JPS5849623B2 - Method for manufacturing high-strength galvanized steel sheet with excellent drawability and shapeability - Google Patents

Method for manufacturing high-strength galvanized steel sheet with excellent drawability and shapeability

Info

Publication number
JPS5849623B2
JPS5849623B2 JP849079A JP849079A JPS5849623B2 JP S5849623 B2 JPS5849623 B2 JP S5849623B2 JP 849079 A JP849079 A JP 849079A JP 849079 A JP849079 A JP 849079A JP S5849623 B2 JPS5849623 B2 JP S5849623B2
Authority
JP
Japan
Prior art keywords
temperature
steel
steel sheet
value
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP849079A
Other languages
Japanese (ja)
Other versions
JPS55100936A (en
Inventor
篤樹 岡本
政司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP849079A priority Critical patent/JPS5849623B2/en
Publication of JPS55100936A publication Critical patent/JPS55100936A/en
Publication of JPS5849623B2 publication Critical patent/JPS5849623B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は絞り性ならびに形状性にすぐれた高張力亜鉛メ
ッキ鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high tensile strength galvanized steel sheet with excellent drawability and shapeability.

近時、自動車車体の強度向上あるいは重量軽減を目的と
する高張力鋼板の利用ならびに耐食性を目的とする亜鉛
メッキ鋼板の利用が著るしく、この為めこの種用途に適
した高張力亜鉛メッキ鋼板の開発が望まれている。
In recent years, the use of high-tensile steel sheets for the purpose of increasing the strength or reducing the weight of automobile bodies, and the use of galvanized steel sheets for the purpose of corrosion resistance, has become remarkable. development is desired.

自動車用鋼板は一般にプレス加工を行なってから使用さ
れるので、このプレス加工に適する性質が必要である。
Since steel sheets for automobiles are generally used after being press-formed, they must have properties suitable for this press-forming.

特に車体パネルのように厳しい加工がなされる部品につ
いては絞り性ならびに形状性にすぐれた性質が要求され
る。
In particular, parts that undergo severe processing such as car body panels require excellent drawability and shapeability.

絞り性は鋼板のr値(ランクフォード値)が高いほど良
好であり、従来の軟質鋼板においては製造条件の改良な
どにより高いr値の鋼板が各種開発されている。
The higher the r-value (Lankford value) of a steel sheet, the better the drawability is, and various types of steel sheets with higher r-values have been developed by improving manufacturing conditions for conventional soft steel sheets.

しかしr値は鋼板の強度が上昇すると低下の傾向にあり
、高張力鋼板のr値は1.0前後であった。
However, the r value tends to decrease as the strength of the steel plate increases, and the r value of the high tensile strength steel plate was around 1.0.

形状性は鋼板の降伏強度が低くかつ降伏比が低いほど良
好となるが、一般のフエライト+パーライト組織の鋼で
は降伏比は0.65〜0.85であるため、鋼の引張強
度が増すと降伏強度も上昇してしまい一般的に言って高
張力鋼板の形状性ははなはだしく悪く、自動車用にはあ
まり使用されなかった。
The lower the yield strength and yield ratio of the steel sheet, the better the shape properties will be.However, in general steel with ferrite + pearlite structure, the yield ratio is 0.65 to 0.85, so as the tensile strength of the steel increases, The yield strength also increased, and generally speaking, the formability of high-strength steel sheets was extremely poor, so they were not used much for automobiles.

近年フエライト地中にマルテンサイトを細かく分散させ
た鋼が開発されたが、この鋼では、該マルテンサイトが
転位の発生源となり一様な変形が比較的容易に行なわれ
るので降伏強度が低く、0.60以下の低い降伏比とな
る。
In recent years, a steel with finely dispersed martensite in ferrite has been developed, but in this steel, the martensite becomes a source of dislocations and uniform deformation occurs relatively easily, so the yield strength is low and 0. This results in a low yield ratio of .60 or less.

このような低降伏比の鋼にて各種プレス成形性テストを
行なった結果では、従来のフエライト+パーライト組織
の鋼板(降伏比0.65〜0.85)より形状性が良好
なことが確認されている。
The results of various press formability tests conducted on steel with such a low yield ratio confirmed that the formability was better than that of conventional steel sheets with a ferrite + pearlite structure (yield ratio of 0.65 to 0.85). ing.

さてこのように降伏比の低い鋼板を得るには冷間圧延後
連続焼鈍する方法が最も有利と考えられていた。
Now, in order to obtain a steel plate with such a low yield ratio, the method of continuous annealing after cold rolling was considered to be the most advantageous.

その冶金的背景は鋼板をフエライト(α)+オーステナ
イト(γ)二相共存温度に加熱しその後急冷することに
よりr相をマルテンサイトに変態させ、前記低降伏比を
得るもので、その冷却速度条件などにより鋼中、C量、
Mn量Si量などが調整される。
The metallurgical background is that the steel plate is heated to the coexistence temperature of ferrite (α) and austenite (γ), and then rapidly cooled to transform the r phase into martensite and obtain the low yield ratio. The amount of C in steel, etc.
The Mn amount, Si amount, etc. are adjusted.

このような製造法による低降伏比高張力鋼板は、前記の
ように形状性は良好であるがr値が1.0以下で低いこ
と、マルテンサイト組織を得るために多量のMnあるい
はSiの添加を必要とすることの2点の問題点があった
The low-yield-ratio high-strength steel sheets manufactured by this manufacturing method have good shape properties as described above, but the r value is low at 1.0 or less, and a large amount of Mn or Si is added to obtain a martensitic structure. There were two problems with requiring .

連続溶融Znメッキラインでは、一種の連続焼鈍とZn
メツキが同時になされるので、基本的には上記の考え方
で低降伏比の高張力鋼板が得られるものの、冷却時の熱
履歴が通常の連続焼鈍と著しく異なるため、低降伏比と
するにはさらに多量のSi,Mnの添加を必要とし、そ
の結果、r値は低く、かつ亜鉛皮膜の密着性も悪化して
しまう。
In the continuous hot-dip Zn plating line, a kind of continuous annealing and Zn
Since plating is done at the same time, it is basically possible to obtain a high-strength steel plate with a low yield ratio using the above concept, but since the thermal history during cooling is significantly different from normal continuous annealing, it is necessary to obtain a low yield ratio. It is necessary to add a large amount of Si and Mn, and as a result, the r value is low and the adhesion of the zinc film is also deteriorated.

通常の連続焼鈍法によるより多量のSi,Mn量が必要
なのは、連続溶融Znメッキラインではα+γ相に加熱
後、一旦約500℃の低温保持帯で一定時間加熱保持し
た後約450℃の溶融Zn浴に浸漬して亜鉛メッキした
り、また合金化処理をする場合にはさらに約560℃で
の加熱が追加されるためこの500〜600℃における
保持の間にγ相がパーライト変態しないようにSi,M
n等の添加によりγ相を低温まで安定にする必要がある
からである。
The reason why a larger amount of Si and Mn is required than in the normal continuous annealing method is that in a continuous molten Zn plating line, after heating to the α+γ phase, the molten Zn is heated for a certain period of time in a low temperature holding zone of about 500°C, and then the molten Zn is heated to about 450°C. When galvanizing by immersing in a bath or performing alloying treatment, heating at about 560°C is additionally required, so the Si ,M
This is because it is necessary to stabilize the γ phase even at low temperatures by adding n or the like.

少量のSi,Mn添加でもγ相を安定化でき、連続溶融
Znメッキラインにて低降伏比の鋼板が得られれば合金
コスト的にもr値の向上、亜鉛皮膜の密着性の向上の上
でも利点が大きい。
Even small amounts of Si and Mn addition can stabilize the γ phase, and if a steel plate with a low yield ratio can be obtained in a continuous hot-dip Zn plating line, it will improve the alloy cost, improve the r value, and improve the adhesion of the zinc coating. The benefits are great.

そこで種々の実験研究の結果、発明者らは鋼中Mn,S
olAl,Nを適量添加しかつ溶融Znメッキライン前
に650〜800℃の温度範囲で箱焼鈍することにより
、0.60以下の降伏比、1.2以上のr値を有した、
加工性の著しく良好な高張力亜鉛メッキ鋼板が得られる
ことが判明した。
As a result of various experimental studies, the inventors found that Mn, S in steel
By adding an appropriate amount of olAl,N and box annealing in a temperature range of 650 to 800 ° C before the hot-dip Zn plating line, it had a yield ratio of 0.60 or less and an r value of 1.2 or more.
It has been found that a high tensile strength galvanized steel sheet with extremely good workability can be obtained.

すなわち冷間圧延した鋼板を箱焼鈍するとその昇温過程
でAlNが析出しr値に好ましい再結晶集合組織が形或
され、これは次工程の連続溶融Znメッキ工程では破壊
されないので1.2以上の高いr値が得られる。
In other words, when a cold-rolled steel sheet is box annealed, AlN precipitates during the heating process and forms a recrystallized texture favorable for the r value, which is not destroyed in the next continuous hot-dip Zn plating process, so the r value is 1.2 or more. A high r value can be obtained.

また箱焼鈍時の均黙過程では鋼板は650℃〜800℃
に加熱されるため、鋼はα相とγ相よりなりγ相へはC
,Mnが著しく濃化される。
In addition, during the silent process during box annealing, the steel plate is heated to a temperature of 650℃ to 800℃.
As the steel is heated to
, Mn is significantly enriched.

これを冷却後再び連続溶融亜鉛メッキラインの加熱炉均
熱帯にて600〜SOO℃に加熱するとC,Mnの濃化
した部分は非常に安定なγ相となり、このγ相は500
〜600℃ではパーライト変態することなく200℃付
近でマルテンサイトに変態する。
When this is cooled and then heated again to 600 to SOO℃ in the heating furnace soaking zone of the continuous hot-dip galvanizing line, the part where C and Mn are concentrated becomes a very stable γ phase, and this γ phase
It transforms into martensite at around 200°C without undergoing pearlite transformation at temperatures up to 600°C.

溶融亜鉛の温度は通常460’C前後であるから亜鉛メ
ッキ鋼板においてはメッキ後の冷却過程でマルテンサイ
トが形成される。
Since the temperature of molten zinc is usually around 460'C, martensite is formed in galvanized steel sheets during the cooling process after plating.

また、亜鉛メッキ後連続的に560℃前後まで加熱する
工程を含む合金化処理亜鉛メッキ鋼板においても、鋼板
が亜鉛浴後250℃以下に冷却されることはないので、
合金化処理後の冷却過程においてマルテンサイトが形成
される。
Furthermore, even in alloyed galvanized steel sheets that include a step of continuously heating up to around 560°C after galvanizing, the steel sheets are not cooled below 250°C after the zinc bath.
Martensite is formed during the cooling process after alloying treatment.

このようにして、いずれの亜鉛メッキ鋼板においてもフ
エライト+マルテンサイトの組織が得られる。
In this way, a ferrite + martensite structure can be obtained in any galvanized steel sheet.

この製造法ではMn,Cの偏折を利用しているので、鋼
中平均Mn量は少なくてすみ、かつSiの添加も特に必
要としないのでコストの低下、r値の向上、Zn皮膜の
密着性の向上に寄与する。
Since this manufacturing method utilizes the polarization of Mn and C, the average amount of Mn in the steel can be small, and it does not require the addition of Si, resulting in lower costs, improved r-value, and better adhesion of the Zn film. Contributes to improving sexual performance.

さらに詳述すれば、C0.07係、Si0.07φ、M
n 1.4 2%、P0.011%、So ilAll
0.0 3 8 %、NO.062%を含有する供試
鋼を転炉で溶製しスラブとなした後、加熱温度1220
℃、仕上温度860℃、巻取温度560℃の温度条件で
熱間圧延して3. 2 in厚の鋼板に仕上げ酸洗後、
通常の冷間圧延により0. 8 mm厚に圧延した冷延
鋼板を、H2とN2との混合ガス雰囲気、昇温速度40
℃/hr1冷却速度40°C/hr,均熱時間16hr
の焼鈍条件で、均熱温度を500〜800℃間で変化さ
せて箱焼鈍した各種の供試鋼板を、通常の連続溶融亜鉛
メッキラインで合金化亜鉛メッキ鋼板を製造する場合の
ヒートパターンと同様な第1図に示すヒートパターン、
即ち昇温速度10℃/sec.均熱7 5 0’C3
0SeC,一次冷却速度10℃/sec,低温保持帯5
0 0 ’C 2 0SeC,二次冷却速度10°C
/sec,lび二次冷却での最低温度(T′)点300
’C,合金化炉での均熱560℃10SeC1三次冷却
速度10℃/SeCの条件で熱処理試験を行った。
In more detail, C0.07, Si0.07φ, M
n 1.4 2%, P0.011%, SoilAll
0.038%, NO. After melting the test steel containing 0.062% into a slab in a converter, the heating temperature was 1220
℃, finishing temperature of 860℃, and coiling temperature of 560℃.3. After finish pickling on 2 inch thick steel plate,
0.0 by normal cold rolling. A cold-rolled steel plate rolled to a thickness of 8 mm was heated in a mixed gas atmosphere of H2 and N2 at a heating rate of 40
℃/hr1 Cooling rate 40℃/hr, Soaking time 16hr
The heat pattern is the same as when producing alloyed galvanized steel sheets on a normal continuous hot-dip galvanizing line, using various test steel sheets box-annealed under the same annealing conditions and varying the soaking temperature between 500 and 800 degrees Celsius. The heat pattern shown in Figure 1,
That is, the temperature increase rate is 10°C/sec. Soaking temperature 7 5 0'C3
0SeC, primary cooling rate 10℃/sec, low temperature holding zone 5
0 0 'C 2 0SeC, secondary cooling rate 10°C
/sec, l and the lowest temperature (T') point in secondary cooling 300
A heat treatment test was conducted under the conditions of soaking in an alloying furnace at 560°C, 10SeC, and a tertiary cooling rate of 10°C/SeC.

なお、実際の溶融亜鉛メッキラインにおいては、鋼板は
約500℃での低温保持後、直ちに約460℃に設定し
た亜鉛浴中に約2SeC.間浸漬され、次いでガスワイ
ピングなどにてさらに250〜4008Cまで冷却され
るが、亜鉛浴中浸漬時間は短いので本熱処理ではそれを
省略した。
In an actual hot-dip galvanizing line, the steel plate is kept at a low temperature of about 500°C and then immediately placed in a zinc bath set at about 460°C with about 2 SeC. The sample was immersed in the zinc bath for a short time, and then further cooled to 250 to 4008 C by gas wiping or the like, but since the immersion time in the zinc bath was short, it was omitted in the main heat treatment.

なお上記戒分の箱焼鈍をした鋼のMs点は約120℃で
あるので前記二次冷却における冷却では最低温度(τ点
)はMs点以上が保持されγ相の変態は生じず560℃
、10SeCの熱処理後の冷却過程で鋼板はMs点以下
となることによりγ相のマルテンサイト変態が生じる。
Note that the Ms point of the above-mentioned box-annealed steel is approximately 120°C, so during the cooling in the secondary cooling, the lowest temperature (τ point) is maintained at or above the Ms point, and γ phase transformation does not occur and the temperature is 560°C.
, 10SeC, the temperature of the steel sheet becomes below the Ms point during the cooling process, and martensitic transformation of the γ phase occurs.

第2図は上記熱処理試験で得た各供試鋼板のJI85号
に基く引張試験の特性値から求めた降伏値及びr値と箱
焼鈍温度との関係を示した図表である。
FIG. 2 is a chart showing the relationship between the box annealing temperature and the yield value and r value determined from the characteristic values of the tensile test based on JI 85 of each test steel sheet obtained in the above heat treatment test.

図中、特性曲線Pは箱焼鈍温度とr値の関係を示し、特
性曲線Qは箱焼鈍温度と降伏比の関係を示す。
In the figure, a characteristic curve P shows the relationship between the box annealing temperature and the r value, and a characteristic curve Q shows the relationship between the box annealing temperature and the yield ratio.

第2図に見る通り、箱焼鈍温度が650〜800℃の範
囲であればr値1.20以上、降伏比0.60以下の両
方を満足した鋼板が得られる。
As shown in FIG. 2, if the box annealing temperature is in the range of 650 to 800°C, a steel plate can be obtained that satisfies both the r value of 1.20 or more and the yield ratio of 0.60 or less.

第3図はC0.04〜0.08係、Si0.05〜0.
25%、SoAAA’0.03〜0.08%、NO.0
03〜o.oos%を含有し、Mnを0. 2 〜3.
3%の範囲で変化させて添加した各種の供試鋼を、前
記と同様の方法にて0. 8 mm厚の冷延鋼板に仕上
げた後、昇温速度400C/hr冷却速度40゜C/h
r.均熱温度700℃、均熱時間16hr1H2とN
2の混合ガス雰囲気の焼鈍条件で箱焼鈍し、更に前記第
1図に示したと同様のヒートパターンで熱処理試験して
得た各供試鋼板のJISS号に基く引張試験の特性値か
ら求めた降伏比及びr値とMn含有量との関係を示した
図表である。
Figure 3 shows C0.04-0.08, Si0.05-0.
25%, SoAAA'0.03-0.08%, NO. 0
03~o. oos% and Mn is 0. 2-3.
Various test steels with varying amounts of 3% added were treated in the same manner as described above. After finishing the cold-rolled steel plate with a thickness of 8 mm, the heating rate was 400C/hr and the cooling rate was 40°C/hr.
r. Soaking temperature 700℃, soaking time 16hr1H2 and N
Yield determined from the characteristic values of the tensile test based on JISS No. 2 of each test steel sheet obtained by box annealing under the annealing conditions of a mixed gas atmosphere in 2 and further heat treatment test with the same heat pattern as shown in Fig. 1 above. It is a chart showing the relationship between the ratio, r value, and Mn content.

図中特性曲線Rはr値とMn量の関係を示し、特性曲線
Sは降伏比とMn量の関係を示す。
In the figure, a characteristic curve R shows the relationship between the r value and the amount of Mn, and a characteristic curve S shows the relationship between the yield ratio and the amount of Mn.

第3図に見る通り、r値1.20以上、降伏比0.60
以下の両方を満足するMn含有量は0.8〜2.5優の
範囲である。
As shown in Figure 3, the r value is 1.20 or more, and the yield ratio is 0.60.
The Mn content that satisfies both of the following is in the range of 0.8 to 2.5.

第1図に示したヒートパターンは合金化亜鉛メッキ鋼板
を製造する場合を考えた実験室におけるシミュレーショ
ンのヒートパターンである。
The heat pattern shown in FIG. 1 is a heat pattern simulated in a laboratory for manufacturing an alloyed galvanized steel sheet.

この図をもって通常の亜鉛メッキ鋼板の場合と合金化処
理亜鉛メッキ鋼板の場合を比較すると、後者では第1図
のように合金化過程があるためフエライト+マルテンサ
イトの組織にするのには合金成分の調整などの努力が必
要であるが、前者の通常亜鉛メッキ(合金化処理なし)
では、鋼板は合金化処理炉を通過しないため、第1図の
ヒートサイクルにおいて、鋼板の温度はγ後そのまま室
温まで冷却されるにすぎない。
Using this diagram to compare the case of a normal galvanized steel sheet and the case of an alloyed galvanized steel sheet, in the latter case, as shown in Figure 1, there is an alloying process, so the alloying ingredients are necessary to create a ferrite + martensite structure. Although efforts such as adjustment are required, the former is usually galvanized (without alloying treatment)
In this case, since the steel plate does not pass through the alloying treatment furnace, in the heat cycle shown in FIG. 1, the temperature of the steel plate is simply cooled to room temperature after γ.

したがって、フエライト+マルテンサイトの組織を得る
のは合金化処理鋼板の場合より容易である。
Therefore, it is easier to obtain a ferrite + martensite structure than in the case of alloyed steel sheets.

ゆえに第1図に示すヒートサイクルにおいて所望の組織
および機械特性が得られるよう成分限定、箱焼鈍条件限
定をしておけば、通常亜鉛メッキ鋼板においては所望の
組織および機械特性が得られる。
Therefore, if the ingredients and box annealing conditions are limited so that the desired structure and mechanical properties can be obtained in the heat cycle shown in FIG. 1, the desired structure and mechanical properties can usually be obtained in galvanized steel sheets.

本発明は上記知見に基いて合金或分と熱処理の両面から
改良を加えた新しい高張力亜鉛メッキ鋼板の製造方法を
提供するものであって、co.2oφ以下、Si0.6
0%以下、Mn0.8〜2.5%、P0.10%以下、
SolAAi’0.01〜0.20%、NO.0015
〜0.0150饅を含有し、残部が実質的にFeから成
る鋼を、熱間圧延および冷間圧延後650〜800℃の
温度範囲で箱焼鈍し冷却後、連続溶融亜鉛メッキライン
の加熱炉均熱帯にて、600〜800℃の温度範囲で加
熱後、亜鉛メッキあるいは合金化亜鉛メッキすることを
要旨とする。
The present invention provides a new method for producing high-strength galvanized steel sheets based on the above findings, with improvements made in terms of both alloy content and heat treatment. 2oφ or less, Si0.6
0% or less, Mn 0.8 to 2.5%, P 0.10% or less,
SolAAi'0.01-0.20%, NO. 0015
After hot rolling and cold rolling, a steel containing ~0.0150 yen and the remainder substantially consisting of Fe is box annealed in a temperature range of 650 to 800°C, cooled, and then placed in a heating furnace of a continuous hot-dip galvanizing line. The gist is to perform galvanization or alloyed zinc plating after heating at a temperature range of 600 to 800°C in a soaking zone.

本発明において鋼の成分を上記の如く限定した理由につ
いて説明する。
The reason why the components of the steel are limited as described above in the present invention will be explained.

C:0.20%を越えるとスポット溶接性が劣化しr値
が低下する。
C: If it exceeds 0.20%, spot weldability deteriorates and the r value decreases.

Si:Siは安価な強化元素であるが、0.60俤を越
えると鋼板に対する亜鉛の密着性が著しく悪化する。
Si: Si is an inexpensive reinforcing element, but if it exceeds 0.60 t, the adhesion of zinc to the steel plate will deteriorate significantly.

Mn:0.80多未満ではMn濃縮部でのMn濃度が不
足し降伏比を低下させる効果が不十分.であり、2.5
優を越えるとr値が1.2b以下に低下する。
Mn: If it is less than 0.80, the Mn concentration in the Mn enriched section is insufficient and the effect of lowering the yield ratio is insufficient. and 2.5
When it exceeds excellent, the r value decreases to 1.2b or less.


゛・SoAAA : 0. 0 1φ未満では鋼の清浄
度が低下すると共にr値も低下する。

゛・SoAAA: 0. If the diameter is less than 0.01φ, the cleanliness of the steel decreases and the r value also decreases.

0.20φを越えると鋼の溶製が困難となる。If the diameter exceeds 0.20φ, it becomes difficult to melt the steel.

N:0.0015φ未満では鋼の再結晶集合組織を得る
ためのA7Nが形成が不充分であり、また0.0150
%を越えると延性が悪化する。
N: If it is less than 0.0015φ, the formation of A7N to obtain the recrystallized texture of steel is insufficient, and if it is less than 0.0150
%, ductility deteriorates.

P:安価な強化元素であるが0.10φ以上添加すると
脆性破壊を生じやすい。
P: Although it is an inexpensive reinforcing element, adding 0.10φ or more tends to cause brittle fracture.

本発明方法において箱焼鈍の均熱温度を650〜800
℃に限定したのは、650℃未満及び800℃を越えた
場合は降伏比0.60以下が得られないからであり、連
続溶融亜鉛メッキラインの加熱炉均熱帯での加熱温度を
600〜800℃に限定したのは、600℃未満では前
述したC,Mn濃縮部での安定したオーステナイト相の
形成が十分に行われず、また800℃を越えると形成さ
れるオーステナイト相が多すぎて、箱焼鈍時にオーステ
ナイト中にC,Mnを濃縮した効果が発揮されないから
である。
In the method of the present invention, the soaking temperature of box annealing is set to 650 to 800.
The reason for limiting the heating temperature to 600 to 800 °C is that a yield ratio of 0.60 or less cannot be obtained if the temperature is lower than 650 °C or higher than 800 °C. The reason for limiting the temperature is that below 600°C, the formation of stable austenite phase in the C and Mn enriched section described above is insufficient, and when it exceeds 800°C, too much austenite phase is formed, so box annealing is not possible. This is because sometimes the effect of concentrating C and Mn in austenite is not exhibited.

次ぎに本発明の実施例について説明する。Next, examples of the present invention will be described.

供試鋼(4), (B) , (C) , CD)の成
分を第1表に示す。
Table 1 shows the composition of the test steels (4), (B), (C), and CD).

第1表の供試鋼代)〜0をそれぞれ転炉で溶製しスラブ
となした後、3.2mm厚の鋼板に熱間圧延し酸洗後冷
間圧延して0.8mrn厚の冷延鋼板に仕上げ、これを
H2とN2との混合ガス雰囲気、昇温速度40℃/hr
,冷却速度40℃/ h r ,均熱温度700℃、均
熱時間16hrの焼鈍条件で箱焼鈍した場合と箱焼鈍し
ない場合との二通りに分けて、それぞれライン速度8o
rrL/mlnで連続溶融亜鉛メッキラインを通して亜
鉛メッキした。
The sample steels shown in Table 1) to 0 were each melted in a converter to form a slab, then hot rolled into a 3.2mm thick steel plate, pickled, and then cold rolled to a 0.8mmrn thick steel plate. Finished into a rolled steel plate and heated it in a mixed gas atmosphere of H2 and N2 at a heating rate of 40°C/hr.
, a cooling rate of 40°C/hr, a soaking temperature of 700°C, and a soaking time of 16 hours were used for box annealing, and the line speed was 8o.
Galvanized through a continuous hot dip galvanizing line at rrL/mln.

上記亜鉛メッキラインにおいては、加熱炉にて板温75
0℃に加熱後、低温保持帯にて板温500℃に20Se
C保持した後460℃の亜鉛メッキ浴槽内に浸漬して亜
鉛メッキした後直ちにガスワイピングにて亜鉛皮膜の厚
みを片面40g/rI1″に調整後合金化炉に装入して
板温460’Cに10sec保持した後室温まで放冷す
る場合と、前記合金化炉を通さないで室温まで放冷する
場合との二通りに分けて、それぞれ亜鉛メッキ供試鋼板
と合金化亜鉛メッキ供試鋼板を得た。
In the galvanizing line mentioned above, the plate temperature is 75% in the heating furnace.
After heating to 0℃, the plate temperature was raised to 500℃ in a low temperature holding zone for 20Se.
After holding the plate at 460°C, it was immersed in a galvanizing bath at 460°C to be galvanized. Immediately after adjusting the thickness of the zinc coating to 40g/rI1″ on one side by gas wiping, it was charged into an alloying furnace and the plate temperature was 460°C. The galvanized test steel sheet and the alloyed galvanized test steel sheet were divided into two methods: one was held for 10 seconds and then allowed to cool to room temperature, and the other was allowed to cool to room temperature without passing through the alloying furnace. Obtained.

上記各供試鋼板の引張試験による降伏強度、引張強度、
降伏比ならびにr値、亜鉛密着性の結果を第2表に示す
The yield strength, tensile strength, and
The yield ratio, r value, and zinc adhesion results are shown in Table 2.

上記引張試験はJI35号によるL方向引張の試験結果
であり、亜鉛密着性は密着曲げ後皮膜のハクリ状況を調
査した結果で、○印は密着性良好、×印は密着性不良を
示す。
The above tensile test is the result of the L direction tensile test according to JI35, and the zinc adhesion is the result of investigating the peeling state of the film after adhesion bending. ○ mark indicates good adhesion, and × mark indicates poor adhesion.

またGIは亜鉛メッキ鋼板、GAは合金化亜鉛メッキ鋼
板を示す。
Further, GI indicates a galvanized steel sheet, and GA indicates an alloyed galvanized steel sheet.

第2表に見る通り、本発明の成分範囲の鋼板(B)であ
っても、箱焼鈍したものは降伏比0.60以下、r値1
.20以上の成績を示すが、箱焼鈍しないものは降伏比
、r値とも不十分である。
As shown in Table 2, even if the steel plate (B) has the composition range of the present invention, the box annealed one has a yield ratio of 0.60 or less and an r value of 1.
.. Although it shows a score of 20 or more, those without box annealing have insufficient yield ratio and r value.

比較鋼(4),(C)はすべて降伏比、r値のいづれか
において前記必要水準を満足せず、比較鋼(D)はSi
分が高いため亜鉛密着性が不良であり、高張力亜鉛メッ
キ鋼板として不適格であることを示す。
Comparative steels (4) and (C) all did not satisfy the above-mentioned required level in either yield ratio or r value, and comparative steel (D)
This indicates that the zinc adhesion is poor and the steel sheet is unsuitable for use as a high-tensile galvanized steel sheet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常の連続溶融亜鉛メッキラインのヒートパタ
ーンの一例を示す図表、第2図は熱処理試験を行った供
試鋼板における降伏比ならびにr値と箱焼鈍温度との関
係を示した図表、第3図は同上供試鋼板における降伏比
ならびにr値とMn量との関係を示した図表である。
Fig. 1 is a chart showing an example of the heat pattern of a normal continuous hot-dip galvanizing line, Fig. 2 is a chart showing the relationship between yield ratio and r value and box annealing temperature for test steel sheets subjected to heat treatment tests. FIG. 3 is a chart showing the relationship between yield ratio, r value, and Mn content in the same test steel sheets.

Claims (1)

【特許請求の範囲】[Claims] I C0.201%以下、SiO.60%以下、Mn
o. s 〜2. 5 %、po.to%以下、Sol
k1 0. 0 1〜0.20優、N0.0015〜0
.0150優を含有し、残部が実質的にFeから成る鋼
を、熱間圧延および冷間圧延後650〜800℃の温度
範囲で箱焼鈍し冷却後、連続溶融亜鉛メッキラインの加
熱炉均熱帯にて、600〜800℃の温度範囲で加熱後
亜鉛メッキあるいは合金化亜鉛メッキすることを特徴と
する絞り性ならびに形状性にすぐれた高張力亜鉛メッキ
鋼板の製造方法。
IC0.201% or less, SiO. 60% or less, Mn
o. s ~2. 5%, po. to% or less, Sol
k1 0. 0 1~0.20 excellent, N0.0015~0
.. After hot rolling and cold rolling, a steel containing 0.0150% and the remainder substantially consisting of Fe is box annealed in a temperature range of 650 to 800°C, cooled, and placed in a soaking zone in a heating furnace of a continuous hot-dip galvanizing line. A method for producing a high-tensile galvanized steel sheet with excellent drawability and shapeability, characterized by carrying out galvanization or alloyed galvanization after heating in a temperature range of 600 to 800°C.
JP849079A 1979-01-27 1979-01-27 Method for manufacturing high-strength galvanized steel sheet with excellent drawability and shapeability Expired JPS5849623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP849079A JPS5849623B2 (en) 1979-01-27 1979-01-27 Method for manufacturing high-strength galvanized steel sheet with excellent drawability and shapeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP849079A JPS5849623B2 (en) 1979-01-27 1979-01-27 Method for manufacturing high-strength galvanized steel sheet with excellent drawability and shapeability

Publications (2)

Publication Number Publication Date
JPS55100936A JPS55100936A (en) 1980-08-01
JPS5849623B2 true JPS5849623B2 (en) 1983-11-05

Family

ID=11694550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP849079A Expired JPS5849623B2 (en) 1979-01-27 1979-01-27 Method for manufacturing high-strength galvanized steel sheet with excellent drawability and shapeability

Country Status (1)

Country Link
JP (1) JPS5849623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2415894A2 (en) 2001-08-24 2012-02-08 Nippon Steel Corporation Steel sheet excellent in workability and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127761A (en) * 1980-03-10 1981-10-06 Nisshin Steel Co Ltd Preparation of high strength zinc hot dipping steel plate with low yield ratio

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2415894A2 (en) 2001-08-24 2012-02-08 Nippon Steel Corporation Steel sheet excellent in workability and method for producing the same
EP2415893A2 (en) 2001-08-24 2012-02-08 Nippon Steel Corporation Steel sheet excellent in workability and method for producing the same

Also Published As

Publication number Publication date
JPS55100936A (en) 1980-08-01

Similar Documents

Publication Publication Date Title
JPH05331537A (en) Manufacture of galvannealed high tensile strength cold rolled steel plate excellent in corrosion resistance and formability
JPS6047328B2 (en) Manufacturing method of bake-hardenable steel plate for ultra-deep drawing
JPS6111296B2 (en)
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JPS5974231A (en) Production of ultradeep drawing galvanized steel sheet
JP3110238B2 (en) Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPS5849623B2 (en) Method for manufacturing high-strength galvanized steel sheet with excellent drawability and shapeability
JPH05230614A (en) Manufacture of high strength hot dip calvanized steel sheet for deep drawing
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JP2802513B2 (en) Method for producing steel sheet having excellent press formability, remarkable hardenability by heat treatment after molding and high corrosion resistance, and method for producing steel structural member using the steel sheet
JPH03281732A (en) Production of hot-dip galvanized steel sheet for deep drawing excellent in spot weldability
JPS63241122A (en) Production of hot dip zinc coated steel sheet for ultra-deep drawing
JPH03199343A (en) Cold rolled steel sheet for press working having extremely good chemical conversion treatability, weldability, punchability and slidability
JP2002146477A (en) High strength galvanized steel sheet having excellent formability and its production method
JP2550849B2 (en) Method for producing high strength galvannealed steel sheet with excellent deep drawability, plating adhesion and corrosion resistance after painting
JP2827740B2 (en) Method for producing steel sheet with excellent fatigue characteristics and deep drawability
JP2818675B2 (en) Manufacturing method of surface-conditioned cold-rolled steel sheet
JPH01123058A (en) Alloying hot dip galvanized steel sheet for superdrawing excellent in resistance to secondary working brittleness and its production
JPS5831035A (en) Production of zinc hot dipped steel plate having excellent workability and baking hardenability
JPH021212B2 (en)
JP2003105492A (en) High strength and high ductility galvanized steel sheet having excellent corrosion resistance, and production method therefor
JP3257715B2 (en) Method for producing high-strength galvannealed steel sheet for high working with excellent plating adhesion
JPH03111519A (en) Production of high strength hot dip galvanized steel sheet having high r-value
JP2546471B2 (en) Method for producing bake hardened high strength galvannealed steel sheet with excellent plating adhesion