 1977-11-05 Nippon Steel Corp Production of a1-s# killed steel plate by direct fot rolling of continuous cast slab
JPS5333919A (en) * 1976-09-10 1978-03-30 Nippon Steel Corp Production of cold rolled aluminum killed steel sheet with excellent deep drawability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218529A (en) * 1984-04-13 1985-11-01 Mitsubishi Electric Corp Combustion condition detecting device

Also Published As

Publication number Publication date
JPS5584201A (en) 1980-06-25

Similar Documents

Publication Publication Date Title
KR102111433B1 (en) Process for the production of grain-oriented magnetic sheet with a high level of cold reduction
KR900006690B1 (en) Method of producing thin sheet of high si-fe alloy
JPS5852444B2 (en) Method for suppressing steel billet surface cracking during hot rolling
JPS5852442B2 (en) Method for suppressing surface cracking of steel billet during hot rolling
JPS5852443B2 (en) Method for suppressing steel billet surface cracking during hot rolling
JPH04293721A (en) Production of soft steel wire rod excellent in mechanical descaling property
JPS581167B2 (en) Method for producing silicon-containing steel material with excellent surface properties
JPH0365001B2 (en)
JPS63203721A (en) Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance
JPH0112561B2 (en)
JPS601926B2 (en) Method for producing steel material with uniform internal quality
JPS5852441B2 (en) Method for preventing surface cracking of steel slabs during hot rolling
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JP2561476B2 (en) Method for preventing cracking during rapid solidification of Cr-Ni stainless steel or Cr-Ni high alloy steel
KR100285651B1 (en) Method for manufacturing bismuth-sulfur free cutting steel wire rods with beautiful appearance
JPH10296396A (en) Production of bar steel for hot-forging
JP2579707B2 (en) Manufacturing method of wire rod for coated arc welding rod core wire with excellent mechanical descaling property
JP4759818B2 (en) Method for producing hot rolled steel
JPS6219483B2 (en)
JPH0610308B2 (en) Cold rolling method for iron-copper alloy sheet
JPH0790466A (en) Production of sulfur-composite free-cutting steel slab
JPS61243124A (en) Production of black plate for tin plate having excellent workability
SU1567649A1 (en) Method of producing semifinished product from high-carbon steels
JPS58221603A (en) Method for preventing cracking in hot rolling of extra- low carbon steel
JP2000034545A (en) Austenitic heat resistant steel with improved hot workability, and its manufacture