JPS5851563A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5851563A
JPS5851563A JP14943581A JP14943581A JPS5851563A JP S5851563 A JPS5851563 A JP S5851563A JP 14943581 A JP14943581 A JP 14943581A JP 14943581 A JP14943581 A JP 14943581A JP S5851563 A JPS5851563 A JP S5851563A
Authority
JP
Japan
Prior art keywords
layer
type
film
base
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14943581A
Other languages
Japanese (ja)
Inventor
Akira Muramatsu
彰 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14943581A priority Critical patent/JPS5851563A/en
Publication of JPS5851563A publication Critical patent/JPS5851563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable to accelerate the operation of a semiconductor device by forming a low density P<-> type base layer directly under an N<+> type emitter layer and using a P<+> type layer to become a contact as the base layer, thereby increasing the current amplification factor and decreasing the resistance effect. CONSTITUTION:A base in which a low density N<-> type epitaxial Si layer 1 is formed on a high density N<+> type buried layer 6 selectively diffuesed on the surface of a low density P<-> type Si substrate 5 is prepared, B ions are implanted with an SiO2 film 7 formed partly on the surface as a mask, thereby forming a P<-> type layer 3. An SiO2 film 8 is produced on the surface of the P<-> type layer. After an Si3N4 film 9 is formed on the overall surface, only the Si3N4 film of the part corresponding to an emitter remains, and the other Si3N4 film is etched and removed. With the films 9, 7 as masks B is deposited, is diffused in oxidative atmosphere, thereby forming the layer 2 and an SiO2 film 10 on the surface of the layer 2. Then, the mask 9 is removed, and an N<+> type layer 4 to become an emitter is formed. Finally, a base Al electrode B and an emitter Al electrode E are formed.

Description

【発明の詳細な説明】 本発明は半導体装置の製造法に関し、主としてアイソプ
レーナ方式によるバイポーラICを対象とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and is primarily directed to isoplanar bipolar ICs.

バイポーラトランジスタにおいて、電流増幅率hFKを
高くするためにはぺ〜スーを小さくかつ不純物濃度を低
くする必要があり、一方、ベース抵抗効果の影響を少な
くするためにはベースコンタクト部の濃度を高くしなけ
ればならないため、第1図に示すようなN″″エピタキ
シャルSi基体1ノ表面の一部に高濃度のP+ベース(
コンタクト)領域2と、この領域2にIすれた低濃度の
P−真性ベース領域3と、領域3の表面にN+エミッタ
領域4を有するNPN)ランジスタが提案されている。
In a bipolar transistor, in order to increase the current amplification factor hFK, it is necessary to reduce P~S and lower the impurity concentration.On the other hand, in order to reduce the influence of the base resistance effect, it is necessary to increase the concentration in the base contact part. Therefore, a high concentration of P+ base (
An NPN transistor is proposed having a contact region 2, a lightly doped P- intrinsic base region 3 in contact with this region 2, and an N+ emitter region 4 on the surface of the region 3.

このようなトランジスタを通常のプロセスにより実施す
る場合、N−基体1表面にP−ベース領域3を形成した
後、P+ベース領域2とN+エミッタ領域4とを個別の
マスク工程を経て形成するため、マスクずれでP+ベー
ス2とN+エミッタ3が一部で重なり合い、実効的にh
FEが低下するのみならず、集積度が上がらないという
欠点がある。
When such a transistor is implemented using a normal process, after forming the P- base region 3 on the surface of the N- substrate 1, the P+ base region 2 and the N+ emitter region 4 are formed through separate mask steps. Due to mask shift, P+ base 2 and N+ emitter 3 partially overlap, effectively causing h
This has the disadvantage that not only the FE decreases, but also the degree of integration does not increase.

本発明は上記の問題を解決すべくなされたものであり、
その目的とするところは、高h 化、高F! i11化かつ小脂化したトフンジスタの実現にある。
The present invention has been made to solve the above problems,
The purpose is to increase H and F! The aim is to realize a Tofunjista that is i11 and has a small fat content.

第2図(副〜(elは本発明をバイポーラNPN)ラン
ジスタのベース・エミッタプロセスに適用した実施例を
示し、以下各図に対応する工程に従って詳細に説明する
FIG. 2 shows an embodiment in which the present invention is applied to a base-emitter process of a bipolar NPN transistor, and will be described in detail below according to the steps corresponding to each figure.

+a+  at濃度P−1118i基板5表面に選択拡
散した高濃度N++込層6を形成した上に低濃度N−型
エビタキシャルSi層1を形成した基体を用意し、表面
の一部に生成した酸化膜(Sin、)7をマスクとして
低濃度のベース拡散(Bイオン打込み)を行ないP一層
3を形成する。このP一層3は不純物濃度N : 1 
G”〜” atoms/s” 程度とし、拡散深さd:
o、5〜1.0μm程度とする。P一層の表面には薄い
8iQ、膜8が生成される。
A substrate is prepared in which a low concentration N- type epitaxial Si layer 1 is formed on a selectively diffused high concentration N++-containing layer 6 on the surface of a +a+ at concentration P-1118i substrate 5, and the oxidation generated on a part of the surface is A low concentration base diffusion (B ion implantation) is performed using the film (Sin, ) 7 as a mask to form a P layer 3. This P layer 3 has an impurity concentration N: 1
G"~"atoms/s", diffusion depth d:
o, about 5 to 1.0 μm. A thin 8iQ film 8 is formed on the surface of the single P layer.

tb+  全面に8iの窒化物(8i、N、)膜9を形
成しり後ホトレジスト処理によりエミッタにあたる部分
の8i、N4g%のみを残してそれ以外のSi、N4を
エッチ除去する。
tb+ After forming an 8i nitride (8i, N,) film 9 on the entire surface, a photoresist process is performed to leave only 8i and 4g% of N4 in the portion corresponding to the emitter, and remove the remaining Si and N4.

(cl  8i、N、膜9と周囲の厚いSlへ膜7をマ
スクとして高濃度のB(ボロン)デボジシ曹ンを行ない
酸化雰囲気中で拡散を行なうことにより、ベースコンタ
クト部となるP+層2を約0.5μmの深さに形成する
とともにP+層層表表面8i0.膜10を厚く生成する
(Cl 8i, N, B (boron) is deposited at a high concentration onto the film 9 and the surrounding thick Sl using the film 7 as a mask and diffused in an oxidizing atmosphere to form the P+ layer 2 which will become the base contact part. The P+ layer is formed to a depth of about 0.5 μm and a thick P+ layer surface 8i0. film 10 is formed.

(di  81s h+膜マスク9を熱リン酸エッチ液
等により除去し、そのあとP(リン)又はAs(ヒ、3
I)を高濃度にデボジシ画ン又はイオン打込みにより導
入し、エミッタとなるN+層4を約0.2〜0゜5μm
の探さに形成する。この工程で8i、N、膜下の薄い8
iQ、膜8とP+層表面の厚い8i0.膜10の膜厚差
を利用することにより自己整合的にN+層4を形成する
ことができる。
(di 81s h+ film mask 9 is removed using hot phosphoric acid etchant, etc., and then P (phosphorus) or As (hi, 3
I) is introduced at a high concentration by deposition or ion implantation, and the N+ layer 4, which will become an emitter, has a thickness of about 0.2 to 0.5 μm.
Form in search of. In this process, 8i, N, thin 8 under the film
iQ, thick 8i0. of film 8 and P+ layer surface. By utilizing the difference in film thickness of the film 10, the N+ layer 4 can be formed in a self-aligned manner.

lel  P+ベース、N+エミッタ表面の8i0.膜
8゜10の一部をコンタクトホトエッチにより室間し、
λ1(アルミニウム)を蒸着し、ホトエッチすることに
よりベース人!電極B及びエミッタ人!電極ErtWe
或する。なお、コレクタ拡散はベース・エミッタと別工
程により行ない捺い高濃度N+層(図示されない)を形
成する。 − 以上実施例で述べた本発明によれば下記の理由で前記発
明の目的を達成できる。
el P+ base, N+ emitter surface 8i0. A part of the film 8゜10 is removed by contact photoetching,
Base by depositing λ1 (aluminum) and photoetching! Electrode B and emitter! Electrode ErtWe
There is. Note that the collector diffusion is performed in a separate process from the base/emitter process, and a high concentration N+ layer (not shown) is formed. - According to the present invention described in the embodiments above, the object of the invention can be achieved for the following reasons.

(1)  N+エミッタ層の直下には低濃度のP−ベー
ス層が形成されており、h□を高くすることができる。
(1) A low concentration P− base layer is formed directly under the N+ emitter layer, so that h□ can be increased.

(2)ベース層はコンタクトとなるP+層により抵抗効
果を低減し高速化できる。
(2) The base layer can reduce the resistance effect and increase the speed by using the P+ layer which serves as a contact.

(31N+工ミツタ層はP+層に対し自己整合的に形成
されるため両者のオーバーラツプは最小限におさえられ
高集積化が可能となる。
(Since the 31N+ semiconductor layer is formed in self-alignment with the P+ layer, the overlap between the two is kept to a minimum and high integration is possible.

(4)精度を唸要とするホトレジスト工程はエミッタ上
の8i、N、膜マスク形成時のみであってプロセスが簡
Jl、化されコスト的に有利である。
(4) The photoresist process, which requires precision, is only performed when forming the 8i, N, film mask on the emitter, which simplifies the process and is advantageous in terms of cost.

本発明はアイソプレーナ方式によるバイポーラICの全
ての場合に適用できる。
The present invention is applicable to all cases of isoplanar bipolar ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高h□用NPN )ランジスタのベース・エミ
ッタ構造を示す断面図、第2図i11〜(・lは本発明
によるNPN )ランジスタプロセスのベース・エミッ
タ部分の工程断面図である。 1・・・N″″エピタキシャル8i層C基K)、2・・
・P+ベースコンタクト領域、3・・・P−ぺ−X領域
、4・・・N+エミッタ領域、5・・・p−8i、基板
、6・・・N+鳳込層、7・・・8iQ、膜、8・・・
薄いStO,膜、9・・・86N4膜、10・・・8i
0*膜。 j 第2図 第2図
FIG. 1 is a cross-sectional view showing the base-emitter structure of a high h□ NPN transistor, and FIG. 2 is a process cross-sectional view of the base-emitter portion of the NPN transistor process i11 to (.l is according to the present invention). 1...N''''Epitaxial 8i layer C base K), 2...
・P+ base contact region, 3...P-P-X region, 4...N+ emitter region, 5...p-8i, substrate, 6...N+ embedding layer, 7...8iQ, Membrane, 8...
Thin StO, film, 9...86N4 film, 10...8i
0*membrane. j Figure 2Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基体の一主表面の一部に高不純物濃度第1導
電型領域と、この第1導電型領域に接し、かつこの領域
に1まれた高不純物濃度第2導電型領域を形成するにあ
たって、上記基板表面の一部に形成した第1の半導体酸
化膜をマスクとして低不純物濃度第1導電型領域を形成
し、この第1導電型領域の表面の一部に薄い第2の酸化
膜を介して耐酸化性物質膜を形成し、第1の酸化膜と耐
酸化性物質膜を用いて低不純物濃度第1導電型領域の表
面に高不純物濃度第1導電型領域を選択的に形成すると
ともにこの高不純物濃度第1導電型領域表面に第3の酸
化膜を形成した後、耐酸化性物質膜を取り除き、第2の
酸化膜と第3の酸化膜との膜厚の差を利用して第2の酸
化膜下の半導体領域に高不純物濃度第2導電型領域な形
成することを特徴とする半導体装置の製造法。
1. Forming a highly impurity-concentrated first conductivity type region in a part of one main surface of a semiconductor substrate and a highly impurity-concentrated second conductivity type region in contact with and in contact with this first conductivity type region A first conductivity type region with a low impurity concentration is formed using the first semiconductor oxide film formed on a part of the surface of the substrate as a mask, and a thin second oxide film is formed on a part of the surface of the first conductivity type region. forming an oxidation-resistant material film through the oxidation-resistant material film, and selectively forming a high impurity concentration first conductivity type region on the surface of the low impurity concentration first conductivity type region using the first oxide film and the oxidation resistance material film. At the same time, after forming a third oxide film on the surface of this highly impurity-concentrated first conductivity type region, the oxidation-resistant material film is removed and the difference in film thickness between the second oxide film and the third oxide film is utilized. A method of manufacturing a semiconductor device, comprising: forming a highly impurity-concentrated second conductivity type region in a semiconductor region under a second oxide film.
JP14943581A 1981-09-24 1981-09-24 Manufacture of semiconductor device Pending JPS5851563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14943581A JPS5851563A (en) 1981-09-24 1981-09-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14943581A JPS5851563A (en) 1981-09-24 1981-09-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5851563A true JPS5851563A (en) 1983-03-26

Family

ID=15475045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14943581A Pending JPS5851563A (en) 1981-09-24 1981-09-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5851563A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076165A (en) * 1983-09-30 1985-04-30 Nec Kansai Ltd Transistor
JPS62245709A (en) * 1986-04-17 1987-10-27 Sanyo Electric Co Ltd Differential amplifier circuit
JPS63233102A (en) * 1987-03-19 1988-09-28 株式会社 中山製鋼所 Water permeable paving block, its production and water permeable paving method using said block
JPH06207401A (en) * 1993-01-08 1994-07-26 Yabuhara Sangyo Kk Surface pavement material of anti-fading property and water permearbility
JP2012023041A (en) * 2011-07-29 2012-02-02 Fujitsu Ltd Mesh and element analysis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076165A (en) * 1983-09-30 1985-04-30 Nec Kansai Ltd Transistor
JPS62245709A (en) * 1986-04-17 1987-10-27 Sanyo Electric Co Ltd Differential amplifier circuit
JPS63233102A (en) * 1987-03-19 1988-09-28 株式会社 中山製鋼所 Water permeable paving block, its production and water permeable paving method using said block
JP2530645B2 (en) * 1987-03-19 1996-09-04 株式会社 中山製鋼所 Block for permeable pavement, method for producing the same and permeable pavement method using the same
JPH06207401A (en) * 1993-01-08 1994-07-26 Yabuhara Sangyo Kk Surface pavement material of anti-fading property and water permearbility
JP2012023041A (en) * 2011-07-29 2012-02-02 Fujitsu Ltd Mesh and element analysis method

Similar Documents

Publication Publication Date Title
JPS6279666A (en) Manufacture of bipolar semiconductor integrated circuit
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
JPS5851563A (en) Manufacture of semiconductor device
JPH02271566A (en) Semiconductor device and its manufacture
JP2511993B2 (en) Method for manufacturing semiconductor device
JP2626300B2 (en) Method for manufacturing semiconductor device
JPH0579186B2 (en)
JP3104335B2 (en) Method for manufacturing semiconductor device
JPS58212171A (en) Semiconductor device
JPS5678139A (en) Manufacture of semiconductor integrated circuit
JPS59961A (en) Manufacture of semiconductor device
JPS63199462A (en) Manufacture of semiconductor device
JPS6060759A (en) Semiconductor device
JPH0132669B2 (en)
JPH01225357A (en) Semiconductor device
JPH0785475B2 (en) Method for manufacturing bipolar semiconductor integrated circuit device
JPH02119258A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device
JPH0239861B2 (en)
JPS60223160A (en) Manufacture of bipolar transistor
JPS6068646A (en) Manufacture of semiconductor device
JPH05152233A (en) Manufacture of semiconductor device
JPS60140759A (en) Manufacture of semiconductor device
JPS62144358A (en) Manufacture of semiconductor device
JPS60165757A (en) Manufacture of semiconductor device