JP2802513B2 - Method for producing steel sheet having excellent press formability, remarkable hardenability by heat treatment after molding and high corrosion resistance, and method for producing steel structural member using the steel sheet - Google Patents

Method for producing steel sheet having excellent press formability, remarkable hardenability by heat treatment after molding and high corrosion resistance, and method for producing steel structural member using the steel sheet

Info

Publication number
JP2802513B2
JP2802513B2 JP20946389A JP20946389A JP2802513B2 JP 2802513 B2 JP2802513 B2 JP 2802513B2 JP 20946389 A JP20946389 A JP 20946389A JP 20946389 A JP20946389 A JP 20946389A JP 2802513 B2 JP2802513 B2 JP 2802513B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
steel
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20946389A
Other languages
Japanese (ja)
Other versions
JPH0372034A (en
Inventor
一夫 小山
二男 平塚
裕秀 浅野
伸彦 松津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20946389A priority Critical patent/JP2802513B2/en
Publication of JPH0372034A publication Critical patent/JPH0372034A/en
Application granted granted Critical
Publication of JP2802513B2 publication Critical patent/JP2802513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車のメンバーやパネル類のように極め
て加工度の高い成形性と同時に高い製品の強度と高い防
錆性が要求される利用分野に提供する熱延鋼板の製造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention is applied to a material requiring extremely high formability such as a member of an automobile or a panel and at the same time high product strength and high rust prevention. It relates to the production of hot-rolled steel sheets provided to the field.

(従来の技術) 従来、加工用高防錆性高強度熱延鋼板は、高強度熱延
鋼板に電気亜鉛めっきを施した電気亜鉛めっき熱延鋼板
が中心であった。そしてその鋼板の強化方法はMn,P,Si
等による固溶体強化、C,Mn合金の組織強化、あるいはN
b,Ti添加による析出強化を適宜組み合わせて製造されて
いる。しかし電気亜鉛めっきでは目付を多くすることは
経済的に困難で、より高防錆性のためには溶融亜鉛めっ
きがふさわしい。しかし、溶融亜鉛めっきでは合金系に
よっては亜鉛のめっき密着性に問題が生じたり、また溶
融亜鉛めっきの時の表面酸化被膜の還元除去の熱処理に
より熱延鋼板の組織が変化し、高強度鋼板の特性を失う
などの欠点があった。
(Prior Art) Conventionally, high-corrosion-resistant high-strength hot-rolled steel sheets for processing have been mainly electrogalvanized hot-rolled steel sheets obtained by applying electrogalvanizing to high-strength hot-rolled steel sheets. And the strengthening method of the steel sheet is Mn, P, Si
Solid solution strengthening, C, Mn alloy structure strengthening, or N
It is manufactured by appropriately combining precipitation strengthening by adding b and Ti. However, it is economically difficult to increase the basis weight by electrogalvanizing, and hot-dip galvanizing is suitable for higher rust prevention. However, in hot-dip galvanizing, depending on the alloy system, there may be a problem in the galvanic adhesion, or the structure of the hot-rolled steel sheet changes due to the heat treatment for the reduction and removal of the surface oxide film during hot-dip galvanizing, and There were drawbacks such as loss of characteristics.

本発明ではCuの時効析出により高強度化を行うが、こ
のこと自体は公知である。例えば特公昭57−17049号公
報および特願昭62−157891号(62.6.26)の技術がそれ
にあたる。前者では低C鋼で、後者では極低C鋼でいず
れも約1〜2%のCuを添加し、このCuを固溶状態のまま
すなわち軟化状態のときにプレス成形することにより高
加工性とし、その後の熱処理により強度を高めるという
ものである。しかしながらこの技術を溶融亜鉛めっきに
適用することについては何の言及もない。さらに、一般
的には溶融亜鉛めっき時の熱処理による変化により強度
や延性に大きな変化が生じると予想される。すなわち、
プレス成形前に安定して高成形性の状態を保つことは困
難である。
In the present invention, the strength is increased by aging precipitation of Cu, which is known per se. For example, the techniques of Japanese Patent Publication No. 57-17049 and Japanese Patent Application No. 62-157891 (62.6.26) correspond to this. The former is a low-C steel and the latter is an ultra-low-C steel in which approximately 1 to 2% of Cu is added, and the Cu is formed into a solid solution state, that is, in a softened state by press forming to obtain high workability. In addition, the strength is increased by a subsequent heat treatment. However, there is no mention of applying this technique to hot dip galvanizing. Further, in general, it is expected that a large change occurs in strength and ductility due to a change due to heat treatment during hot-dip galvanizing. That is,
It is difficult to stably maintain the state of high moldability before press molding.

(発明が解決しようとする課題) 本発明の課題は、高度な成形性と部品あるいは製品と
して高い強度とさらに、極めて高い防錆性を同時に与え
ることにある。すなわち、Cu添加鋼のプレス成形前の高
延性を活かした高成形性とプレス成形後の熱処理による
硬化性、および合金化溶融亜鉛めっき鋼板並みの高耐食
性を兼ね備えた熱延鋼板を素材とした鋼構造部材の製造
方法にかかわる。
(Problems to be Solved by the Invention) An object of the present invention is to simultaneously provide high moldability, high strength as a part or a product, and extremely high rust prevention. In other words, a steel made from a hot-rolled steel sheet that combines high formability utilizing the high ductility of the Cu-added steel before press forming, the hardenability by heat treatment after press forming, and high corrosion resistance comparable to that of an alloyed hot-dip galvanized steel sheet. Related to the manufacturing method of the structural member.

(課題を解決するための手段) 本発明は、成形加工性とCuの時効析出による高強度化
性と溶融亜鉛めっき性を考慮した成分組成の鋼を出発材
とし、主としてCuの固溶状態を維持する条件で熱延鋼板
とする工程、これにCuの固溶状態を維持しながら溶融亜
鉛めっきを施す工程、プレス成形する工程、鋼材の強化
および表層の亜鉛めっき層をFe−Zn合金とする熱処理工
程からなり、その要旨とするところは下記のとおりであ
る。
(Means for Solving the Problems) The present invention starts with a steel having a component composition in consideration of formability, high strength by aging precipitation of Cu, and hot-dip galvanizing properties, and mainly forms a solid solution state of Cu. A step of forming a hot-rolled steel sheet under the conditions to be maintained, a step of performing hot-dip galvanizing while maintaining a solid solution state of Cu in this, a step of press forming, strengthening the steel material and forming the surface galvanized layer as an Fe-Zn alloy It consists of a heat treatment step, and the summary is as follows.

(1) C:0.05%以下、Mn:0.05〜0.5%、Al:0.1%以
下、Cu:0.8〜2.0%を含み、残部実質的に鉄からなる鋼
をスラブとし、巻取温度≦530℃の条件で熱延を行いコ
イルとし、続いて530℃以下の温度に加熱し鋼板表面の
還元を行った後、溶融亜鉛めっきを施すことを特徴とす
るプレス成形性に優れ、成形後の熱処理による著しい硬
化性と高耐食性を有する鋼板の製造方法。
(1) C: 0.05% or less, Mn: 0.05 to 0.5%, Al: 0.1% or less, Cu: 0.8 to 2.0%, steel consisting essentially of iron as a slab, with a winding temperature ≤ 530 ° C Hot rolled under the conditions to make a coil, then heated to a temperature of 530 ° C. or less and reduced the steel sheet surface, then hot-dip galvanized, excellent in press formability, remarkable by heat treatment after forming A method for producing a steel sheet having curability and high corrosion resistance.

(2) C:0.05%以下、Mn:0.05〜0.5%、Al:0.1%以
下、Cu:0.8〜2.0%を含有し、さらにTi:0.005〜0.1%、
Nb:0.005〜0.1%、Zr:0.02〜0.1%、B:0.0001〜0.0030
%、Ni:Ni/Cuで0.05〜0.3の1種または2種以上を含
み、残部実質的に鉄からなる鋼をスラブとし、巻取温度
≦530℃の条件で熱延を行いコイルとし、続いて530℃以
下の温度で加熱し鋼板表面の還元を行った後、溶融亜鉛
めっきを施すことを特徴とするプレス成形性に優れ、成
形後の熱処理による著しい硬化性と高耐食性を有する鋼
板の製造方法。
(2) C: 0.05% or less, Mn: 0.05 to 0.5%, Al: 0.1% or less, Cu: 0.8 to 2.0%, Ti: 0.005 to 0.1%,
Nb: 0.005 to 0.1%, Zr: 0.02 to 0.1%, B: 0.0001 to 0.0030
%, Ni: Ni / Cu containing one or two or more kinds of 0.05 to 0.3, and the rest substantially made of iron is made into a slab, and hot-rolled at a winding temperature ≤ 530 ° C to form a coil. Production of steel sheet with excellent press formability characterized by applying hot-dip galvanizing after heating at a temperature of 530 ° C or less to reduce the surface of the steel sheet, and having remarkable hardenability and high corrosion resistance by heat treatment after forming Method.

(3) C:0.05%以下、Mn:0.05〜0.5%、Al:0.1%以
下、Cu:0.8〜2.0%を含み、残部実質的に鉄からなる鋼
をスラブとし、巻取温度≦530℃の条件で熱延を行いコ
イルとし、続いて530℃以下の温度に加熱し鋼板表面の
還元を行った後、溶融亜鉛めっきを施した鋼板をプレス
成形加工し、続いて550〜650℃に10秒〜20分加熱し、続
いて溶接接合することを特徴とする優れた強度と耐食性
を有する鋼構造部材の製造方法。
(3) C: 0.05% or less, Mn: 0.05 to 0.5%, Al: 0.1% or less, Cu: 0.8 to 2.0%, steel consisting essentially of iron as a slab, with a winding temperature ≤ 530 ° C After hot-rolling under the conditions to form a coil, and then heating to a temperature of 530 ° C or less to reduce the surface of the steel sheet, hot-dip galvanized steel sheet is press-formed, and then to 550 to 650 ° C for 10 seconds. A method for producing a steel structural member having excellent strength and corrosion resistance, characterized by heating for up to 20 minutes and then welding.

(4) C:0.05%以下、Mn:0.05〜0.5%、Al:0.1%以
下、Cu:0.8〜2.0%を含有し、さらにTi:0.005〜0.1%、
Nb:0.005〜0.1%、Zr:0.02〜0.1%、B:0.0001〜0.0030
%、Ni:Ni/Cuで0.05〜0.3の1種または2種以上を含
み、残部実質的に鉄からなる鋼をスラブとし、巻取温度
≦530℃の条件で熱延を行いコイルとし、続いて530℃以
下の温度で加熱し鋼板表面の還元を行った後、溶融亜鉛
めっきを施した鋼板をプレス成形加工し、続いて550〜6
50℃に10秒〜20分加熱し続いて溶接接合することを特徴
とする優れた強度と耐食性を有する鋼構造部材の製造方
法。
(4) C: 0.05% or less, Mn: 0.05 to 0.5%, Al: 0.1% or less, Cu: 0.8 to 2.0%, Ti: 0.005 to 0.1%,
Nb: 0.005 to 0.1%, Zr: 0.02 to 0.1%, B: 0.0001 to 0.0030
%, Ni: Ni / Cu containing one or two or more kinds of 0.05 to 0.3, and the rest substantially made of iron is made into a slab, and hot-rolled at a winding temperature ≤ 530 ° C to form a coil. After heating at a temperature of 530 ° C or less to reduce the surface of the steel sheet, the steel sheet subjected to hot-dip galvanizing is press-formed, and then 550-6
A method for producing a steel structural member having excellent strength and corrosion resistance, wherein the member is heated to 50 ° C. for 10 seconds to 20 minutes and then welded.

(作 用) 本発明は、溶融亜鉛めっき性を考慮した低C、軟質熱
延鋼板にCuを0.8〜2.0%固溶させ、その固溶状態を維持
した状態で、なおかつ加工性のため硬質な組織とならな
いように熱延を行い、その後Cuが析出しない条件で溶融
亜鉛めっきを施して素材とし、次にプレス成形を施し続
いて550〜650℃に10秒〜20分加熱し鋼板中のCuを時効析
出させて鋼板を著しく硬化させるとともに、鋼板表面の
溶融亜鉛めっき層をFe−Zn合金とし耐食性、溶接性を高
めようとするものである。
(Operation) The present invention is to dissolve 0.8 to 2.0% of Cu in a low-C, soft hot-rolled steel sheet in consideration of hot-dip galvanizing properties, maintain the solid-dissolved state, and form a hard solution for workability. Hot rolling is performed so as not to have a structure, and then hot-dip galvanized under the condition that Cu does not precipitate to obtain a material, then press-formed and subsequently heated to 550 to 650 ° C for 10 seconds to 20 minutes, and the Cu To age harden the steel sheet and harden the steel sheet remarkably, and make the hot-dip galvanized layer on the steel sheet surface an Fe-Zn alloy to improve corrosion resistance and weldability.

本発明は以上のような概略の骨子に基づくが、以下に
本発明の個々の構成要件について詳細に言及する。
Although the present invention is based on the outline as described above, individual components of the present invention will be described in detail below.

Cは加工性の観点から0.05%以下とする。この量を越
えると鋼中にパーライトあるいはさらに、硬質な組織が
生じ、プレス成形性を損なう。
C is set to 0.05% or less from the viewpoint of workability. If the amount exceeds this, pearlite or even a hard structure is formed in the steel, which impairs press formability.

降伏点挙動など鋼中の固溶炭素、窒素が問題となる場
合にはこれらの元素と親和力の強いTi,Nb,あるいはZrの
1種または2種以上をTi:0.005〜0.1%、Nb:0.005〜0.1
%、Zr:0.02〜0.1%の範囲で添加する。これらの範囲未
満の添加では固溶炭素、窒素固着の効果がなく、これら
の範囲を越えての添加は効果が飽和しむやみに経済性を
損なうばかりである。
When the solid solution carbon and nitrogen in the steel such as the yield point behavior becomes a problem, one or more of Ti, Nb, or Zr, which has a strong affinity for these elements, is Ti: 0.005 to 0.1%, Nb: 0.005 ~ 0.1
%, Zr: added in the range of 0.02 to 0.1%. Additions below these ranges have no effect on solid solution carbon and nitrogen fixation, and additions beyond these ranges will only saturate the effect and impair economic efficiency.

また、さらにこのような固溶炭素、窒素がまったく鋼
中にない場合、これら元素は鋼の粒界強度を坦っている
ため粒界が弱くなり、プレス成形後に二次加工脆化ある
いは縦割れと呼ばれる粒界脆性破壊が生じやすくなる。
Further, when such solid carbon and nitrogen are not present in the steel at all, these elements carry the grain boundary strength of the steel, so that the grain boundaries are weakened. In this case, grain boundary brittle fracture referred to as "g."

これを防ぐためBを0.0001〜0.0030%の範囲で添加す
ることが好ましい。0.0001%未満では粒界破壊脆化防止
効果はない。0.0030%を越えると固溶Bが増加し鋼の延
性を害する。
To prevent this, B is preferably added in the range of 0.0001 to 0.0030%. If less than 0.0001%, there is no effect of preventing grain boundary fracture embrittlement. If it exceeds 0.0030%, solid solution B increases and impairs the ductility of steel.

さらに高度な成形性のためにはCは0.02%以下とする
ことが好ましい。この時は製鋼過程において真空脱ガス
等の手段で脱炭が必要となろう。近年この分野での技術
開発は目覚ましくまた成形性は低炭素となるほど向上す
るのでその意味からは、Cは0.005%以下とすることが
好ましい。
For higher formability, C is preferably set to 0.02% or less. In this case, decarburization will be required in the steelmaking process by means such as vacuum degassing. In recent years, technological development in this field has been remarkable, and since the formability is improved as the carbon becomes lower, the content of C is preferably set to 0.005% or less.

次に、Mnは0.05〜0.5%の範囲で添加する。0.05%未
満では鋼中不純物であるSがMnSとして十分に固定され
ず、熱延時に割れを生じる。Mnが0.5%を越えると熱延
鋼板としてのプレス成形性あるいは溶融亜鉛めっき時に
おけるめっき密着性を損なう。
Next, Mn is added in the range of 0.05 to 0.5%. If it is less than 0.05%, S, which is an impurity in steel, is not sufficiently fixed as MnS, and cracks occur during hot rolling. If Mn exceeds 0.5%, the press formability as a hot-rolled steel sheet or the plating adhesion during hot-dip galvanizing is impaired.

Alは鋼の脱酸のため0.1%以下添加する。この量を越
えると脱酸生成物として介在物が増し鋼の延性を害す
る。好まし下限値は脱酸可能な0.003%程度である。
Al is added in an amount of 0.1% or less to deoxidize steel. If this amount is exceeded, inclusions increase as deoxidation products and impair ductility of the steel. The preferred lower limit is about 0.003% that can be deoxidized.

次に、Cuは本発明にあって極めて重要な添加元素であ
る。すなわちCuの時効析出により鋼を著しく高強度化す
るが一方、Cuは固溶状態にあっては鋼の延性をそれほど
損なわない。時効析出による硬化量はCu添加量による。
0.8%未満では硬化に長時間を要し、実用の観点からは
ふさわしくない。一方硬化量は2.0%の添加で飽和す
る。従って、Cuの添加量は0.8〜2.0%とした。安定して
硬化量を確保するには1.2%以上の添加が好ましい。
Next, Cu is a very important additive element in the present invention. That is, aging precipitation of Cu significantly increases the strength of steel, while Cu does not significantly impair the ductility of steel in a solid solution state. The amount of hardening due to aging precipitation depends on the amount of Cu added.
If it is less than 0.8%, it takes a long time to cure, which is not suitable from a practical viewpoint. On the other hand, the curing amount is saturated by adding 2.0%. Therefore, the addition amount of Cu is set to 0.8 to 2.0%. In order to stably secure the curing amount, it is preferable to add 1.2% or more.

Cu添加鋼にあってCuヘゲと呼ばれる表面欠陥が熱延中
に生じることがある。このCuヘゲを防ぐためにはNi添加
が好ましい。Niのこのような効果はCu添加量に応じて発
揮されるのでNi添加量はNi/Cuに応じて添加する。この
比が0.05未満ではCuヘゲ防止効果がなく、一方0.3を越
えると効果が飽和するうえに、Niが高価なため経済性が
著しく損なわれる。
In Cu-added steel, a surface defect called Cu scab may occur during hot rolling. In order to prevent this Cu scab, Ni addition is preferable. Since such an effect of Ni is exhibited according to the added amount of Cu, the added amount of Ni is added according to Ni / Cu. If this ratio is less than 0.05, the effect of preventing Cu baldness is not obtained. On the other hand, if it exceeds 0.3, the effect is saturated and the cost of Ni is expensive, so that the economic efficiency is significantly impaired.

以上が本発明の成分に関する数値限定理由であるが、
その他Si,P,Cr,Mo,Ca,REMの一種以上を単独あるいは組
み合わせて適宜添加し強度あるいは加工性をさらに確保
することは可能である。その場合、Si≦0.1%,P≦0.07
%,Cr≦0.5%,Mo≦0.6%,Ca:0.0005〜0.0030%,REM:0.0
05〜0.05%の範囲内で添加すべきである。Si,P,Cr,Moは
強度調整用に添加されるが、この範囲を越えるとめっき
密着性を損なう。特にSiはめっき密着性に対する悪影響
が大で、この観点からはSi≦0.03%(添加せずかつ不純
物としての混入も極力避ける)とするのが好ましい。C
a,REMは加工性向上の観点から添加されるが、この範囲
未満では効果がなく、この範囲を越えると効果は飽和す
る。
The above are the reasons for limiting the numerical values of the components of the present invention,
In addition, one or more of Si, P, Cr, Mo, Ca, and REM can be added alone or in combination as appropriate to further secure strength or workability. In that case, Si ≦ 0.1%, P ≦ 0.07
%, Cr ≦ 0.5%, Mo ≦ 0.6%, Ca: 0.0005 ~ 0.0030%, REM: 0.0
It should be added within the range of 05-0.05%. Si, P, Cr, and Mo are added for the purpose of adjusting the strength. However, if the content exceeds this range, plating adhesion is impaired. In particular, Si has a large adverse effect on the plating adhesion, and from this viewpoint, it is preferable that Si ≦ 0.03% (do not add and avoid mixing as impurities as much as possible). C
a, REM is added from the viewpoint of improving processability, but there is no effect below this range, and the effect is saturated above this range.

このような鋼は通常転炉で溶製され、連続鋳造にてス
ラブとされる。転炉溶製後種々の二次精錬がなされるこ
ともある。スラブは通常200〜300mm程度の厚みを持つ
が、近年進行中の10〜100mmの薄スラブであっても本発
明の効果は発揮される。むしろ薄スラブの方が冷却速度
が速く、Cuの固溶状態がより維持されることから好まし
いとも言える。スラブは冷片、温片あるいは熱片のまま
加熱炉に挿入され続いて熱延される。あるいは薄スラブ
の場合はコイル状に巻取られた後保温し続いて熱延され
る。熱延温度は終了温度がAr3変態点を下回らない方が
好ましいが、異常粒成長等、著しい加工性の劣化がない
範囲内であれば多少Ar3変態点を下回ってもよい。熱延
終了後ランアウトテーブル(ROT)で冷却されコイルに
巻取られる。巻取温度は極めて重要であり、530℃以下
とする必要がある。530℃を越える温度ではCuが巻取中
に析出し硬質・低延性となる。この意味からは巻取温度
は400℃以下とすることが好ましい。巻取温度の下限は
特に制限するところではない。ただ、C,Mn量が比較的高
い場合にROTでの冷却および巻取温度の組み合わせを鋼
の延性が阻害されないようにとる方が好ましい。
Such steel is usually smelted in a converter and made into a slab by continuous casting. After the melting of the converter, various secondary refining may be performed. The slab usually has a thickness of about 200 to 300 mm, but the effect of the present invention can be exerted even with a thin slab of 10 to 100 mm which is in progress in recent years. Rather, it can be said that a thin slab is preferable because the cooling rate is higher and the solid solution state of Cu is more maintained. The slab is inserted into a heating furnace as a cold piece, a hot piece or a hot piece and subsequently hot rolled. Alternatively, in the case of a thin slab, the slab is wound into a coil, kept warm, and subsequently hot rolled. The hot rolling temperature is preferably such that the end temperature does not fall below the Ar 3 transformation point, but may be slightly below the Ar 3 transformation point as long as the workability does not significantly deteriorate such as abnormal grain growth. After the end of hot rolling, it is cooled by a run-out table (ROT) and wound around a coil. The winding temperature is extremely important and needs to be 530 ° C. or less. At temperatures exceeding 530 ° C, Cu precipitates during winding and becomes hard and low ductility. In this sense, the winding temperature is preferably set to 400 ° C. or lower. The lower limit of the winding temperature is not particularly limited. However, when the amounts of C and Mn are relatively high, it is preferable to use a combination of cooling and winding temperatures in the ROT so that the ductility of the steel is not hindered.

熱延コイルは冷却後酸洗され続いて溶融亜鉛めっきさ
れる。溶融亜鉛めっきは通常連続溶融亜鉛めっきライン
によってなされる。その場合、通常、溶融亜鉛めっき浴
に浸漬する前に鋼板表面を還元するが、その方法は通常
の無酸化加熱−還元方式、あるいはバーナーの還元域を
利用する直接還元方式等いずれでもよい。あるいは適当
な前処理を施した後ラジアントチューブで加熱する方法
でもよい。いずれにしろ加熱温度は530℃以下とする必
要がある。この温度を越えるとこの加熱中にCuが析出
し、プレス成形時に低延性となり高度なプレス成形加工
ができない。ストリップ状のコイルはその後約450℃の
溶融亜鉛浴中に浸漬され溶融亜鉛めっきを施される。亜
鉛浴中にはAlを0.05〜0.2%添加し亜鉛の密着性を増し
てもよい。亜鉛の目付量は防錆性の要求に応じて適宜選
択できる。
The hot-rolled coil is pickled after cooling and subsequently hot-dip galvanized. Hot-dip galvanizing is usually performed by a continuous hot-dip galvanizing line. In this case, the surface of the steel sheet is usually reduced before being immersed in the hot-dip galvanizing bath, and the method may be any of a normal non-oxidation heating-reduction method or a direct reduction method using a reduction zone of a burner. Alternatively, a method of heating with a radiant tube after performing an appropriate pretreatment may be used. In any case, the heating temperature must be 530 ° C or lower. If the temperature is exceeded, Cu precipitates during this heating, resulting in low ductility at the time of press forming, so that advanced press forming cannot be performed. The strip-shaped coil is then dipped in a hot-dip zinc bath at about 450 ° C. and hot-dip galvanized. Al may be added to the zinc bath in an amount of 0.05 to 0.2% to increase the adhesion of zinc. The basis weight of zinc can be appropriately selected according to the requirement of rust prevention.

こうして溶融亜鉛めっきされた熱延鋼帯は場合によっ
ては調圧厚延あるいは/またレベラー加工されて加工工
場に出荷される。ここで高度なプレス成形がなされる
が、その際にあらかじめ合金化された溶融亜鉛めっき鋼
板ではめっき層が固いため剥離し、それがプレス金型に
付着しつぎの成形品に疵となるいわゆるパウダリングと
呼ばれる不良現象が生じることがあるが本発明の場合、
プレス時にめっき層は合金化されておらずその問題は生
じない。この点も本発明の大きな効果の一つである。
The hot-rolled steel strip galvanized in this way is subjected to pressure-regulating thick rolling and / or leveling if necessary and then shipped to a processing plant. Here, advanced press forming is performed. At that time, in the case of hot-dip galvanized steel sheet that has been alloyed beforehand, the coating layer is hard and peels off, which adheres to the press die and forms a so-called powder that forms flaws in the next formed product. A defect phenomenon called a ring may occur, but in the case of the present invention,
At the time of pressing, the plating layer is not alloyed and the problem does not occur. This point is also one of the great effects of the present invention.

プレス成形された鋼製部材はあるいは部品は加熱処理
される。Cuの析出による部材あるいは部品の強化と表層
の亜鉛めっき層の合金化がその目的である。その条件は
550〜650℃で10秒〜20分である。この条件未満ではCu析
出あるいはめっき層の合金化が十分でなく、またこの条
件を越えるとCuの過時効析出により強度は確保されな
い。好ましくは600℃,10分以下とすべきである。この加
熱は通常の直火炉あるいは電気炉あるいはまたレーザー
を利用するものなど温度・時間条件が満たされれば手段
は問わない。
Press-formed steel parts or parts are heat treated. The purpose is to strengthen the member or component by the precipitation of Cu and to alloy the surface galvanized layer. The condition is
550-650 ° C for 10 seconds to 20 minutes. If it is less than this condition, the precipitation of Cu or alloying of the plating layer will not be sufficient, and if it exceeds this condition, the strength will not be secured due to overageing precipitation of Cu. Preferably, the temperature should be 600 ° C. for 10 minutes or less. As for this heating, any means can be used as long as the temperature and time conditions are satisfied, such as a normal open furnace or an electric furnace or a method using a laser.

めっき層の合金化によりスポット溶接等の溶接性も通
電が可能となり、通常の溶融亜鉛めっき鋼板に比べれば
おおいに改善される。
Weldability such as spot welding can be conducted by alloying the plating layer, and is greatly improved as compared with a normal hot-dip galvanized steel sheet.

(実施例) 次に、本発明を実施例に基づいて説明する。(Example) Next, the present invention will be described based on examples.

第1表に示す成分の鋼を転炉にて溶解し、真空脱ガス
等の二次精錬を経てスラブとした。符号A〜Hが本発明
に従った成分の鋼で符号IおよびJの鋼はCあるいはMn
が、符号Kの鋼ではCuが本発明と異なる。また符号Lは
通常極く普遍的に用いられる熱延鋼板の成分である。こ
れらの鋼を第2表に示す熱延条件にて熱延を行いコイル
とし、続いて酸洗後、表中に示すめっき条件で連続溶融
亜鉛めっきラインにて溶融亜鉛めっきを施した。このラ
インは無酸化加熱−還元炉方式である。還元は本発明の
条件として低温で行う必要があるため水素濃度を高め強
還元とした。また、めっき浴中にはAlを0.17%添加し
た。得られた溶融亜鉛めっき鋼板の機械試験値を同じく
第2表に示す。引張試験はJISZ2201,5号試験片を用い同
Z2241記載の方法に従って行った。また、熱延鋼板の加
工性の中で重要な伸びフランジ性は穴広げ試験にて行っ
た。この試験は20mmの打ち抜き穴(クリアランスは板厚
の10%とした)を30゜円錐ポンチを上昇させて広げて行
く方法で、クラックが板厚を貫通する時の穴径(d)を
初期穴(d0)で除した値、d/d0でもって特性値とした。
Steel having the components shown in Table 1 was melted in a converter, and subjected to secondary refining such as vacuum degassing to form a slab. Symbols A to H are steels of components according to the present invention, and steels of symbols I and J are C or Mn.
However, in the steel of code K, Cu is different from the present invention. The symbol L is a component of a hot rolled steel sheet that is usually and universally used. These steels were hot-rolled under hot-rolling conditions shown in Table 2 to form coils. Subsequently, after pickling, hot-dip galvanizing was performed in a continuous hot-dip galvanizing line under the plating conditions shown in the table. This line is a non-oxidizing heating-reducing furnace system. Since the reduction must be performed at a low temperature as a condition of the present invention, the hydrogen concentration was increased to make strong reduction. Further, 0.17% of Al was added to the plating bath. Table 2 also shows mechanical test values of the obtained hot-dip galvanized steel sheet. The tensile test was conducted using JISZ2201, No.5 test pieces.
This was performed according to the method described in Z2241. The stretch flangeability, which is important in the workability of the hot-rolled steel sheet, was measured by a hole expanding test. In this test, a 20 mm punched hole (clearance was 10% of the plate thickness) was expanded by raising a 30 mm conical punch, and the hole diameter (d) when the crack penetrated the plate thickness was set as the initial hole. The value divided by (d 0 ) and d / d 0 were used as characteristic values.

本実施例では熱延加熱温度は1100〜1160℃であった。
熱延コイルの外観観察の結果では処理No.2−1,2−14お
よび2−17の鋼で軽微な同へげが見られた。
In this example, the hot rolling heating temperature was 1100 to 1160 ° C.
As a result of the observation of the appearance of the hot-rolled coil, a slight shrinkage was observed in the steels of the treatment Nos. 2-1, 2-14 and 2-17.

第2表の結果より、本発明に従った処理の材料はElが
35%以上で引張強度が40kgf/mm2級程度の軟質熱延鋼板
の材質を示すとともに、穴広げ比においても従来の熱延
鋼板並みの1.6以上の値を示している。特に高加工性と
した極低炭素鋼では、穴広げ比ほとんど2.0以上の極め
て高い値を示している。これに対し、熱延巻取温度の異
なる処理No.2−4および2−10、めっき温度の異なる処
理No.2−2,2−6および2−11、さらに成分が本発明と
異なる鋼を用いた処理No.2−17および2−18の鋼板で
は、めっき鋼板として極めて硬質、低伸びとなってい
て、プレス成形性において劣ることを示している。
According to the results in Table 2, the material of the treatment according to the present invention was El
It shows the material of soft hot-rolled steel sheet with 35% or more and tensile strength of about 40kgf / mm 2 class, and also shows the hole expansion ratio of 1.6 or more, which is comparable to conventional hot-rolled steel sheet. In particular, extremely low carbon steel with high workability shows an extremely high value of almost 2.0 or more. On the other hand, treatment Nos. 2-4 and 2-10 having different hot-rolling winding temperatures, treatments No. 2-2, 2-6 and 2-11 having different plating temperatures, and steels having different components from the present invention were used. The steel sheets of treatment Nos. 2-17 and 2-18 used were extremely hard and low elongation as plated steel sheets, indicating poor press formability.

なお、めっき密着性は曲げ試験にて評価したが、従来
鋼と遜色なく良好であった。
The plating adhesion was evaluated by a bending test, and was as good as that of conventional steel.

次に、この鋼板を成形加工後熱処理を行うことを想定
して、第3表に示す予ひずみを加えた後同じく第3表に
示す熱処理条件にて熱処理を行った。得られた試験片の
強度とめっき層のZn−Fe合金化度を同じく第3表に示
す。Zn−Fe合金化度はめっき層を化学分析し、Feの含有
割合で評価した。Fe%で8〜20%が適正範囲である。本
発明にしたがった材料では予ひずみを加えない場合でも
(成形部品において加工程度の小さい部分の評価)、後
熱処理後60kgf/mm2級前後の引張強度を示し、まためっ
き層も適正と考えられるFe%にコントロールされてい
る。これに対し後熱処理条件が不足あるいは過大なNo.3
−7〜3−9,3−13〜3−15および3−18の鋼板では強
度上昇はわずかであり、まためっき層については、No.3
−7〜3−9,3−13〜3−15の鋼板はFe%が低く合金化
も不十分であり、No.3−18の鋼板は逆にFe%が高すぎ
る。またCuが少ない鋼Kを用いたNo.3−29あるいはCuが
添加されていない鋼Lを用いたNo.3−30および3−31の
鋼板では後熱処理による強度上昇はほとんどない。
Next, assuming that a heat treatment was performed after forming the steel sheet, a heat treatment was performed under the same heat treatment conditions as shown in Table 3 after applying the pre-strain shown in Table 3. Table 3 also shows the strength of the obtained test pieces and the degree of Zn-Fe alloying of the plating layer. The degree of alloying of Zn-Fe was evaluated by the chemical analysis of the plating layer and the content ratio of Fe. The appropriate range is 8 to 20% in Fe%. The material according to the present invention shows a tensile strength of about 60 kgf / mm 2 after post-heat treatment even if no pre-strain is applied (evaluation of a part with a small working degree in a molded part), and the plating layer is considered to be appropriate. Fe% is controlled. On the other hand, the No. 3
In the steel sheets -7 to 3-9, 3-13 to 3-15 and 3-18, the increase in strength was slight.
The steel sheets -7 to 3-9 and 3-13 to 3-15 have low Fe% and insufficient alloying, and the steel sheets No. 3 to 18 have too high Fe%. Further, in the steel sheets No. 3-29 using the steel K with little Cu or the steel sheets No. 3-30 and 3-31 using the steel L to which Cu is not added, there is almost no increase in strength due to the post heat treatment.

(発明の効果) 本発明は、伸びや穴広げ性で代表される素材の加工性
および耐パウダリング性等の亜鉛めっき鋼板としての加
工性の双方の意味でプレス成形性に優れ、プレス成形後
の後熱処理により、著しい強度上昇と亜鉛めっき層の合
金化をもたらす鋼板の製造方法を提供する。本発明によ
れば、亜鉛めっき層の合金化によって、プレス成形部品
の組立時の溶接性や溶融亜鉛めっきの耐食性向上をもた
らす。
(Effects of the Invention) The present invention is excellent in press formability in terms of both workability of a material represented by elongation and hole expandability and workability as a galvanized steel sheet such as powdering resistance, and after press forming. The present invention provides a method for producing a steel sheet which causes a remarkable increase in strength and alloying of a galvanized layer by a post-heat treatment. ADVANTAGE OF THE INVENTION According to this invention, the alloyability of a galvanized layer brings about the improvement of the weldability at the time of assembly of a press-formed part, and the corrosion resistance of hot-dip galvanizing.

本発明は以上のように、従来亜鉛めっき鋼板が有して
いたパウダリング性等のプレス成形性不良や溶接性不良
を一気に解決するとともに、引張強度を10〜25kgf/mm2
上昇させるという著しい高強度化を両立させた画期的な
発明である。
As described above, the present invention at once resolves poor press formability and poor weldability such as powdering properties that conventional galvanized steel sheets have and has a tensile strength of 10 to 25 kgf / mm 2.
This is an epoch-making invention that achieves both remarkable high strength of raising.

フロントページの続き (72)発明者 松津 伸彦 千葉県君津市君津1番地 新日本製鐵株 式會社君津製鐵所内 (58)調査した分野(Int.Cl.6,DB名) C21D 9/46 - 9/48 C21D 8/02 - 8/04Continuation of front page (72) Inventor Nobuhiko Matsutsu 1 Kimitsu, Kimitsu-shi, Chiba Prefecture Nippon Steel Corporation Kimitsu Works (58) Field surveyed (Int. Cl. 6 , DB name) C21D 9/46 -9/48 C21D 8/02-8/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】質量の割合で(以下鋼中成分に関しては同
様)、C:0.05%以下、Mn:0.05〜0.5%、Al:0.1%以下、
Cu:0.8〜2.0%を含み、残部実質的に鉄からなる鋼をス
ラブとし、巻取温度≦530℃の条件で熱延を行いコイル
とし、続いて530℃以下の温度に加熱し鋼板表面の還元
を行った後、溶融亜鉛めっきを施すことを特徴とするプ
レス成形性に優れ、成形後の熱処理による著しい硬化性
と高耐食性を有する鋼板の製造方法。
(1) In terms of mass (hereinafter the same applies to components in steel), C: 0.05% or less, Mn: 0.05 to 0.5%, Al: 0.1% or less,
Cu: 0.8 to 2.0%, with the balance substantially consisting of iron as a slab, hot-rolled at a coiling temperature ≤ 530 ° C to form a coil, and then heated to a temperature of 530 ° C or lower to obtain a steel sheet surface. A method for producing a steel sheet having excellent press formability characterized by applying hot-dip galvanizing after reduction, and having remarkable hardenability and high corrosion resistance by heat treatment after forming.
【請求項2】C:0.05%以下、Mn:0.05〜0.5%、Al:0.1%
以下、Cu:0.8〜2.0%を含有し、さらにTi:0.005〜0.1
%、Nb:0.005〜0.1%、Zr:0.02〜0.1%、B:0.0001〜0.0
030%、Ni:Ni/Cuで0.05〜0.3の1種または2種以上を含
み、残部実質的に鉄からなる鋼をスラブとし、巻取温度
≦530℃の条件で熱延を行いコイルとし、続いて530℃以
下の温度で加熱し鋼板表面の還元を行った後、溶融亜鉛
めっきを施すことを特徴とするプレス成形性に優れ、成
形後の熱処理による著しい硬化性と高耐食性を有する鋼
板の製造方法。
2. C: 0.05% or less, Mn: 0.05-0.5%, Al: 0.1%
Hereinafter, Cu: 0.8 to 2.0% is contained, and Ti: 0.005 to 0.1
%, Nb: 0.005-0.1%, Zr: 0.02-0.1%, B: 0.0001-0.0
030%, Ni: Ni / Cu, containing one or more types of 0.05 to 0.3, the remainder substantially consisting of iron as a slab, hot-rolled at a winding temperature ≤ 530 ° C, and a coil, Subsequently, after heating at a temperature of 530 ° C or lower to reduce the surface of the steel sheet, it is excellent in press formability characterized by applying hot-dip galvanization, and is a steel sheet with remarkable hardening and high corrosion resistance by heat treatment after forming. Production method.
【請求項3】C:0.05%以下、Mn:0.05〜0.5%、Al:0.1%
以下、Cu:0.8〜2.0%を含み、残部実質的に鉄からなる
鋼をスラブとし、巻取温度≦530℃の条件で熱延を行い
コイルとし、続いて530℃以下の温度に加熱し鋼板表面
の還元を行った後、溶融亜鉛めっきを施した鋼板をプレ
ス成形加工し、続いて550〜650℃に10秒〜20分加熱し、
続いて溶接接合することを特徴とする優れた強度と耐食
性を有する鋼構造部材の製造方法。
3. C: 0.05% or less, Mn: 0.05-0.5%, Al: 0.1%
Hereinafter, a steel containing Cu: 0.8 to 2.0%, and the balance substantially consisting of iron is made into a slab, hot-rolled at a coiling temperature ≤ 530 ° C to form a coil, and then heated to a temperature of 530 ° C or less to form a steel sheet. After reducing the surface, the hot-dip galvanized steel sheet was press-formed, then heated to 550 to 650 ° C for 10 seconds to 20 minutes,
A method for producing a steel structural member having excellent strength and corrosion resistance, which is characterized by successively welding.
【請求項4】C:0.05%以下、Mn:0.05〜0.5%、Al:0.1%
以下、Cu:0.8〜2.0%を含有し、さらにTi:0.005〜0.1
%、Nb:0.005〜0.1%、Zr:0.02〜0.1%、B:0.0001〜0.0
030%、Ni:Ni/Cuで0.05〜0.3の1種または2種以上を含
み、残部実質的に鉄からなる鋼をスラブとし、巻取温度
≦530℃の条件で熱延を行いコイルとし、続いて530℃以
下の温度で加熱し鋼板表面の還元を行った後、溶融亜鉛
めっきを施した鋼板をプレス成形加工し、続いて550〜6
50℃に10秒〜20分加熱し続いて溶接接合することを特徴
とする優れた強度と耐食性を有する鋼構造部材の製造方
法。
4. C: 0.05% or less, Mn: 0.05-0.5%, Al: 0.1%
Hereinafter, Cu: 0.8 to 2.0% is contained, and Ti: 0.005 to 0.1
%, Nb: 0.005-0.1%, Zr: 0.02-0.1%, B: 0.0001-0.0
030%, Ni: Ni / Cu, containing one or more types of 0.05 to 0.3, the remainder substantially consisting of iron as a slab, hot-rolled at a winding temperature ≤ 530 ° C, and a coil, Subsequently, after heating at a temperature of 530 ° C. or less to reduce the surface of the steel sheet, the steel sheet subjected to hot-dip galvanizing is press-formed, and then 550 to 6
A method for producing a steel structural member having excellent strength and corrosion resistance, wherein the member is heated to 50 ° C. for 10 seconds to 20 minutes and then welded.
JP20946389A 1989-08-11 1989-08-11 Method for producing steel sheet having excellent press formability, remarkable hardenability by heat treatment after molding and high corrosion resistance, and method for producing steel structural member using the steel sheet Expired - Fee Related JP2802513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20946389A JP2802513B2 (en) 1989-08-11 1989-08-11 Method for producing steel sheet having excellent press formability, remarkable hardenability by heat treatment after molding and high corrosion resistance, and method for producing steel structural member using the steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20946389A JP2802513B2 (en) 1989-08-11 1989-08-11 Method for producing steel sheet having excellent press formability, remarkable hardenability by heat treatment after molding and high corrosion resistance, and method for producing steel structural member using the steel sheet

Publications (2)

Publication Number Publication Date
JPH0372034A JPH0372034A (en) 1991-03-27
JP2802513B2 true JP2802513B2 (en) 1998-09-24

Family

ID=16573289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20946389A Expired - Fee Related JP2802513B2 (en) 1989-08-11 1989-08-11 Method for producing steel sheet having excellent press formability, remarkable hardenability by heat treatment after molding and high corrosion resistance, and method for producing steel structural member using the steel sheet

Country Status (1)

Country Link
JP (1) JP2802513B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818074B2 (en) 2001-06-06 2004-11-16 Jfe Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001286B2 (en) * 1991-05-23 2000-01-24 新日本製鐵株式会社 Manufacturing method of high strength hot-dip galvanized steel sheet with excellent hole expandability
JP5392223B2 (en) * 2000-04-17 2014-01-22 Jfeスチール株式会社 Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818074B2 (en) 2001-06-06 2004-11-16 Jfe Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0372034A (en) 1991-03-27

Similar Documents

Publication Publication Date Title
CN108474096B (en) Aluminum-plated iron alloy steel sheet for hot press forming, hot press formed member using same, and method for producing same
US7442268B2 (en) Method of manufacturing cold rolled dual-phase steel sheet
CA2731492C (en) Hot rolled dual phase steel sheet, and method of making the same
KR100831449B1 (en) Zinc hot dip galvanized composite high strength steel plate excellent in formability and bore-expanding characteristics and method for production thereof
KR101313957B1 (en) High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JP5780171B2 (en) High-strength cold-rolled steel sheet with excellent bendability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and manufacturing method thereof
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2002053933A (en) Cold-rolled steel sheet or hot-rolled steel sheet having excellent hardenability in coating/baking and cold aging resistance, and its production method
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
JPH11279691A (en) High strength hot dip galvannealed steel sheet good in workability and its production
JPH10130782A (en) Ultrahigh strength cold rolled steel sheet and its production
CN114585766B (en) High-strength steel sheet and method for producing same
CN108474092B (en) High-strength hot-rolled steel sheet by hot-dip plating and method for producing same
CN114981457A (en) High-strength galvanized steel sheet and method for producing same
EP4180547A1 (en) Hot-pressed member and manufacturing method therefor
JP2006283071A (en) Method for producing galvannealed high strength steel sheet excellent in workability
CN114555845B (en) High-strength steel sheet and method for producing same
CN114585765B (en) High-strength steel sheet and method for producing same
JP5686028B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2802513B2 (en) Method for producing steel sheet having excellent press formability, remarkable hardenability by heat treatment after molding and high corrosion resistance, and method for producing steel structural member using the steel sheet
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP3646539B2 (en) Manufacturing method of hot-dip galvanized high-tensile steel sheet with excellent workability
JPH0832952B2 (en) Manufacturing method of cold-rolled steel sheet for press work with excellent chemical conversion treatability, weldability, punchability and slidability
JP2818675B2 (en) Manufacturing method of surface-conditioned cold-rolled steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees